

A New Approach to Distortional Hardening

Brian T. Lester
William M. Scherzinger

Solid Mechanics Department
 Sandia National Laboratories
 Albuquerque, NM USA

54th Annual Society of Engineering Science Technical Meeting
 Boston, MA
 July 27, 2017

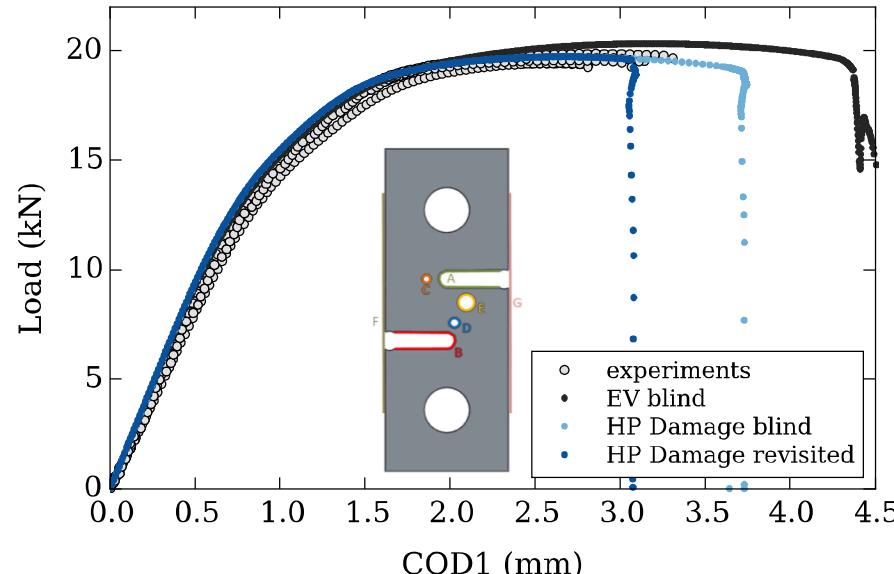
Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Anisotropic Plasticity

- Plastic anisotropy needed for complex, multiaxial loadings of structures
 - Manufacturing processes (e.g. sheet metal forming)
 - Ductile failure

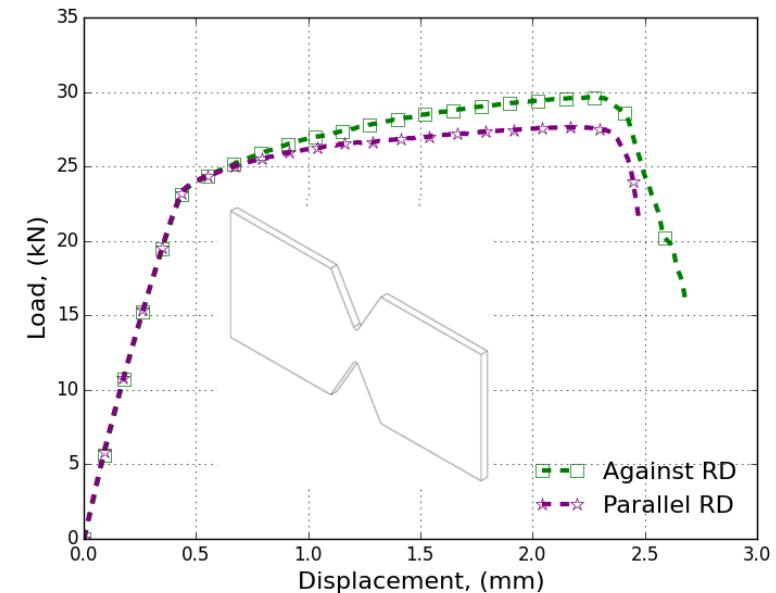
2nd Sandia Fracture Challenge (SFC2) (Ti-6Al-4V)

Isotropic (EV) and anisotropic (HP – Hill) failure predictions



Karlson et al., 2016, *Int. Jnl. Frac.*, 198: 179-195

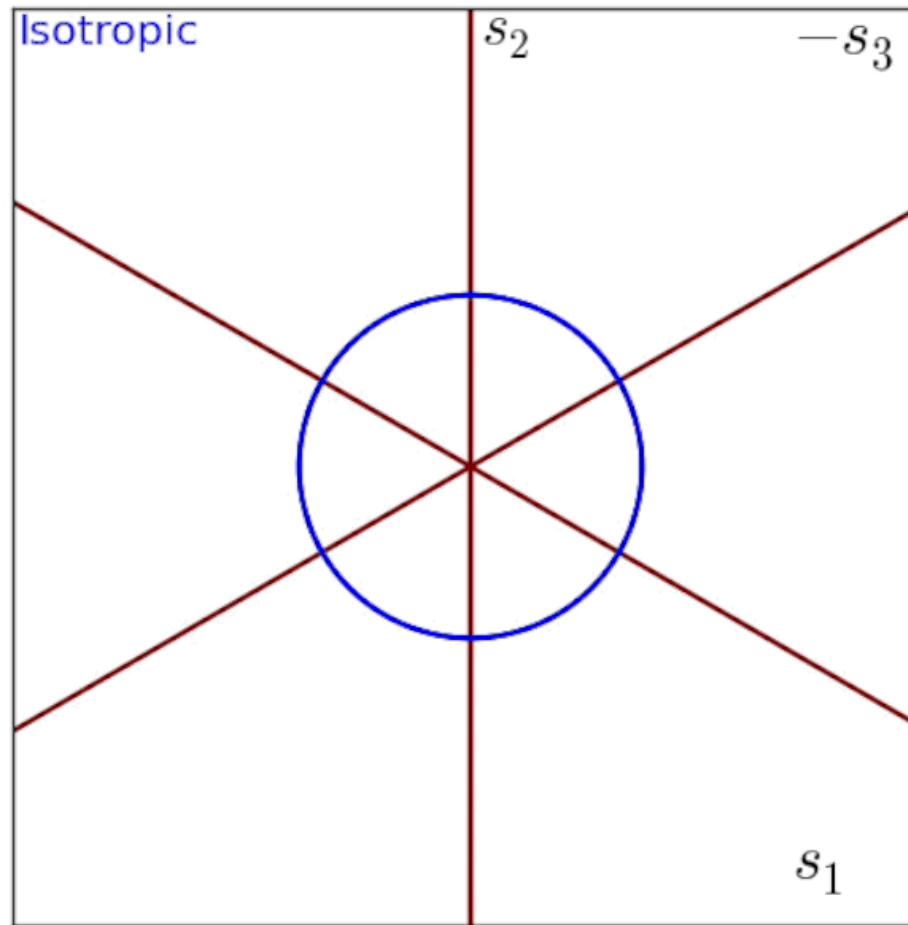
Notched Shear Calibration Data for SFC2



Boyce et al., 2016, *Int. Jnl. Frac.*, 198: 5-100

Plastic Hardening

- Capturing multiaxial, history dependent response requires description of anisotropic yield and *hardening*



Distortional Hardening

- Need computationally efficient, flexible distortional hardening model
- Existing implementations:
 - Expensive and/or difficult to implement – HAH (e.g. Barlat et al.), Projection Tensor (e.g. Feigenbaum and Dafalias, Shi and Mosler)
 - Thermodynamic issues/calibration specific -- “Isotropic Distortion” (e.g. Aretz, Plunkett et al.)
- Current objective: Development of new distortional hardening model
 - Simplified way of introducing distortional effects
 - Thermodynamically consistent
 - *Amenable to 3D numerical implementation*

MODELING

Free Energy

State
Variables

Traditional: $\varepsilon_{ij}^{\text{el}}, \kappa$

New Distortional ISV: η

Free
Energy

- “Traditional state variables” $\varepsilon_{ij}^{\text{el}}, \kappa, \eta$

$\psi^{\text{el}}(\varepsilon_{ij}^{\text{el}}) = \frac{1}{2} \varepsilon_{ij}^{\text{el}} C_{ijkl} \varepsilon_{kl}^{\text{el}}$

