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Emittance Growth Generated by Bunched Beam Electron Cooling

M. Blaskiewicz, J. Kewisch

BNL 911B, Upton, NY 11973, USA

The low energy RHIC electron cooling (LEReC) project at Brookhaven employs a linac to supply
electrons with kinetic energies from 1.6 to 2.6 MeV. Along with cooling the stored ion beam the
electron bunches create a coherent space charge field which can cause emittance growth. This
process is investigated both analytically and through simulation.

INTRODUCTION

The low energy RHIC electron cooling project is currently under construction at BNL. We are using an electron linac
with bunch lengths of a few centimeters to cool gold beams with lengths of several meters. Let γ be the Lorentz factor
of the ions, αp be the momentum compaction factor, σp be the rms fractional momentum spread, η = 1/γ2t − 1/γ2,
and T0 be the revolution period. The rms longitudinal slip per turn is σslip = T0|η|σp. Table 1 shows this and other
RHIC parameters.

TABLE I: Gold beam parameters

parameter γ = 4.1 value γ = 6.0 value

σtg(ns) 11.7 9.6

σp 3.5 × 10−4 3.8 × 10−4

Nion 6× 108 1× 109

emittance µm 2.5 2.5

f0 (kHz) 75.8 77.2

σslip(ps) 280 127

TABLE II: Electron beam parameters

parameter γ = 4.1 value γ = 6.0 value

σte(ps) 100 67

σp 4− 8× 10−4 4− 8× 10−4

Qe(pC) 65− 130 78-156

emittance µm 1-2 1-2

bunch spacing (ns) 1.42 1.42

bunches per train 31 25

The electron parameters are still under discussion but ranges are shown in Table 2. In the tables σtg and σte
are the root mean square (rms) bunch durations, Qe is the electron bunch charge, and Nion is the number of ions
per bunch.The emittance is the rms normalized emittance. There is a train of electron bunches of length ∼ 4σtg as
illustrated in Figure 1. For all cases one has σte < σslip which means that if an ion is subjected to a maximal space
charge force on one turn it is unlikely to be subject to a significant force on the next turn. Work by Gang Wang
and Vladimir Litvinenko [1] has shown that it is critical that the electron bunches not slip with respect to the ion
bunches. We assume this is the case but this still leaves the possibility of synchrobetatron resonances.
To study these resonances assume the cooling section is centered on β∗ with α∗ = 0 and take the transverse ion

coordinates to be x and p = β∗x′ so that the one turn matrix is just a rotation with phase advance ψ0 = 2πQx.
As a first approximation assume a single electron bunch centered on the ion bunch so that an ion interacts with it
twice per synchrotron oscillation. Assuming the electron bunch has focusing strength k an approximate map for half
a synchrotron oscillation is

[

xn+1

pn+1

]

=

[

cos πQx

Qs

sin πQx

Qs

− sin πQx

Qs

cos πQx

Qs

][

1 0

β∗k 1

]

=

[

xn
pn

]

, (1)
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where Qs is the synchrotron tune. When Qx/Qs is close to an integer the map is unstable. Taking sin(πQx/Qs) = ǫ

and assuming an eigenvalue λ = 1 + δ one finds δ ≈
√

β∗kǫ− ǫ2. The resonances for LEReC are typically very weak
with β∗k ∼ 10−5. When coupled with the small fraction of time the ions interact with the electrons one expects a
very small fraction of the beam would be harmed by these resonances. However there is another important dynamical
effect. Longitudinal intrabeam scattering causes the longitudinal action to wander and with it the synchrotron tune.
This causes individual particles to wander back and forth through resonances, usually increasing betatron amplitude
with each passage. If we look at it in terms of statitical averages the average increase in amplitude will be proportional
to the maximum growth and the fraction of time growing is proportional to the resonance width. Since both terms
are linear in the charge of the electron bunch one expects the emittance growth rate to scale as the square of the
electron bunch charge.

