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• Hydrogen storage systems require a number of ancillary components to the 
primary storage vessel: tubing, valves, pressure regulators, pressure relief 
devices, pressure transducers.

• Structural materials for these balance of plant (BOP) components typically 
include…

– Annealed type 316L austenitic stainless steel (Ni content >12 wt%)

– A286 precipitation-strengthened austenitic stainless steel (Ni ~30 wt%)

• BOP onboard vehicles accounts for:

– 30-57% of total system cost

– 15-20% of total system mass

Motivation: Lowering costs for hydrogen-fuel cell 
vehicles 
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• Identify alternatives to high-cost metals for high-pressure BOP components

– Reduce cost by 35%

– Reduce weight by 50% 

Computation may offer a solution!
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Hypothesis: This effect could be due to the higher stacking fault energy (SFE) of steels with 
high-Ni content, i.e. higher SFE  increased dislocation mobility  more ductility.

Experimental observation: Hydrogen embrittlement is more severe for lower-Ni 
content stainless steels than for high-Ni content ones…

Reduction of area (tensile 
ductility) decreases with 
exposure to hydrogen, but 
increases with Ni content and, 
possibly, stacking fault energy.

• Goal: Use quantum-based computational approaches to discover alloy compositions that 
possess favorable material properties that correlate with mechanical performance in 
hydrogen environments (i.e. SFE).



Approach: Verify assumption; Use high-throughput 
computation to formulate “better” materials 

• Survey existing literature to assess SFE relations to hydrogen effects on 
mechanical properties. 

• Develop and implement density functional theory (DFT) based approaches for 
calculating SFE.

• Calculate SFE for known commercial (316L, 21-6-9) and research (10-8-2.5) 
alloys, and validate against literature values and experimental measurements.

• Develop algorithms to perform high-throughput, guided searches of 
Fe-Cr-Ni-Mn-Al composition ‘space’ to find alloys with optimal values of SFE.

• Work with industry partner (Carpenter Technology Corporation) to determine the 
feasibility and evaluate the economic benefit of synthesizing optimal alloys.

• Use DFT results to create a materials design tool useful to industry and scientific 
community.

Verify & 
validate 

DFT calcs

Search for 
alloys with 

optimal SFE 

Identify 
candidate 
materials 

Create 
materials 

design tool
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How does SFE trend with material sensitivity to H2?

• Limited measurements of SFE are available, and investigations of hydrogen 
degradation generally do not report SFE.

• To enlarge data set, we used an analytic thermodynamic model that includes 
considerations of segregation, interfacial energy and magnetic entropy.

Based on: Dumay, et al., Mater. Sci. A, 2008; Saeed-Akbari, et al., Met. Trans. A, 2010; Curtze, et al. Acta Mater. 2011
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Relative reduction of 
area (RRA) was found 

to track with SFE below 
a threshold value. Near 
and above this value, 
high SFE commonly 

corresponds with high 
RRA. 
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Thermodynamic model provides insights on hydrogen 
sensitivity and effects of composition variability

several alloys have comparable 
SFE (~40 mJ/m2) and high RRA  

high-Mn compositions were 
found to have high SFE and high 

RRA

High SFE is necessary, 
but not sufficient for low 
sensitivity to hydrogen

low SFE values indicate sensitivity 
to hydrogen degradation
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Composition changes can result in significant reductions 
of estimated raw material cost



Microscopy measurements of stacking fault energy
Approach: Weak beam dark field TEM measurements to determine fault widths as 
function of dislocation character (angle of Burgers vector with respect to line direction)

Annealed 316L, 
850°C, 30 min, 
water quench

=65 GPa
b=0.25 nm
=0.39
Schramm and Reed 1975

− Measurements on 316L give SFE ~60-100 mJ/m2 (c.f. 
XRD ~78 mJ/m2 (Schram and Reed 1975))

− Measurements of high-Mn alloy tested by Michler et al. 
gives SFE ≥ 63 mJ/m2

− These high values are pushing this technique’s limits of 
due to narrow separation of partial dislocations.