$\psi^{\text{iso}}(\kappa) = \frac{1}{\rho} g(\kappa)$

$\psi^{\text{dis}}(\eta) = \frac{1}{\rho} h(\eta)$

Constitutive
Behavior

- Introduce single scalar ISV for distortional hardening, η
- Assume isotropic and distortional energetic effects are independent and separable

Dissipation
Inequality

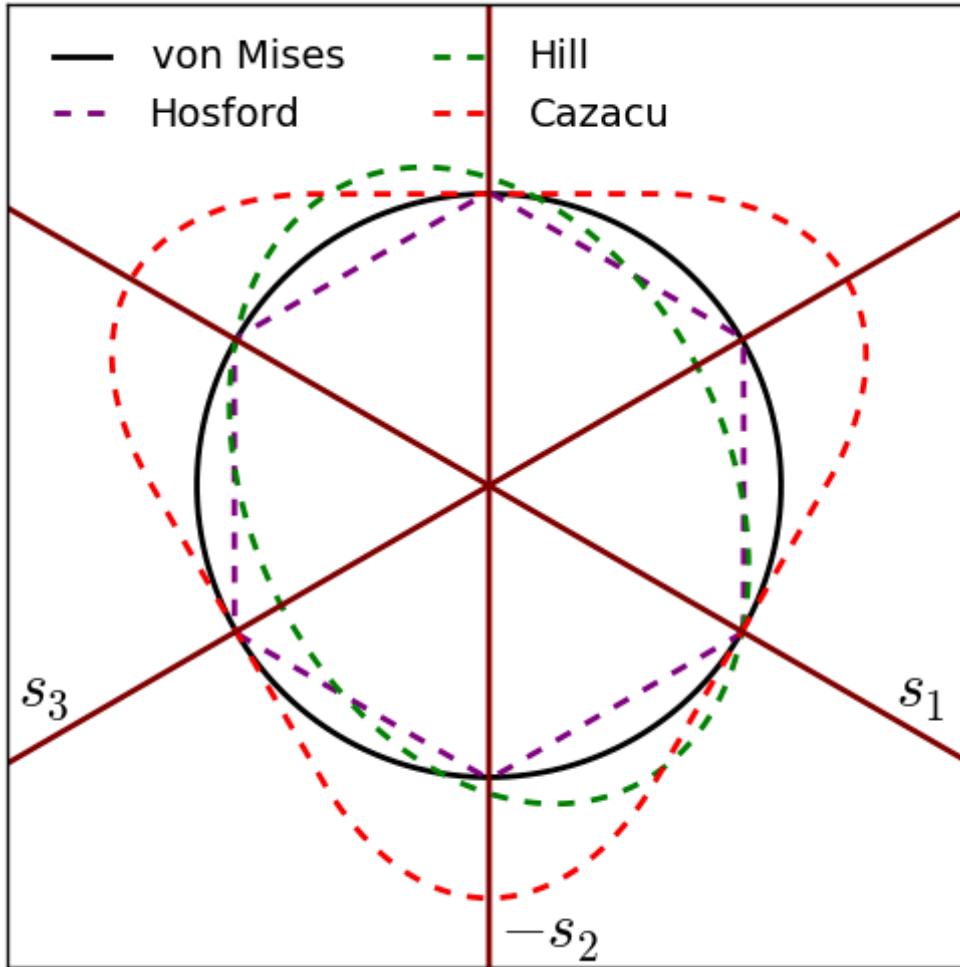
$$\mathcal{D} = \sigma_{ij} \dot{\varepsilon}_{ij}^{\text{p}} - K \dot{\kappa} - N \dot{\eta} \geq 0$$

$$K := \rho \frac{\partial \psi}{\partial \kappa} = \frac{\partial g}{\partial \kappa} \quad N := \rho \frac{\partial \psi}{\partial \eta} = \frac{\partial h}{\partial \eta}$$

Traditional Yield Functions

$$f = f(\sigma_{ij}, K) = \phi(\sigma_{ij}) - \sigma_y(K)$$

$$\phi(\sigma_{ij}) \text{ Effective Stress} \quad \sigma_y(K) = \sigma_y^0 + K \text{ Flow Stress}$$



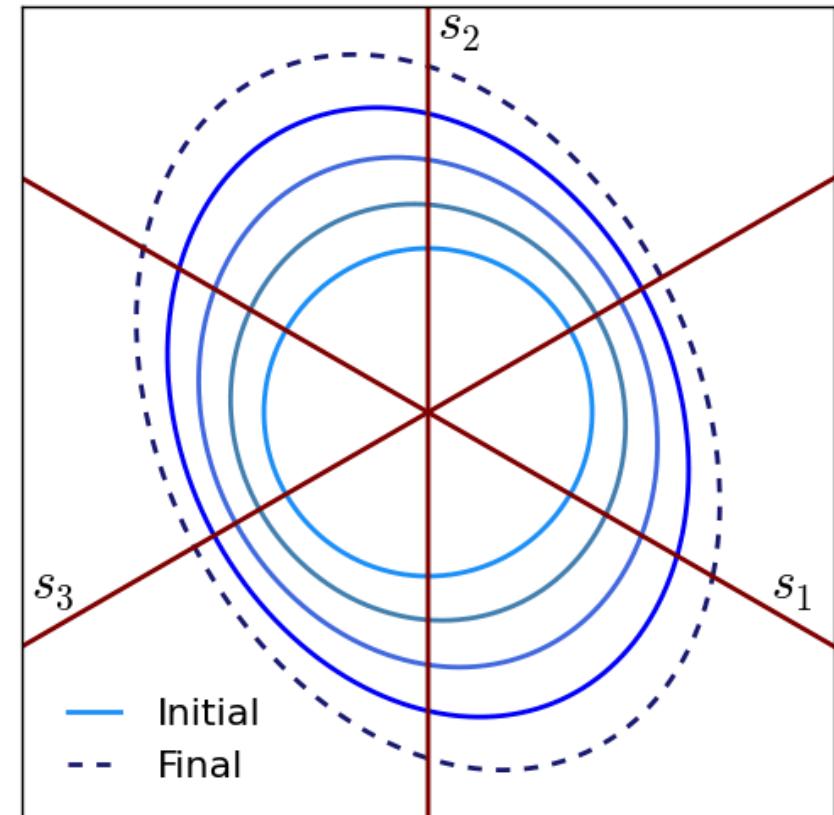
- Many existing effective stress definitions:
 - Non-quadratic
 - Strength-differential
 - Anisotropic
- Can they be leveraged for distortional capabilities?