SIMULATIONS

The simulation code is based on a simple one turn map for the ions and a thin lens treatment of the electron-ion
interaction. The one turn map is defined by betatron tunes, coupling, chromaticities, detuning coefficients and sine
wave RF. Also we include longitudinal IBS with total growth rate given by Piwinski’s [4]coasting beam formula and
Zenkevich’s [5] viscous force. Transverse IBS is not included because the model assumes a uniform focusing lattice
which yields negative growth rates. Actual rates are about 10% of the longitudinal rates [6].Transverse space charge
is implemented as a phase shift that is a function of betatron amplitude and longitudinal position within the bunch.
The electron ion interaction consists of a coherent space charge kick where the electron bunch is taken to be a

three dimensional gaussian. Electron cooling is non-magnetized and treated with the Coloumb logarithm outside the
integral. The local density is multiplied by a cooling force that has the same form as the electrostatic force [7]. The
electron beam is assumed round and the cooling force is calculated at the start of the simulation and stored in a two
dimensional array. A version where only one transverse variable is tracked has also been developed.
We begin by determining what parameters are relevant to the dynamics. Figure 2 shows results for γ = 4.1 but

with 10 times the nominal electron bunch charge to speed things up. We can draw several conclusions. First, the two
dimensional (2D) simulation in red with chromaticity ξ = −2 is quite similar to the one dimensional version shown in
blue. We conclude the second transverse dimension is not fundamental to the emittance growth, justifying our earlier
1D analysis. The magenta and green curves in Figure 2 show the nihl effect of changing chromaticity. The purple and
navy lines show the effect of reducing the longitudinal IBS by factors of 10 and 100, respectively. There is clearly an
effect but it is weak. For no IBS the blue line shows no growth, hence some IBS is necessary for emittance growth.
Finally the yellow curve shows the effect of linear RF. Clearly the growth is much reduced when the synchrotron tune
does not depend on synchrotron amplitude.
Figure 3 shows the effect of 5 different initial random seeds with 1000 and 10,000 simulation particles. The

slopes of all the curves are very simular showing that the emittance growth does not depend on microscopic details.
Figure 4 shows the growth rate of the emittance for 2D simulations as the betatron tunes vary for 1000 and 10,000
macroparticles. The growth rates change by factors of two in a nonuniform way with tune, verifying that emittance
growth is a resonant phenomena.
Figures 5 and 6 show emittance growth rates as a function of electron bunch charge for 1D and 2D beams respectively.

For each curve we used linear least squares to fit

ln

[

d ln ǫ

dn

]

= a+ b ln (Qe) + error, (2)

with parameters a and b where Qe is the electron bunch charge. The curves in Figures 5 and 6 are labeled by the
betatron tune and the fitted value of b. For 1D we have 1.8 ≤ b ≤ 2.16 and for 2D 1.68 ≤ b ≤ 2.14 which agrees with
the value of 2 obtained by our earlier analysis.
Figures 7 and 8 show best guess results for the situation in RHIC. For both cases the smaller emittance and lower

intensity gives the best transverse cooling.

THEORY

The simulations discussed in the previous section can be explained analytically. To start we re-examine the impact
of varying the IBS rates. Figure 9 shows qualitative simulations of the beam emittance for early times and Figure
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FIG. 1: Ion and electron currents for γ = 4.1 with 65 pC electron bunches.
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FIG. 2: Simulations of emittance growth for a range of parameters, see the text for details.
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FIG. 3: Emittance versus time for identical physical parameters with different random seeds and number of simulation particles.

10 shows a more extensive simulation. For the first few thousand turns IBS rates from zero through 100 times the
nominal rate all yield the same rms emittance growth. After that the emittance growth rate depends weakly on the
IBS rate. It appears that the growth leads to a depletion of resonant particles and that IBS causes those particles
to be replaced. From the point of view of the theory we will start by assuming that the IBS is sufficiently fast to
replenish any depletion. Simulations have shown that only a single transverse dimension is needed so we consider the
Hamiltonian

H(x, p) =
Qx

2

(

p2 + x2
)

+ δp(θ)a
2∆ψx(τ) ln

(

1 +
x2

a2

)

, (3)
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FIG. 4: Growth rate as a function of betatron tune. The fine structure implies many resonances are relevant.
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FIG. 5: Growth rate versus bunch charge for 1D simulations. The curves are labeled by the non-integer part of the betatron
tune and the power law for the growth rate obtained by fitting equation (2).
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FIG. 6: Growth rate versus bunch charge for 2D simulations. The curves are labeled by the non-integer part of the betatron
tune and the power law for the growth rate obtained by fitting equation (2). Curves for power laws of 1.5 and 2 are shown for
comparison.

