SAND2017-7083C

o-a-8-
o0 M a-8-3

A New Approach to
L= Distortional Hardening

L 1 (h/2) = 0.99r

Dis. Hard. Variable, r (-)

— von Mises == Hill == Cazacy

Brian T. Lester
William M. Scherzinger

Solid Mechanics Department
Sandia National Laboratories
Albuquerque, NM USA

54th Annual Society of Engineering Science Technical Meeting
Boston, MA
July 27, 2017

@ENERGY DNISA

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.




7| Netora

Anisotropic Plasticity

= Plastic anisotropy needed for complex, multiaxial loadings of
structures
= Manufacturing processes (e.g. sheet metal forming)

= Ductile failure
2"d Sandia Fracture Challenge (SFC2) (Ti-6Al-4V)

|sotropic (EV) and anisotropic (HP — Notched Shear Calibration Data for SFC2
Hill) failure predictions 3 . ! .
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Plastic Hardening
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= Capturing multiaxial, history dependent response requires
description of anisotropic yield and hardening

Isotropic
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Distortional Hardening UL

= Need computationally efficient, flexible distortional hardening
model

= Existing implementations:

= Expensive and/or difficult to implement — HAH (e.g. Barlat et al.),
Projection Tensor (e.g. Feigenbaum and Dafalias, Shi and Mosler)

= Thermodynamic issues/calibration specific -- “Isotropic Distortion”
(e.g. Aretz, Plunkett et al.)

= Current objective: Development of new distortional
hardening model
= Simplified way of introducing distortional effects
= Thermodynamically consistent
= Amenable to 3D numerical implementation
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Traditional Yield Functions
f=f(oi,K)=0¢(0ij) — oy (K)
¢ (0ij) Effective Stress o, (K) =0, + K Flow Stress

— Vvon Mises - =| Hill
- - Hosford - -l Cazacu

= Many existing effective
- stress definitions:

= Non-quadratic

= Strength-differential

= Anisotropic

= Can they be leveraged for
distortional capabilities?




New Yield Function W
f=1[(0ij,K,N)=¢(0ij, N) — oy (K)

Nes Nes

¢ (045, N) = Zc(k) (N)p™ (o) Zc(k) —1: ¢ >0
k=1 k=1
" |ntroduce a new “Evolving PRk 2 .
Effective Stress” (EES) g
= “Mix and Match” effective .

stress combinations :

= Weighted sum of different “. (’ ‘)
definitions for desired :

features A '
53 ‘\ ' S1
= Use/Evolve distortional
variable to change weights — Initial " -

- - Final 1-----
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Evolution Equations

= Evolution equations found by trying to maximize dissipation
= Flow rules correspond to Karush-Kuhn-Tucker conditions:

K= A
7"7_)\8{?2 M (o, K,N) =0
_ Ag_]f@
= Leads to rate of dissipation density of
D = (0 + Ngff)

\ Can be positive or negative
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Weighting Function Definition
= For current cases consider a two effective stress definition
¢ (035, N) = C(N)¢W (o55) + (1 = C(N)) ¢ (o)

= For weighting functions want functions
= Have non-zero initial derivatives
= Satisfy previous constraints
= Eventually saturate
= Continuous

(=exp(=kN) N ()= %PmOan

k, P4 Fitting constants




Numerical Implementation .

= Use Line =Search Augmented Newton Raphson (LS-NR) approach
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Scherzinger, 2017, CMAME, 317, pp.526-553; Lester and Scherzinger, 2017, IINME 11
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Anisotropy Evolution

= Want to investigate evolution of anisotropy
= Consider case of von Mises evolving to anisotropic Hill (‘48)

9
(Cb(H) (Uij)> = F (629 — 533)2 + G (633 — 511)2 + H (611 — 522)2
+2L65, + 2M 63, + 2N 67,

011 — 022 Yield surfaces 011 — 033 Yield surfaces

(733/f7yr (-)

022/%' (-)




Evolving Effective Stress )=,
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= New EES model able to capture distortional hardening



Constitutive Behavior - Hill ) =,

400 , : : :
i : i : i 2.0 T T T T

350 15F G 22 _____________________ ____________________ ______________________

300 10k ...................... ..................... -(?’ ‘O__e,- ________________

05_ ............... -@'“@F _______________ ______________________
0.0 5...\@.:.3:. |

N
(O,
o

Dis. Hard. Variable, n (-)

Axial Stress, o (MPa)

. a a
~ : : :
—0.5k N . e
I50FF b T N ~. 5 5
HON : :
1.0k S o T
Y :
G

15k ...................... ......... @ ______________________

—_ g

—- @M jj—33

: -2.0 ; i ;
095 Y} T u_s/ (z,ia) 10 12 14 <> —<> 33 0.00 0.02 0.04 0.06 0.08 0.10
ok i R ; . . B
0.00 0.02 0.04 0.06 0.08 0.10 Axial Strain, = (-)

Axial Strain, < (-)

SO0 BRI i

= Distortional hardening is anisotropic

I ——————



Tensile Cylinder
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= Distortional hardening impacts structural response (e.g. necking
strain)




Pressurized Cylinder UL
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Pressurized Cylinder — Stress Path

= Loading case results
in complex,
multiaxial, non-
proportional
loadings

= New EES model
sufficiently
robust to handle
such
deformations
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Conclusion ) 2=,

= Developed theory and numerical implementation for evolving
effective stress (EES) distortional hardening model

= Introduce additional scalar internal state variable (7] ) associated
specifically with distortional hardening

= Evolution equations derived in a thermodynamically consistent
fashion producing associative flow rules

= Numerical implementation via fully implicit, closest point projection
line-search augmented Newton-Raphson return mapping algorithm

= Demonstrated capability to solve structural problems
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Model Timings

Round Cylinder Run Times Pressurized Cylinder Run Times

Run Time/(Run Time) Run Time/(Run Time),,
Case || Hill EES Case | Hill EES
X | 2.416 1.390 A LI27 1.555
Y || 1.420 1.850 Yo Lo 1192
Z || 0972 1.085
7 | 2.539 1.645 e G
0.75 1.118 1.114
0.875 || 0.945 1.135
1.125 0.979 1.255
1.25 1.159 1.385

= EES Model run times comparable to analogous isotropic

hardening forms




Lankford Ratio Evolution ==
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Dissipation - Constitutive UL
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e, position, (mm)

Tensile Bar — Final Shape
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Strength-Differential Evolution

= Want to look at the effect of developing strength-differential

= Consider isotropic form of Cazacu et al. effective stress

¢\ = {[|s1] — ks1]" + [|s2| — ks2]” + [|s3] — ks3]"}
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Constitutive Behavior - Cazacu ) &,
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= EES approach captures development of tension-compression
asymmetry



Cazacu Dissipation )2,
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Pressurized Cylinder - Cazacu .
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= |Implementation robust under complex, non-proportional,
multiaxial load paths




Cylinder Dissipation =N
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Numerical Solution ) 2=
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Convexity

= To maximize dissipation, minimize constrained Lagrangian
L(oij, K, N,A) = =D (0i;, K, N) + Af (045, K, N)
D=0, —Ki—Nn>0

= Second-order necessary and sufficient conditions for relative
minimum satisfied if

y-ViLy =My -V?fy>=0 Vy st. y-Vf=0
82¢* R 82¢* R 282¢*
50+ 2N 50 N
74 o0om T BeoN T T GNe

= Some issues need to be addressed for general convexity of
distortional hardening

Luenberger and Ye, 2008, “Linear and Non-linear Programming”