New Yield Function

$$f = f(\sigma_{ij}, K, N) = \phi(\sigma_{ij}, N) - \sigma_y(K)$$

$$\phi(\sigma_{ij}, N) = \sum_{k=1}^{n_{es}} \zeta^{(k)}(N) \phi^{(k)}(\sigma_{ij}) \quad \sum_{k=1}^{n_{es}} \zeta^{(k)} = 1 ; \quad \zeta^{(k)} \geq 0$$

- Introduce a new "Evolving Effective Stress" (EES)
- "Mix and Match" effective stress combinations
- Weighted sum of different definitions for desired features
- Use/Evolve distortional variable to change weights



Evolution Equations

- Evolution equations found by trying to maximize dissipation
- Flow rules correspond to Karush-Kuhn-Tucker conditions:

$$\begin{aligned}\dot{\kappa} &= \lambda \\ \dot{\varepsilon}_{ij}^p &= \lambda \frac{\partial \phi}{\partial \sigma_{ij}} \quad \lambda f(\sigma_{ij}, K, \textcolor{magenta}{N}) = 0 \\ \dot{\eta} &= -\lambda \frac{\partial \phi}{\partial N}\end{aligned}$$

- Leads to rate of dissipation density of

$$\mathcal{D} = \left(\sigma_y^0 + \textcolor{magenta}{N} \frac{\partial \phi}{\partial N} \right) \dot{\kappa}$$

Can be positive or negative

Weighting Function Definition

- For current cases consider a two effective stress definition

$$\phi(\sigma_{ij}, N) = \zeta(N) \phi^{(1)}(\sigma_{ij}) + (1 - \zeta(N)) \phi^{(2)}(\sigma_{ij})$$

$$\frac{\partial \phi}{\partial N} = \frac{\partial \zeta}{\partial N} \left(\phi^{(1)} - \phi^{(2)} \right)$$

- For weighting functions want functions
 - Have non-zero initial derivatives
 - Satisfy previous constraints
 - Eventually saturate
 - Continuous

$$\zeta = \exp(-kN) \quad N(\eta) = \frac{1}{2} P^{\text{mod}} \eta^2$$

k, P^{mod} Fitting constants

Numerical Implementation

- Use Line –Search Augmented Newton Raphson (LS-NR) approach

Minimize $\psi = \frac{1}{2} \left[\left(\frac{E}{\sigma_y^0} \right)^2 r_{ij}^\varepsilon r_{ij}^\varepsilon + \left(\frac{r^f}{\sigma_y^0} \right)^2 + \left(\frac{P^{\text{mod}} r^\eta}{\sigma_y^0} \right)^2 \right]$

System of Linearized Residuals

$$-r^{f(k)} = f(\frac{\partial \phi}{\partial \sigma_{ij}}, \kappa \Delta \eta) - \frac{\partial \sigma_y}{\partial \kappa} \Delta \kappa + \frac{\partial \phi}{\partial \eta} \Delta \eta \quad \text{Consistency}$$

$$-r_{ij}^\varepsilon = \mathcal{L}_{ijkl}^{\text{p-1}} \Delta \sigma_{kl} + \frac{\partial \phi}{\partial \sigma_{ij}} \frac{\partial \phi}{\partial \sigma_{ij}} \Delta \kappa \quad \text{Plastic Strain Flow Rule}$$

$$-r^\eta = d\eta \kappa \frac{\partial^2 \phi}{\partial N \partial \Delta \eta} \Delta \sigma_{ij} + \frac{\partial \phi}{\partial N} \Delta \kappa + \left(1 - \kappa \frac{\partial^2 \phi}{\partial N \partial \eta} \right) \Delta \eta \quad \text{DHW Flow Rule}$$

$$\Delta \kappa = \frac{-\frac{\partial \phi}{\partial \sigma_{ij}} \mathcal{L}_{ijkl} r_{kl}^\varepsilon + \frac{1}{\omega} \left(\frac{\partial \phi}{\partial \eta} - d\kappa \right) \frac{\partial \phi}{\partial \sigma_{ij}} \frac{\partial^2 \phi}{\partial \sigma_{kl} \partial \eta} \left(\frac{\partial \phi}{\partial N} - d\kappa \frac{\partial^2 \phi}{\partial N \partial \sigma_{ij}} \mathcal{L}_{ijkl} r_{kl}^\varepsilon \right)}{\frac{\partial \phi}{\partial \sigma_{ij}} \mathcal{L}_{ijkl} \mathcal{L}_{ijkl} + \frac{\partial \phi}{\partial \sigma_{kl}} + \frac{1}{\omega} \left(\frac{\partial \sigma_y}{\partial \eta} - d\kappa \right) \frac{\partial \phi}{\partial \sigma_{ij}} \mathcal{L}_{ijkl} \frac{\partial^2 \phi}{\partial \sigma_{kl} \partial \eta} \left(\frac{\partial \phi}{\partial N} - d\kappa \frac{\partial^2 \phi}{\partial \sigma_{ij}} \mathcal{L}_{ijkl} \frac{\partial^2 \phi}{\partial \sigma_{kl} \partial N} \right)}$$

“Classical” solution for isotropic hardening plasticity

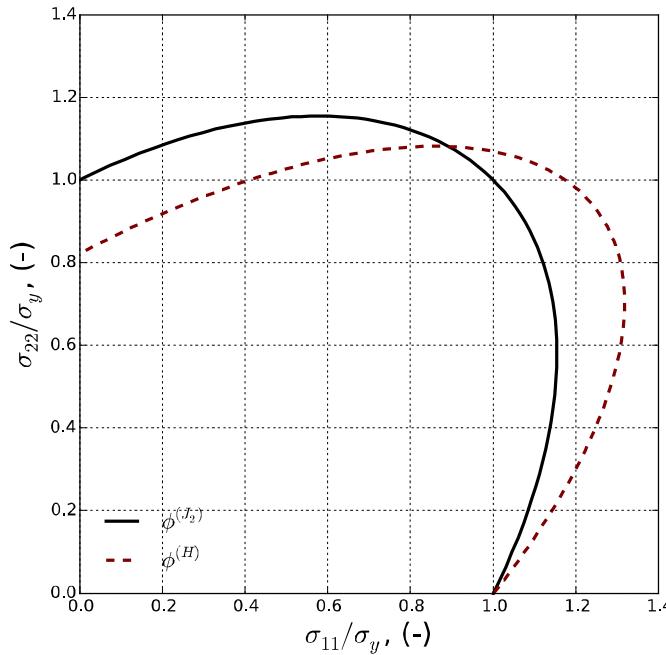
RESULTS

Anisotropy Evolution

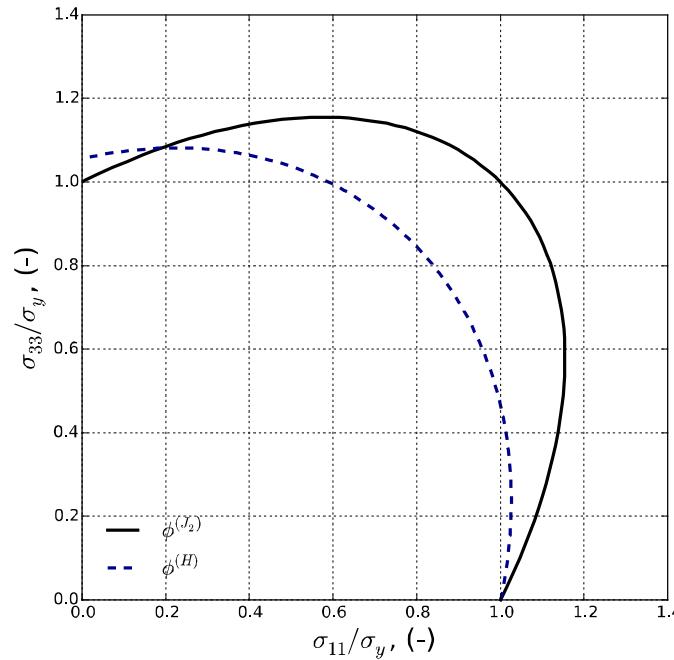
- Want to investigate evolution of anisotropy
- Consider case of von Mises evolving to anisotropic Hill ('48)

$$\left(\phi^{(H)} (\sigma_{ij}) \right)^2 = F (\hat{\sigma}_{22} - \hat{\sigma}_{33})^2 + G (\hat{\sigma}_{33} - \hat{\sigma}_{11})^2 + H (\hat{\sigma}_{11} - \hat{\sigma}_{22})^2 + 2L\hat{\sigma}_{23}^2 + 2M\hat{\sigma}_{31}^2 + 2N\hat{\sigma}_{12}^2$$