where we use azimuth θ as the time-like variable, a is the nominal radius of the electron beam, τ = τ(θ) is the arrival
time of the ion relative to the synchronous particle, x and p are the transverse position and momentum variables,
∆ψx(τ) is the space charge induced, betatron phase shift of the ions from the electrons, and

δp(θ) =
∞
∑

k=−∞

δ(θ − 2πk) =
∞
∑

m=0

cos(mθ)

(1 + δm,0)π
,
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FIG. 7: Ion emittance versus time for γ = 4.1. The thick lines show the predicted behavior while the thin lines neglect the
coherent kicks from the electrons. There are four cases with different rms momentum spread σp, rms normalized emittance
ǫ and electron bunch charge Qe. The stated electron bunch charge was used for the coherent kick while the charge used for
cooling was 30% less.
A, σp = 4× 10−4, ǫ = 2 µm, Qe = 130 pC;
B, σp = 4× 10−4, ǫ = 1 µm, Qe = 65 pC;
C, σp = 8× 10−4, ǫ = 2 µm, Qe = 130 pC;
D, σp = 8× 10−4, ǫ = 1 µm, Qe = 65 pC.
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FIG. 8: Ion emittance versus time for γ = 6. The thick lines show the predicted behavior while the thin lines neglect the
coherent kicks from the electrons. There are four cases with different rms momentum spread σp, rms normalized emittance
ǫ and electron bunch charge Qe. The stated electron bunch charge was used for the coherent kick while the charge used for
cooling was 30% less.
A, σp = 4× 10−4, ǫ = 2 µm, Qe = 156 pC;
B, σp = 4× 10−4, ǫ = 1 µm, Qe = 78 pC;
C, σp = 8× 10−4, ǫ = 2 µm, Qe = 156 pC;
D, σp = 8× 10−4, ǫ = 1 µm, Qe = 78 pC.

where δm,0 is the Kronecker delta. First we use action angle variables with x =
√
2J cosψ, p = −

√
2J sinψ yielding.

H(ψ, J) = QxJ + δp(θ)a
2∆ψx(τ) ln

(

1 +
2J cos2 ψ

a2

)

(4)

= QxJ + δp(θ)∆ψx(τ)

∞
∑

n=0

an(J) cos(2nψ). (5)

For n = 0 we find [3]

a0(J) = a2 ln

(

1 + J/a2 +
√

1 + 2J/a2

2

)

. (6)
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FIG. 9: Emittance growth with electron bunches of 10 times nominal charge for a range of longitudinal IBS rates. The nominal
IBS growth time is 650 seconds, labeled by 1. The labels are proportional to the rates, and saturation occurs for the nominal
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FIG. 10: Emittance growth with electron bunches of 10 times nominal charge for a range of longitudinal IBS rates. This is an
extended plot of the simulations in Figure 9

For n > 0

an(J) =
−2a2

n

(

−J/a2

1 + J/a2 +
√

1 + 2J/a2

)n

. (7)

The detuning term in the Hamiltonian increases without bound as J increases but the change in tune will be quite
small. The other terms an(J) are bounded by 2a2/n so the driving terms saturate with betatron amplitude. We will
be examining resonant behavior with small driving terms so we consider a single betatron harmonic

H1(ψ, J) = QxJ + δp(θ)∆ψx(τ)an(J) cos(2nψ). (8)

This Hamiltonian is straight forward to simulate but the delta function makes it difficult analytically.
To proceed take the slow approximation and make the substitution

δp(θ) cos(2nψ) →
cos(2nψ − pθ)

2π
,

where, since Qs ≪ 1, p is chosen to minimize |p − 2nQx|. Next do a scale transformation with Ψ = 2nψ − pθ. The
action variable is unchanged. The new Hamiltonian is

H2(Ψ, J) = (2nQx − p)J + 2n∆QxC(τ)an(J) cosΨ, (9)

where ∆Qx is the maximum tune shift of the ions due to the electrons and C(τ) is the ratio of electron current to
peak electron current. To solve (9) we define

x̃ =
√
2J cosΨ, p̃ = −

√
2J sinΨ, κ = 2nQx − p.
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Also let

ǫ(J) = 2n∆Qxan(J)/
√
2J.