316 L

ref. Hirth & Lothe, 
Theory of Dislocations 1992

Analytical expression for partial dislocation 
spacing as function of SFE:

partial 
separation

SFE

Shear 
modulus

Burgers 
vector

50 nm

Separation of 
partial dislocations 
gives measure of 
SFE

Weak Beam Dark Field TEM

8



Use density functional theory (DFT) to provide high 
accuracy estimates of SFE
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fcc hcp dhcp
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Two approaches for calculation of SFE: 
(1) Full ab initio calculation of SFE (explicit atoms of each species):

a. Generate a special quasi-random structure for a given composition to 
obtain a statistically random configuration.

b. Use DFT to perform a geometry optimization to determine the enthalpy 
and the magnetic/spin moment vectors.

c. Use longitudinal spin-fluctuation (LSF) Monte Carlo to determine the 
magnetic/spin entropy. 

d. Repeat for three crystallographic phases

(2) Coherent potential approximation (CPA) to DFT that includes considerations 
of thermal expansion and magnetic entropy

� = � � � , � � − � ∗ ����(�(�))



Thermal lattice expansion and magnetic entropy are 
critical to DFT prediction of SFE

• SFE is estimated by a difference between energies of FCC, HCP and dHCP structures, 
which are very small, particularly at the room temperature lattice size.

• Thus, SFE prediction can be very sensitive to how well lattice size is predicted. 
• These dependencies are what make accurate prediction of SFE using DFT-based 

methods a formidable challenge. 
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Full DFT computation of SFE requires a large 
computational effort
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64 atoms -
(Fe42Cr9Ni13) 
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Geometry optimization of a given phase and composition: 
384 processors x 48 hours runtime = 18,432 cpu—hours
Estimation of magnetic/spin entropy of a 64-atom system: 
552 DFT calculations x 128 processors x 8 hours = 565,248 cpu-hours 

Strategy of 
performing exact 

DFT calculations is 
computationally 
intensive and not 
suitable for high-

throughput 
screening 
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• A small series (12) of DFT/CPA calculations is used to construct an energy-volume curve
for the fcc phase and determine the theoretical lattice parameter.

Note: Electronic and magnetic entropy effects, at 300K, are included self-consistently
using the longitudinal spin fluctuation (LSF) method.

• Optimal cell volume is determined by spline interpolation and scaled to include thermal
expansion (~0.5%). This results in a lattice parameter and SFE consistent with
experimental results for 316 stainless steel, for example.

• Construct hcp and dhcp unit cells based on the above optimal cell volume.

• Calculate free energy for each phase (fcc, hcp, dhcp).

• Estimate SFE using the axial next-nearest-neighbor Ising (ANNNI) model.

Cohesive potential approximation (CPA) method 
introduces computational efficiencies to SFE estimation
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DFT/CPA approach used to generate database of alloy 
compositions with fewer assumptions than TD model

We have predicted the SFE of ~4,000 stainless steel alloys

Current composition ranges:
Fe – 62 to 74 wt%, Ni – 0 to 20 wt%, 
Cr – 16 to 24 wt%, Mn – 0 to 24 wt%, 
Mo – 0 to 6 wt%, Si – 0 to 6 wt %

In Progress: Comparison with 
thermodynamic model predictions

Alloys with larger lattice 
parameter for the austenitic (fcc) 
structure display a narrower 
range of variation centered 
around larger values of SFE.

Calculations suggest lattice parameter 
(an easier quantity to measure) could 
serve as a proxy for SFE
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Web-based “design” tool integrates the SFE models and 
cost metrics for rapid alloy screening 

Ni

Mn

Color contours by SFE

Simulation of SFE contours in Ni-Mn space
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Multi-dimensional simulation results can be used to 
assess the effects of composition on SFE and cost 

SFE (mJ/m2)

Cost
(relative 
units)

Color contours by Ni

thermodynamic 
model

DFT/CPA
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Filters in the web-tool allow narrowing ranges of any 
field and all characteristics are accessible at cursor tip

Simulation of Ni contours in 
cost-SFE space includes:

• Fe
• Cr
• Ni
• 0 < Mn < 1
• Mo
• Cu
• Si
• Al

Color contours by Ni

SFE (mJ/m2)

Cost
(relative 
units)



Future Work
Remainder of FY17:
• Complete web-based tool for SFE estimations based on composition

- Include larger database of CPA estimates and compare with thermodynamic model 
- Improve cost assessment methodology 
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Potential follow-on activities:

• Study of deformation and crack growth mechanisms in hydrogen-assisted fatigue

• Apply concepts to aluminum alloys

• Expansion of web-based tool for estimations of other intrinsic material properties that 
have relevance to performance characteristics