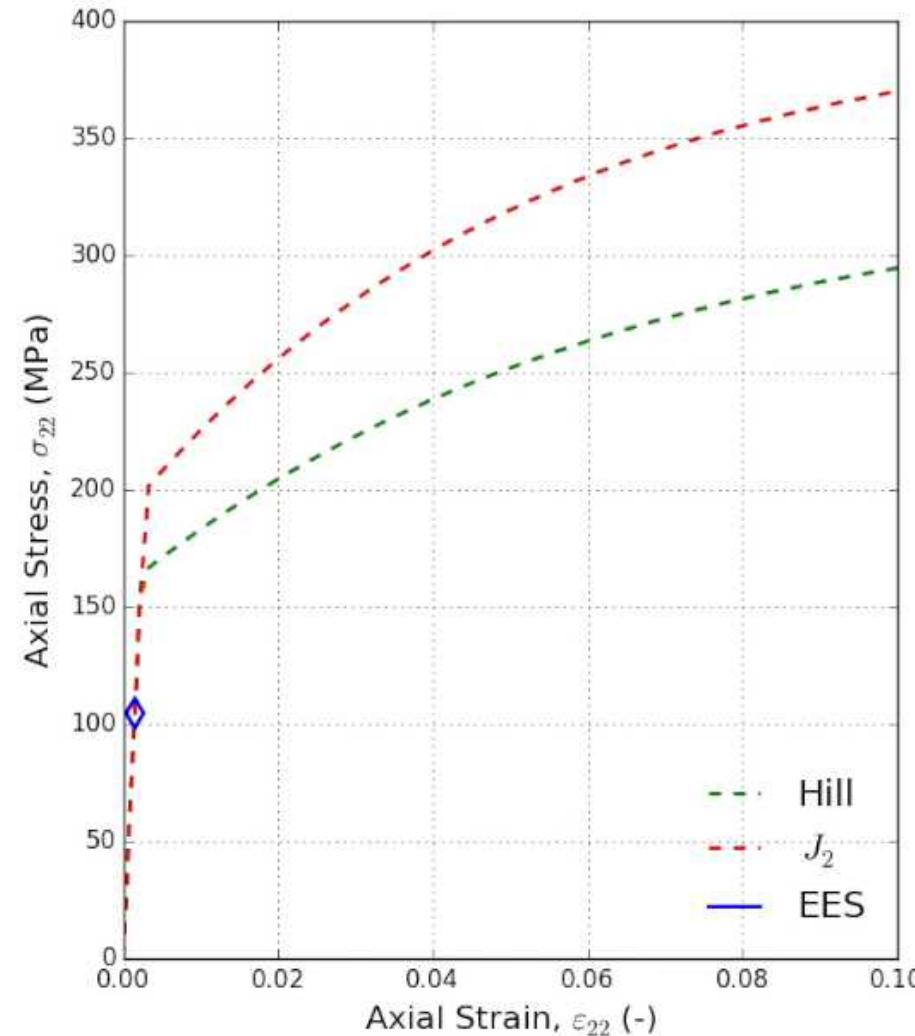
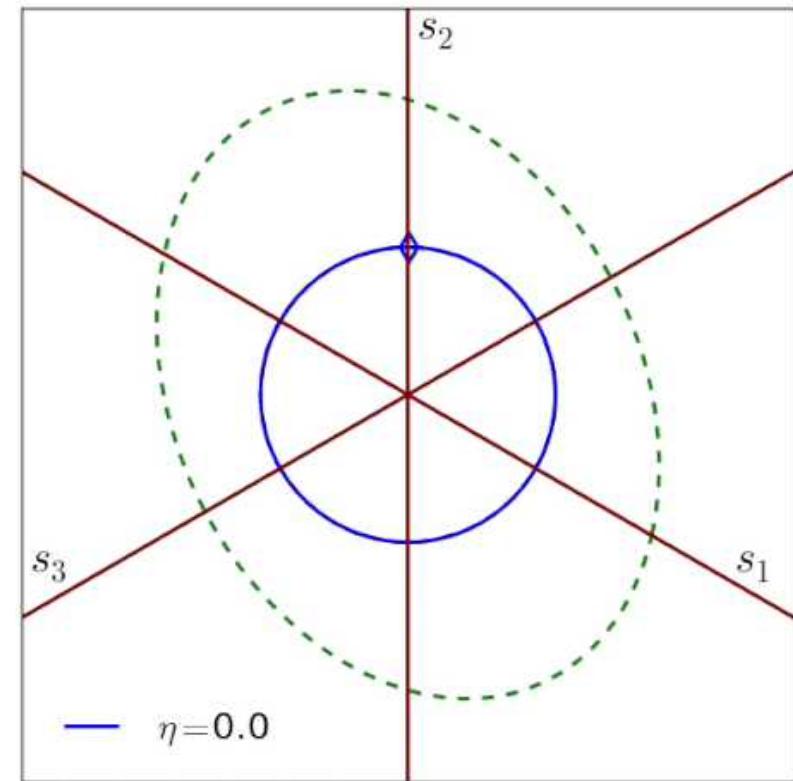
$\sigma_{11} - \sigma_{22}$ Yield surfaces



$\sigma_{11} - \sigma_{33}$ Yield surfaces

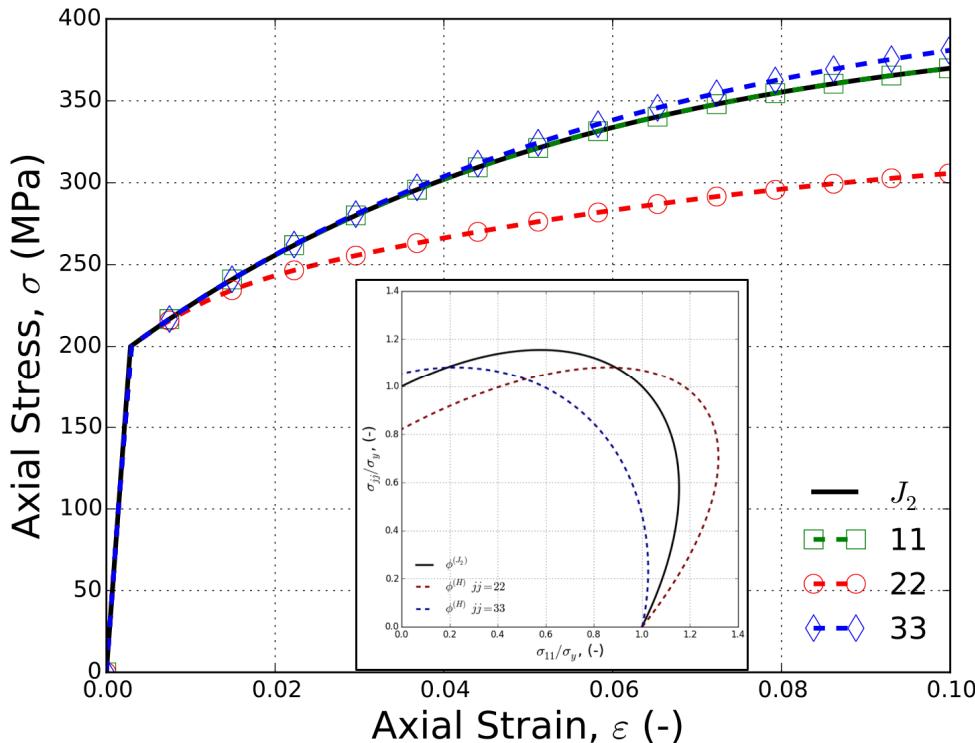
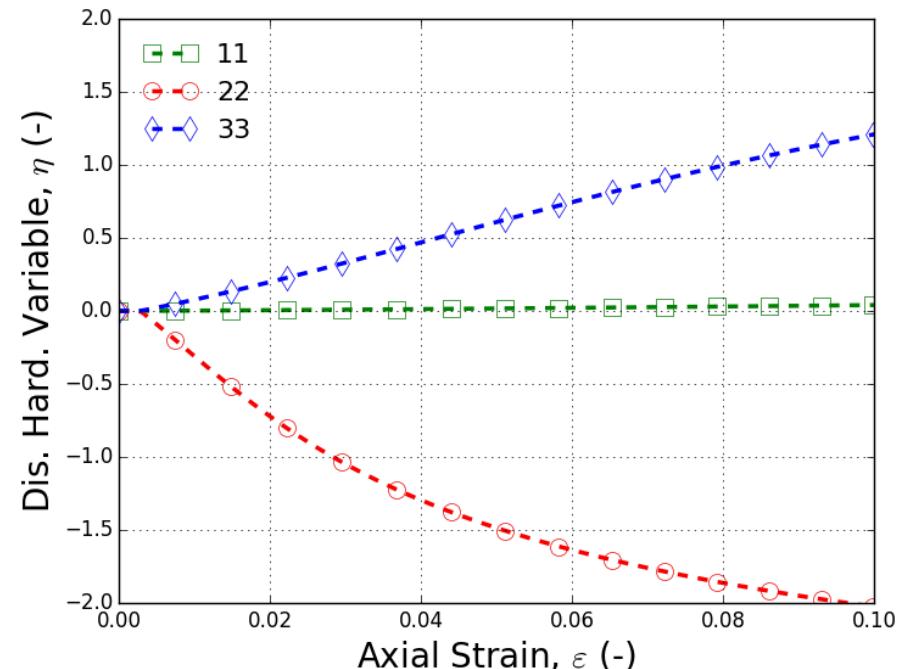