With these definitions

H2(x̃, p̃) =
κ

2

(

x̃2 + p̃2
)

+ x̃C(τ)ǫ(J). (10)

The equations of motion are

dx̃

dθ
=
∂H2

∂p̃
= κp̃+ x̃p̃ǫ′(J)C(τ) (11)

dp̃

dθ
= −∂H2

∂x̃
= −κx̃− ǫ(J)C(τ) − x̃2ǫ′(J)C(τ). (12)

We will solve (11) and (12) approximately. The zeroeth order approximation is to ignore the terms proportional to
x̃p̃ and x̃2, and the first order approximation is to take x̃2 ≈ J . Note that J will evolve slowly for weak driving terms.
Define u = p̃+ ix̃ and approximate

du

dθ
= iκu− αqC(τ), (13)

where we allow for two approximations with α0 = ǫ(J0) or α1 = ǫ(J0) + J0ǫ
′(J0); J0 is the initial value of J . To

proceed we take C(τ) = −C(τ) and τ = τ̂ sinψs so that,

C(τ) =

∞
∑

m=0

Cm(τ̂ ) cos(mψs(θ)), (14)

where τ̂ is the synchrotron amplitude and ψs is the synchrotron phase. This is approximate since an arbitrary RF
waveform will not yield sinusoidal oscillations, but a sine wave with an amplitude dependent tune should be an
adequate approximation as long as Qs does not get too small. It is clear that the variation in τ̂ leads to changes
in synchrotron frequency and subsequently the synchrotron phase. However in the initial stages we want to make a
detailed investigation of the parameter space. Hence we assume that τ̂ , and subsequently Cm, remains constant and
that ψs is a random variable. Integrating (13) one gets

∆u = u(θ)− u0e
iκθ = −

θ
∫

0

dθ1e
iκ(θ − θ1)αq

∞
∑

m=0

Cm(τ̂ ) cos(mψs(θ1)), (15)

To characterize emittance growth note that u0 is uncorrelated with ∆u and take < |∆u(θ)|2 > where angular brackets
denote statistical averages,

< |∆u(θ)|2 >= α2
q

θ
∫

0

dθ1

θ
∫

0

dθ2e
iκ(θ2 − θ1)

∑

m,k

CmCk < cos(mψs(θ1)) cos(kψs(θ2)) > . (16)

Now we have

ψs(θ) = ψs(0) +

θ
∫

0

dθ1Qs(θ1),

where ψs(0) is distributed uniformly on [0, 2π) and Qs(θ) is the time dependent synchrotron tune. We approximate
the synchrotron tune as a stationary random variable. Averaging over ψs(0) only the terms with m = k survive.
Define χ = θ2 − θ1 so that

< |∆u(θ)|2 >= α2
q

θ
∫

−θ

dχ(θ − |χ|)eiκχ
∞
∑

m=0

(1 + δm,0)
C2

m

2
< cos[m

∫ χ

0

Qs(χ1)dχ1] > . (17)
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In (17) we need to evaluate the expectation value of the cosine term. The synchrotron tune varies over the IBS time
which is much longer than any correlation time. Therefore the expectation value is totally dominated by fluctuations
in the initial value of Qs and is unaffected by any fluctuations in Qs that occur on [0, χ]. Additionally we will assume
that Qs is a gaussian random variable with mean Q̄s and standard deviation σs. Then

< cos[m

∫ χ

0

Qs(χ1)dχ1] >= cos(mQ̄sχ)e
−m2σ2

sχ
2/2

The spread in synchrotron tune is typically >∼ 1% while IBS timescales are several minutes. For m > 0 the argument
of the exponential will be very large for values of χ that are short compared to IBS timescales, verifying the previous
assumption. This explains the behavior in Figure 9. For early times the emittance growth only depends on the initial
variation in Qs. After the resonant particles reach large amplitude they saturate and for the emittance to continue
growing other particles must become resonant. This refreshing of the resonant reservoir is due to IBS. As long as the
IBS is sufficiently fast the reservoir is always full and the growth in rms is steady.
For θσs ≫ 1 and κ 6= 0, < |∆u(θ)|2 > grows linearly with θ

d < |∆u(θ)|2 >
dθ

≡< |∆u(θ)|2 >′= α2
q

∞
∫

−∞

dχ

∞
∑

m=1

C2
m

2
cos(mQ̄sχ)e

−m2σ2
sχ

2/2 + iκχ. (18)

