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" Motivation: Lowering costs for hydrogen!fuel cell
vehicles

* Hydrogen storage systems require a number of ancillary components to the
primary storage vessel: tubing, valves, pressure regulators, pressure relief
devices, pressure transducers.  fpeca
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e Structural materials for these balance of plant (BOP) components typically
include...

— Annealed type 316L austenitic stainless steel (Ni content >12 wt%)

— A286 precipitation-strengthened austenitic stainless steel (Ni ~30 wt%)
e BOP onboard vehicles accounts for:

— 30-57% of total system cost

— 15-20% of total system mass
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Computation may offer a solution!

Identify alternatives to high-cost metals for high-pressure BOP components
— Reduce cost by 35%
— Reduce weight by 50%

Experimental observation: Hydrogen embrittlement is more severe for lower-Ni
content stainless steels than for high-Ni content ones...
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exposure to hydrogen, but
increases with Ni content and,
possibly, stacking fault energy.
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Hypothesis: This effect could be due to the higher stacking fault energy (SFE) of steels with
high-Ni content, i.e. higher SFE = increased dislocation mobility 2 more ductility.

Goal: Use quantum-based computational approaches to discover alloy compositions that
possess favorable material properties that correlate with mechanical performance in
hydrogen environments (i.e. SFE).
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- Approach: Verify assumption; Use high-tﬁroughput
computation to formulate “better” materials

Survey existing literature to assess SFE relations to hydrogen effects on
mechanical properties.

Develop and implement density functional theory (DFT) based approaches for
calculating SFE.

Calculate SFE for known commercial (316L, 21-6-9) and research (10-8-2.5)
alloys, and validate against literature values and experimental measurements.

Develop algorithms to perform high-throughput, guided searches of
Fe-Cr-Ni-Mn-Al composition ‘space’ to find alloys with optimal values of SFE.

Work with industry partner (Carpenter Technology Corporation) to determine the
feasibility and evaluate the economic benefit of synthesizing optimal alloys.

Use DFT results to create a materials design tool useful to industry and scientific
community.

Verify & Search for
validate alloys with
DFT calcs optimal SFE
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" How does SFE trend with material sensitivity to H,?

e Limited measurements of SFE are available, and investigations of hydrogen
degradation generally do not report SFE.

e To enlarge data set, we used an analytic thermodynamic model that includes
considerations of segregation, interfacial energy and magnetic entropy.

SFE(T) = 2pAGY™4(T) + 20

Based on: Dumay, et al., Mater. Sci. A, 2008; Saeed-Akbari, et al., Met. Trans. A, 2010; Curtze, et al. Acta Mater. 2011
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‘Thermodynamic model proviaes insights o?hydrogen
sensitivity and effects of composition variability
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mmposﬁn changes can result in S|gn|f|’M eductions

of estimated raw material cost
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WIicroscoﬁ/ measurementsM‘écking fault ¢ energy —_

Approach: Weak beam dark field TEM measurements to determine fault widths as
function of dislocation character (angle of Burgers vector with respect to line direction)
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Measurements on 316L give SFE ~60-100 mJ/m? (c.f.
XRD ~78 mJ/m? (Schram and Reed 1975))
Measurements of high-Mn alloy tested by Michler et al.
gives SFE 2 63 mJ/m?

These high values are pushing this technique’s limits of

due to narrow separation of partial dislocations.
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" Use density functional theory (DFT) to pFavide high
accuracy estimates of SFE
FheP(T) + 2F4heP(T) — 3FTCE(T)  »¢<
V3af../4 B
F=EWV(),m()) — T * Spag(m(T)) TSI

Two approaches for calculation of SFE: Jec
(1) Full ab initio calculation of SFE (explicit atoms of each species):
a. Generate a special quasi-random structure for a given composition to
obtain a statistically random configuration.
b. Use DFT to perform a geometry optimization to determine the enthalpy
and the magnetic/spin moment vectors.
c. Use longitudinal spin-fluctuation (LSF) Monte Carlo to determine the
magnetic/spin entropy.
d. Repeat for three crystallographic phases

SFE(T) =

(2) Coherent potential approximation (CPA) to DFT that includes considerations
of thermal expansion and magnetic entropy
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" Thermal lattice expansion aMnagnetic Mtropy are
critical to DFT prediction of SFE
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* SFE is estimated by a difference between energies of FCC, HCP and dHCP structures,
which are very small, particularly at the room temperature lattice size.

e Thus, SFE prediction can be very sensitive to how well lattice size is predicted.

* These dependencies are what make accurate prediction of SFE using DFT-based

methods a formidable challenge.
10
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" Full DFT computation of SFE requires a large
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Geometry optimization of a given phase and composition:

384 processors x 48 hours runtime = 18,432 cpu—hours
Estimation of magnetic/spin entropy of a 64-atom system:

552 DFT calculations x 128 processors x 8 hours = 565,248 cpu-hours
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" Cohesive potential approximation (CPA) method
introduces computational efficiencies to SFE estimation

* A small series (12) of DFT/CPA calculations is used to construct an energy-volume curve
for the fcc phase and determine the theoretical lattice parameter.

Note: Electronic and magnetic entropy effects, at 300K, are included self-consistently
using the longitudinal spin fluctuation (LSF) method.

* Optimal cell volume is determined by spline interpolation and scaled to include thermal
expansion (~0.5%). This results in a lattice parameter and SFE consistent with
experimental results for 316 stainless steel, for example.

* Construct hcp and dhcp unit cells based on the above optimal cell volume.
e Calculate free energy for each phase (fcc, hcp, dhcp).

* Estimate SFE using the axial next-nearest-neighbor Ising (ANNNI) model.
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" DFT/CPA a pproach used to geﬁte database of aIonw

compositions with fewer assumptions than TD model

We have predicted the SFE of ~4,000 stainless steel alloys

Current composition ranges: 50.0
Fe —62 to 74 wt%, Ni — 0 to 20 wt%,
Cr— 16 to 24 wt%, Mn — 0 to 24 wt%, 40.0
Mo-0to 6 wt%, Si—0to6wt%
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. w
structure display a narrower 100
range of variation centered 0.0
around larger values of SFE.
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Calculations suggest lattice parameter FCC Lattice parameter (A)

(an easier quantity to measure) could In Progress: Comparison with
serve as a proxy for SFE thermodynamic model predictions
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" Web-based “design” tool inté?r%tes the SFE models and
cost metrics for rapid alloy screening

Slmulatlon of SFE contours in N| Mn space
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" Multi-dimensional simulation results can be used to
assess the effects of composition on SFE and cost
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" Filters in the web-tool allow narrowing ran-g-es of any
field and all characteristics are accessible at cursor tip
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- Future Work

Remainder of FY17:

Complete web-based tool for SFE estimations based on composition

- Include larger database of CPA estimates and compare with thermodynamic model
- Improve cost assessment methodology

Potential follow-on activities:

Study of deformation and crack growth mechanisms in hydrogen-assisted fatigue
Apply concepts to aluminum alloys

Expansion of web-based tool for estimations of other intrinsic material properties that
have relevance to performance characteristics

17