Evolving Effective Stress



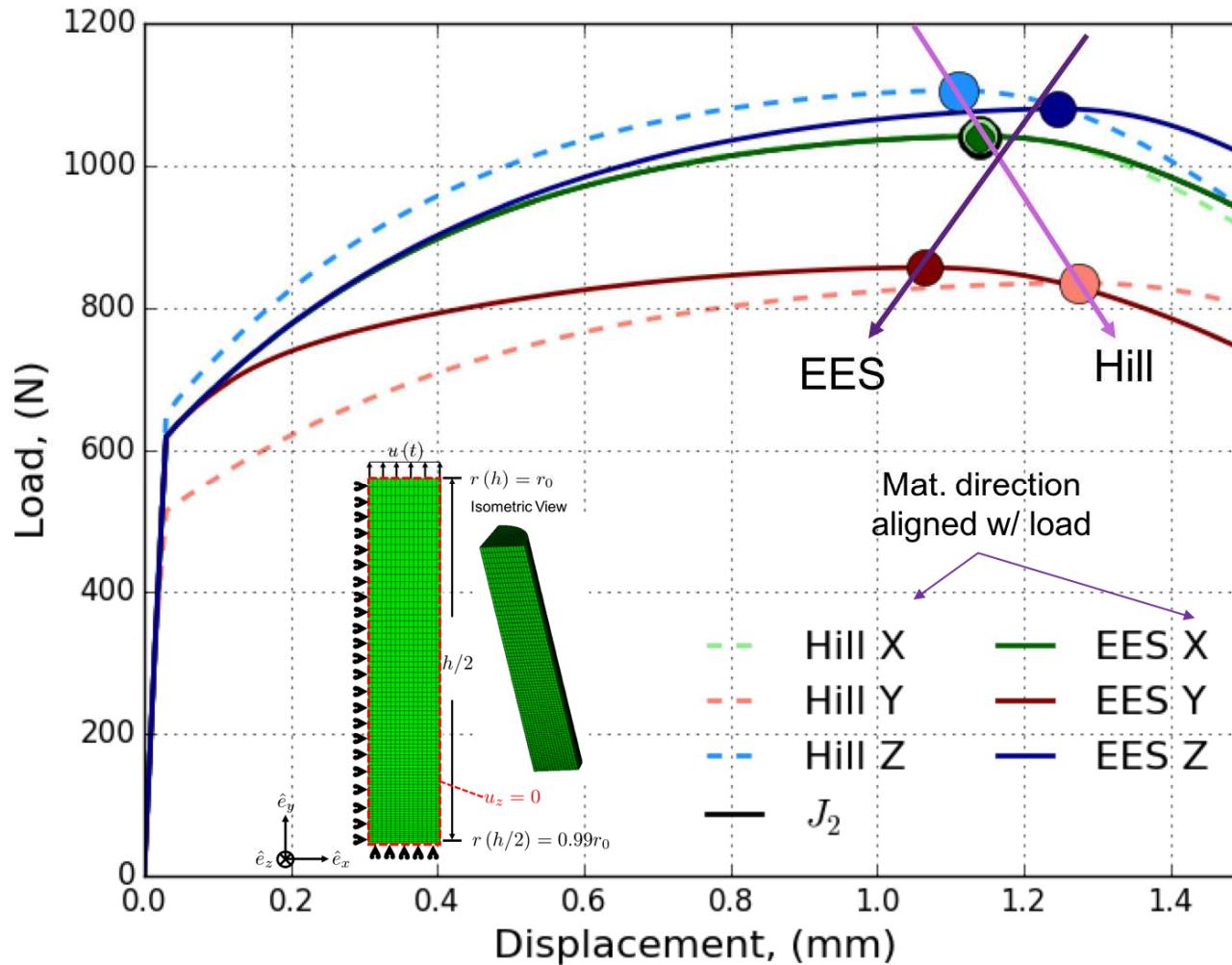
- New EES model able to capture distortional hardening

