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Anisotropic Plasticity
 Plastic anisotropy needed for complex, multiaxial loadings of 

structures
 Manufacturing processes (e.g. sheet metal forming)

 Ductile failure
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Karlson et al., 2016, Int. Jrnl. Frac., 198: 179-195

Isotropic (EV) and anisotropic (HP –
Hill) failure predictions

*SFC2 Data Courtesy S. Kramer, B. Boyce, K. Karlson, J. T. Ostien et al.,  SNL 

2nd Sandia Fracture Challenge (SFC2) (Ti-6Al-4V) 

Notched Shear Calibration Data for SFC2

Boyce et al., 2016, Int. Jrnl. Frac., 198: 5-100



Plastic Hardening
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 Capturing multiaxial, history dependent response requires 
description of anisotropic yield and hardening



Distortional Hardening
 Need computationally efficient, flexible distortional hardening 

model 

 Existing implementations:
 Expensive and/or difficult to implement – HAH (e.g. Barlat et al.), 

Projection Tensor (e.g. Feigenbaum and Dafalias, Shi and Mosler)

 Thermodynamic issues/calibration specific -- “Isotropic Distortion” 
(e.g. Aretz, Plunkett et al.)

 Current objective: Development of new distortional 
hardening model
 Simplified way of introducing distortional effects

 Thermodynamically consistent

 Amenable to 3D numerical implementation
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MODELING
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Free Energy
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 Assume isotropic and distortional energetic effects are 
independent and separable

 “Traditional” state variables
 Elastic strain tensor,

 Isotropic hardening variable (IHV), 

 Introduce single scalar ISV for distortional hardening,
 Encapsulates all microstructural effects of distortional hardening

 Likely multiple mechanisms



Traditional Yield Functions

7

Effective Stress Flow Stress

 Many existing effective 
stress definitions:
 Non-quadratic

 Strength-differential

 Anisotropic

 Can they be leveraged for 
distortional capabilities?



New Yield Function
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 Introduce a new ”Evolving 
Effective Stress” (EES)

 “Mix and Match” effective 
stress combinations

 Weighted sum of different 
definitions for desired 
features

 Use/Evolve distortional 
variable to change weights



Evolution Equations
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 Evolution equations found by trying to maximize dissipation

 Flow rules correspond to Karush-Kuhn-Tucker conditions:

 Leads to rate of dissipation density of

Can be positive or negative



Weighting Function Definition

 For current cases consider a two effective stress definition
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 For weighting functions want functions 
 Have non-zero initial derivatives

 Satisfy previous constraints

 Eventually saturate 

 Continuous

Fitting constants



Numerical Implementation

 Use Line –Search Augmented Newton Raphson (LS-NR) approach
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System of Linearized Residuals

Minimize

Consistency

Plastic Strain Flow Rule

DHV Flow Rule

Scherzinger, 2017, CMAME, 317, pp.526-553; Lester and Scherzinger, 2017, IJNME 

“Classical” solution for isotropic 
hardening plasticity

Residuals



RESULTS
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Anisotropy Evolution
 Want to investigate evolution of anisotropy 

 Consider case of von Mises evolving to anisotropic Hill (‘48)
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Yield surfaces Yield surfaces 



Evolving Effective Stress

 New EES model able to capture distortional hardening
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Constitutive Behavior - Hill

 Distortional hardening is anisotropic
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Tensile Cylinder
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 Distortional hardening impacts structural response (e.g. necking 
strain)



Pressurized Cylinder
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Pressurized Cylinder – Stress Path
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 Loading case results 
in complex, 
multiaxial, non-
proportional 
loadings

 New EES model 
sufficiently 
robust to handle 
such 
deformations



Conclusion
 Developed theory and numerical implementation for evolving 

effective stress (EES) distortional hardening model
 Introduce additional scalar internal state variable (     ) associated 

specifically with distortional hardening

 Evolution equations derived in a thermodynamically consistent 
fashion producing associative flow rules

 Numerical implementation via fully implicit, closest point projection 
line-search augmented Newton-Raphson return mapping algorithm

 Demonstrated capability to solve structural problems
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 Future work
 Extend with kinematic hardening and connect to experimental results

 Convexity – open issue with distortional hardening in general 

 Dissipation
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Model Timings
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Round Cylinder Run Times Pressurized Cylinder Run Times

 EES Model run times comparable to analogous isotropic 
hardening forms



Lankford Ratio Evolution
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Dissipation - Constitutive
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Dissipation – Tensile Bar

25



Tensile Bar – Final Shape
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Strength-Differential Evolution
 Want to look at the effect of developing strength-differential 

 Consider isotropic form of Cazacu et al. effective stress
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Constitutive Behavior - Cazacu

 EES approach captures development of tension-compression 
asymmetry
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Cazacu Dissipation 
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Pressurized Cylinder - Cazacu
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 Implementation robust under complex, non-proportional, 
multiaxial load paths



Cylinder Dissipation
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Numerical Solution
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Convexity
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 To maximize dissipation, minimize constrained Lagrangian

Luenberger and Ye, 2008, “Linear and Non-linear Programming”

 Second-order necessary and sufficient conditions for relative 
minimum satisfied if 

s.t.

 Some issues need to be addressed for general convexity of 
distortional hardening