Notice that the m = 0 term is absent in (18). This is because we assume κ 6= 0. Otherwise the m = 0 term would
grow as θ2 and lead to unacceptable growth. The integrals in (18) over χ are straightforward and naturally break
into two terms

< |∆u(θ)|2 >′=< |∆u(θ)|2− >′ + < |∆u(θ)|2+ >′ (19)

with

< |∆u(θ)|2± >′= α2
q

∞
∑

m=1

√
2πC2

m

4mσs
exp



−1

2

[

mQ̄s ± κ

mσs

]2


 (20)

Equations (19) and (20) are the main results. To test them we will use C(τ) = 1/(1 + τ2). With τ = τ̂ sinψs only
the even terms in equation (14) are nonzero. The fourier coefficients can be found in closed form [3]

C2m(τ̂ ) =
2

(1 + τ̂2/2)
√

1− z2

(

1−
√

1− z2

z

)2m

, (21)

where z = τ̂2/(2 + τ̂2).

COMPARISON WITH SIMULATIONS

A code was written to simulate (8). To maximize resolution all the simulation particles start with the same values of
J and τ̂ . The synchrotron motion was modeled as a random process with the tunes modeled as identical, independently
distributed gaussian processes updated once per turn

ψ̄s = ψs + 2π[Q̄s + q] (22)

q̄ = rq + σs
√
1− r2n, (23)

where 0 ≤ r ≤ 1 defines the correlation time scale, n is a zero mean unit standard deviation gaussian deviate, and
the overbars denote updated values.
The update for the thin lens kick of the electrons on the ions was done using a canonical transformation of

Goldstein’s 3rd type [8]. The initial variables are J, ψ and the updated variables are J̄ , ψ̄ with generator F (J, ψ̄) =
∆ψx(τ)an(J) cos(2nψ̄)

ψ̄ = ψ +
∂F (J, ψ̄)

∂J
(24)

J̄ = J − ∂F (J, ψ̄)

∂ψ̄
. (25)
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Equation (24) was solved iteratively with

ψ̄n+1 = ψ +∆ψx(τ)a
′

n(J) cos(2nψ̄n)

and ψ̄0 = ψ. For our purposes n = 5 was completely adequate. Figure 11 shows initial and final transverse coordinates
of a typical simulation and Figure 12 shows the rms emittance versus turn. We go on to compare these simulations
with equations (19) and (20).

-3

-2
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 0

 1

 2

 3

-3 -2 -1  0  1  2  3

p

x

FIG. 11: Initial (blue) and final (red) particle coordinates for a simulation with 104 particles.
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FIG. 12: < |u|2 > versus time for a simulation with 105 particles and the same beam parameters as in Figure 11. The simulation
data are in red and the blue line is a least squares fit. The slope of the line is the emittance growth and is to be compared with
equations (19) and (20).

Figure 13 Shows growth rate from simulations for betatron harmonic n = 2 along with the analytic estimates and a
simulation using the full Hamiltonian in equation (3). The only place a significant discrepancy exists is at the extreme
left for small Qx. Here the simulation using the full Hamiltonian appears to fix on a different resonance yielding a
significantly larger growth rate. Other than that the techniques are all within a factor of 2. We go on to focus on
the analytic estimates and simulations using a single betatron harmonic. Figure 14 and 15 show results for betatron
harmonic n = 1 with different values of synchrotron amplitude τ̂ . Figure 16 shows growth as a function of τ̂ for n = 2
with other parameters fixed.For all these cases the betatron amplitude was fairly low. Figure 17 shows what can
happen for betatron amplitudes large compared to the electron beam radius. In any case one can see that the formula
and simulations give quantitatively comparable results so that equations (19) and (20) can be used for reliable factor
of 2 estimates.

A MORE REALISTIC THEORY

The theory of the previous section is amenable to detailed comparison with simulations but it is somewhat artificial.
A more physical theory can be obtained by putting C2

m back under the expectation value in equation (17). Once this
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FIG. 15: Emittance growth rates for n = 1, J = a2/2, τ̂ = 30 as a function of betatron tune. The formula for α0 and α1

bracket the simulation.

is done we assume Qs is a function soley of τ . We take the derivative of < |∆u(θ)|2 > with respect to θ assuming
large θ, which yields

< |∆u(θ)|2 >′=
α2
q

2

∞
∫

−∞

dχeiκχ
∞
∑

m=1

< C2
m(τ̂ ) cos[mQs(τ̂ )χ] >τ̂ . (26)
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FIG. 16: Emittance growth rates for n = 2, J = a2/2 versus τ̂
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FIG. 17: Emittance growth rates for n = 2, τ̂ = 30 as a function of x0 =
√
2J/a. For large betatron amplitudes the formulas

overestimate the growth.