Constitutive Behavior - Hill



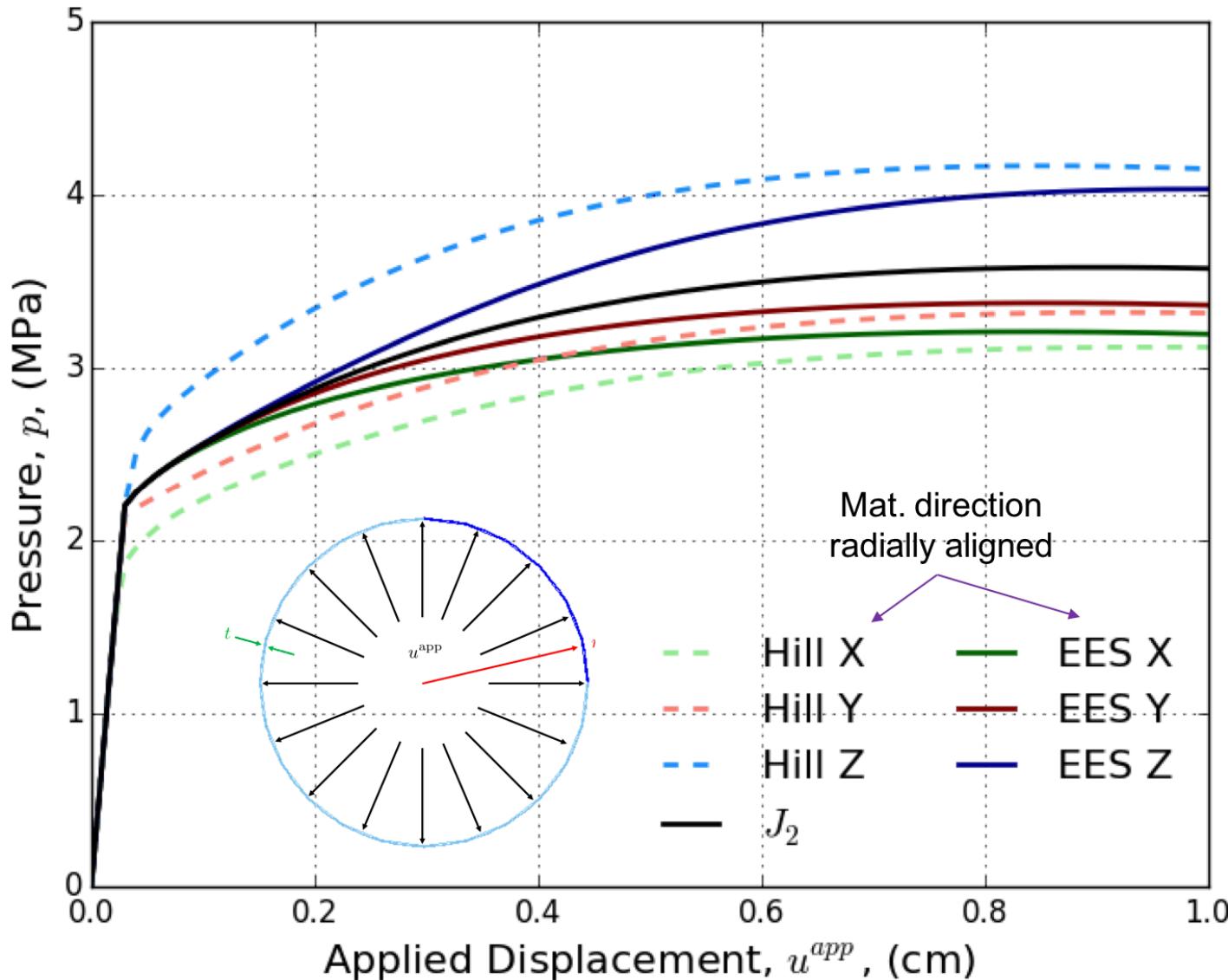
- Distortional hardening is anisotropic

Tensile Cylinder



- Distortional hardening impacts structural response (e.g. necking strain)

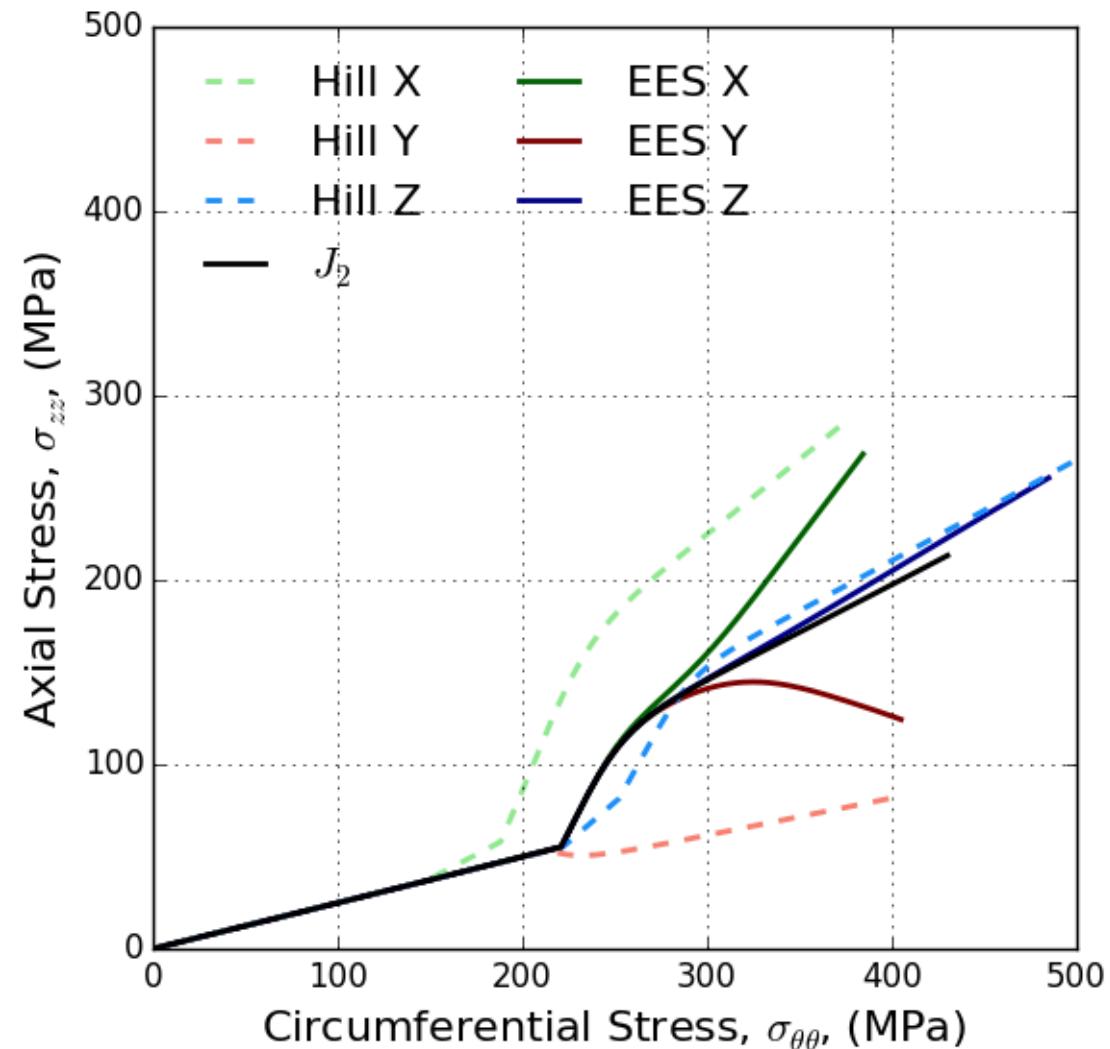
Pressurized Cylinder



$$p = \frac{F}{(r + \bar{u}_r) h}$$

Pressurized Cylinder – Stress Path

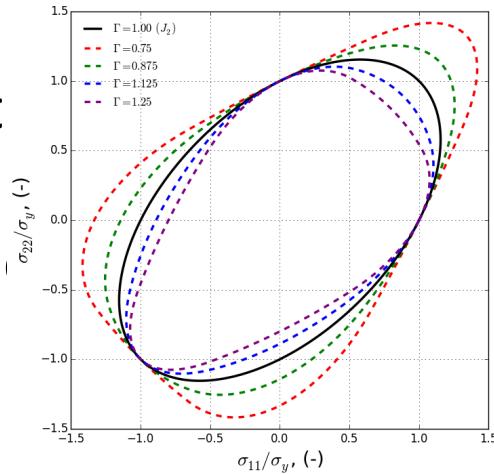
- Loading case results in complex, multiaxial, non-proportional loadings
- New EES model sufficiently robust to handle such deformations



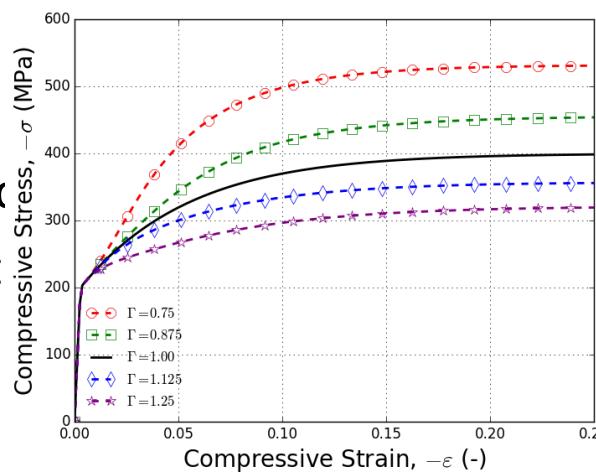
Conclusion

- Developed theory and numerical implementation for evolving effective stress (EES) distortional hardening model
 - Introduce additional scalar internal state variable (η) associated specifically with distortional hardening
 - Evolution equations derived in a thermodynamically consistent fashion producing associative flow rules
 - Numerical implementation via fully implicit, closest point projection line-search augmented Newton-Raphson return mapping algorithm
 - Demonstrated capability to solve structural problems

- Fut
-
-
-
-



hardening with



experimental results for a general

Acknowledgements

- Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525

Exceptional service in the national interest

Appendix

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Model Timings

Round Cylinder Run Times

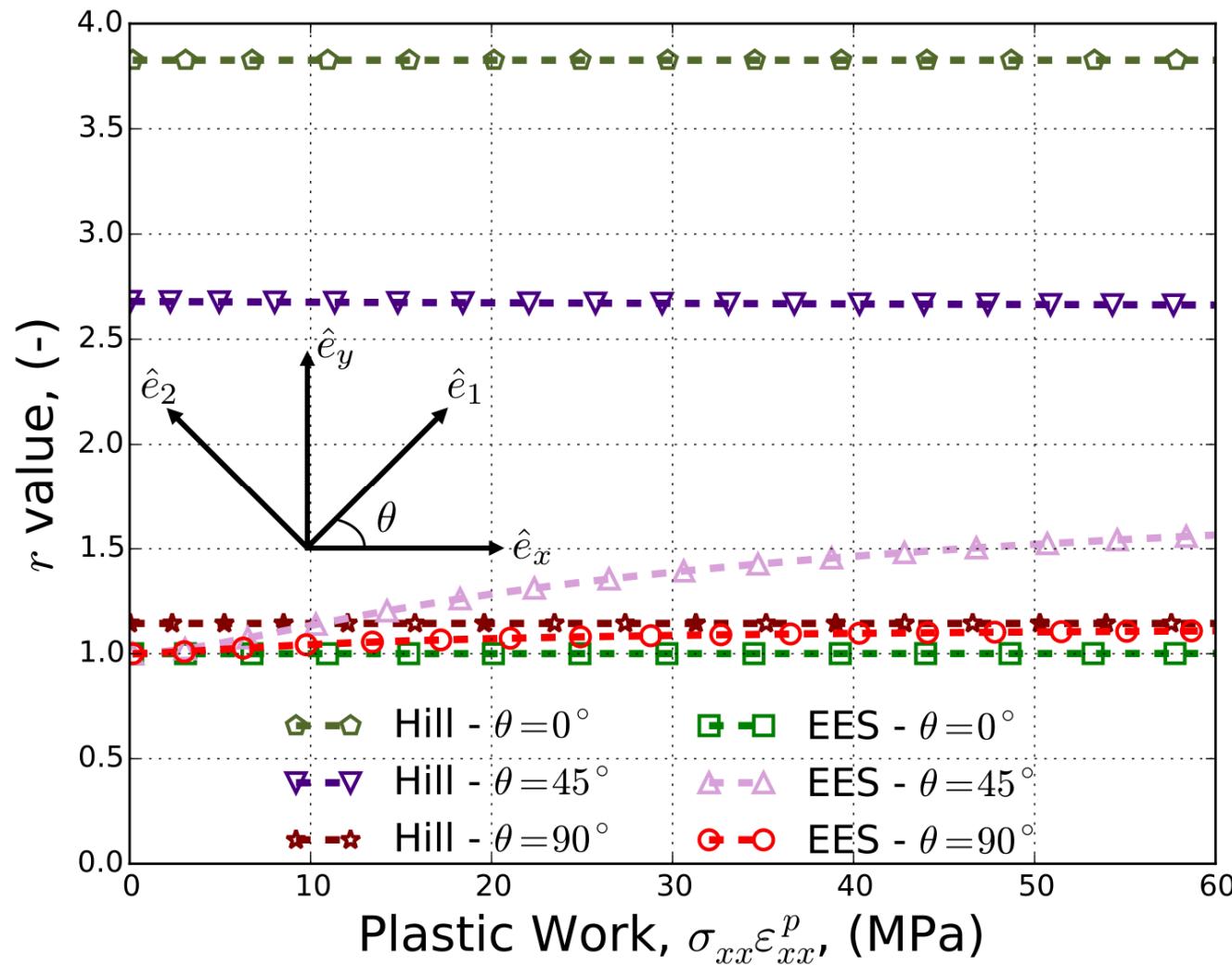
Case	Run Time/(Run Time) $_{J_2}$	
	Hill	EES
X	2.416	1.390
Y	1.420	1.850
Z	2.539	1.645

Pressurized Cylinder Run Times

Case	Run Time/(Run Time) $_{J_2}$	
	Hill	EES
X	1.127	1.555
Y	1.154	1.192
Z	0.972	1.085
Γ	Cazacu	EES
0.75	1.118	1.114
0.875	0.945	1.135
1.125	0.979	1.255
1.25	1.159	1.385

- EES Model run times comparable to analogous isotropic hardening forms

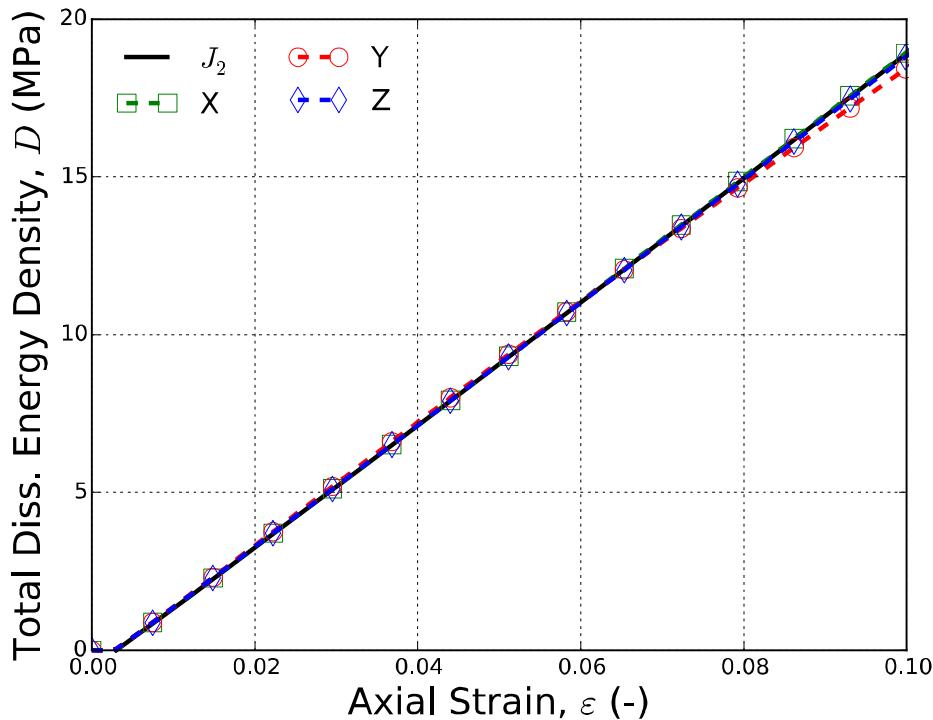
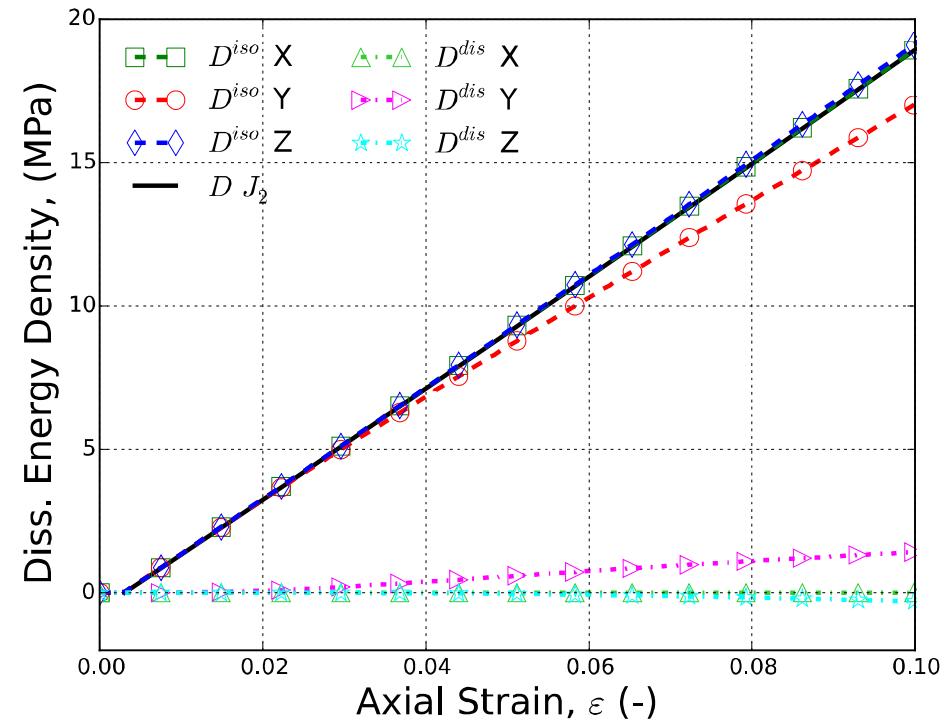
Lankford Ratio Evolution