In equation (26) we have assumed κ 6= 0. The averaging over τ̂ is accomplished by averaging over the distribution
ρ(τ̂ ) with

∞
∫

0

ρ(τ̂ )dτ̂ = 1.

Interchanging the order of the sum and integrations yields

< |∆u(θ)|2 >′ =
α2
q

2

∞
∑

m=1

∞
∫

0

ρ(τ̂ )C2
m(τ̂ )dτ̂

∞
∫

−∞

dχeiκχ cos[mQs(τ̂ )χ]. (27)

=
πα2

q

2

∞
∑

m=1

∞
∫

0

ρ(τ̂ )C2
m(τ̂ )δ[|κ| −mQs(τ̂ )]dτ̂ (28)

=
πα2

q

2

∞
∑

m=1

∑

k

ρ(τ̂k,m)C2
m(τ̂k,m)

|mQ′

s(τ̂k,m)| , (29)

where Q′
s is the derivative of Qs with respect to τ̂ and we define τ̂k,m to be the kth solution to |κ| = mQs(τ̂ ), where

of course there may be no solutions. Equation (27) is expressed in parameters that can be unambiguously obtained
from the physical parameters of the ion beam and cooling system. To test the accuracy of (29) we take Cm as defined
in equation (21). We assume elliptical trajectories in the longitudinal phase space and take the synchrotron tune to
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vary as

Qs(Js) = Q0 +
Q1Js

1 + (Q2Js)
2

(30)

where the Qi are constants, Js = τ̂2/2 and τ(θ) = τ̂ sin(Qs(τ̂ )θ + ψ0). We take ρ(τ̂ ) = τ̂ exp(−τ̂2/2σ2
t )/σ

2
t and start

the simulations as before with all particles at a single value of transverse action.
Figure 18 shows the synchrotron tune and longitudinal density used. The n = 1 results are shown in Figure 19,

along with results obtained using the full kick ∝ x/(a2+x2). The two simulation results are very similar, verifying that
only a single betatron sideband is needed. Comparing the simulations with equation (29) we see that the calculation
falls short by about a factor of 2. Figure 20 shows results for n = 2 and a similar discrepancy is seen. For both
cases the growth rate obtained from the formula is about half the value seen in the simulation. Other simulations
have been done and we see a similar discrepancy. To test for some sort of nonlinear behavior consider figure 21 which
shows the growth rate versus ∆Qsc. The growth rate scales quadratically with space charge tune shift over two orders
of magnitude in space charge tune shift. The nearly perfect scaling shows that it is unlikely that higher orders in
pertubation theory are important. This leaves us in the position of not being able to account for the discrepancy
between the simulations and formula (29) shown in figures 19 and 20. We leave the resolution of this discrepancy to
future work.
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FIG. 18: Synchrotron tune and longitudinal density function versus longitudinal amplitude. The parameters for both the n = 1
and n = 2 calculations are shown.
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FIG. 19: Growth rates for n = 1 single sideband calculations along with those for the full space charge Hamiltonian. The solid
lines are calculated using equation 29.
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FIG. 20: Growth rates for n = 2 single sideband calculations. The solid lines are calculated using equation (29).
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FIG. 21: Growth rate versus peak space charge tune shift. The solid line is a least squares fit assuming the growth is proportional
to ∆Q2

sc.

CONCLUSION

Using bunched beams for electron cooling can lead to dynamically generated emittance growth. There are 3 required
ingredients:

1. electron bunches that are of comparable length to the rms longitudinal slip per turn of the ions,

2. variation of the synchrotron frequency with amplitude,

3. longitudinal intrabeam scattering, although the dependence on rates is weak.

The emittance growth rate of the ions scales like the square of the electron bunch charge. This was shown theoretically
and verified using simulations. A theoretical model was developed and compared well with experiments. A more
physical model was developed as well. The latter can be directly applied to a particlular accelerator and yields
estimates accurate at the factor of 2 level. This should be useful in the design phase and, when showing a negligible
effect, be adequate to resolve any questions.
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