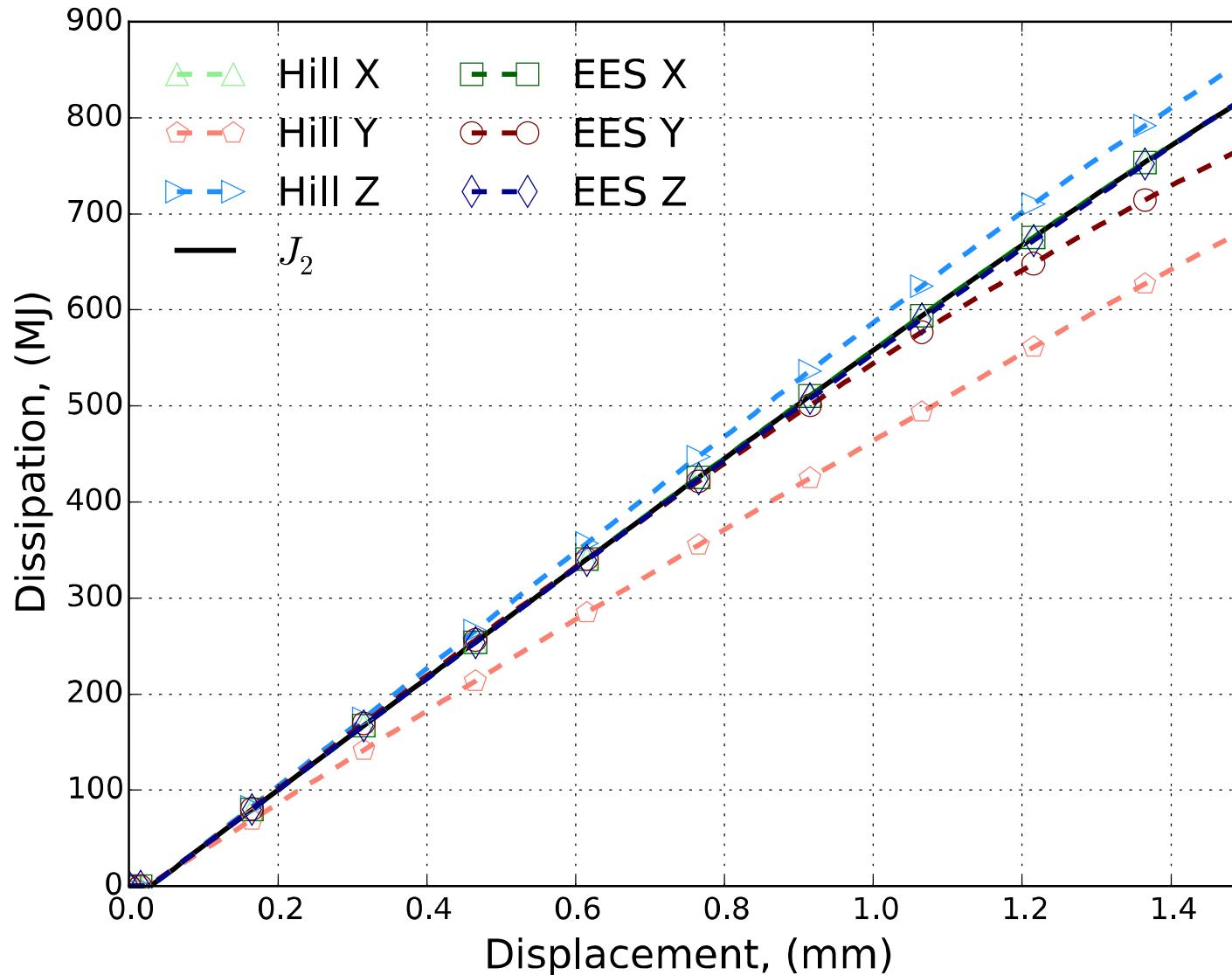
Dissipation - Constitutive

$$\mathcal{D} = \left(\sigma_y^0 + N \frac{\partial \phi}{\partial N} \right) \dot{\kappa}$$

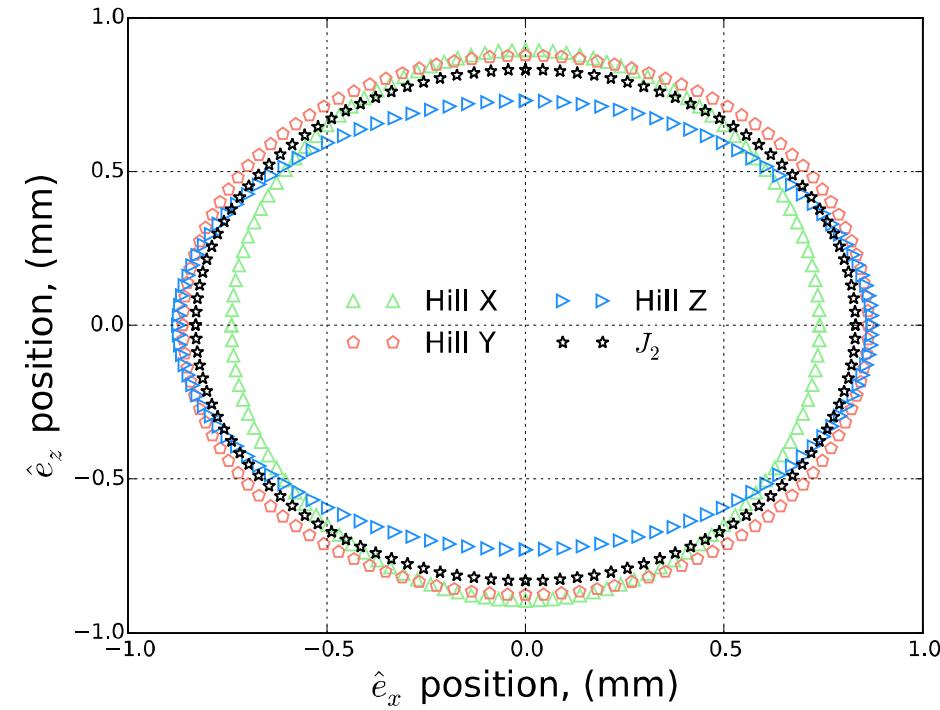
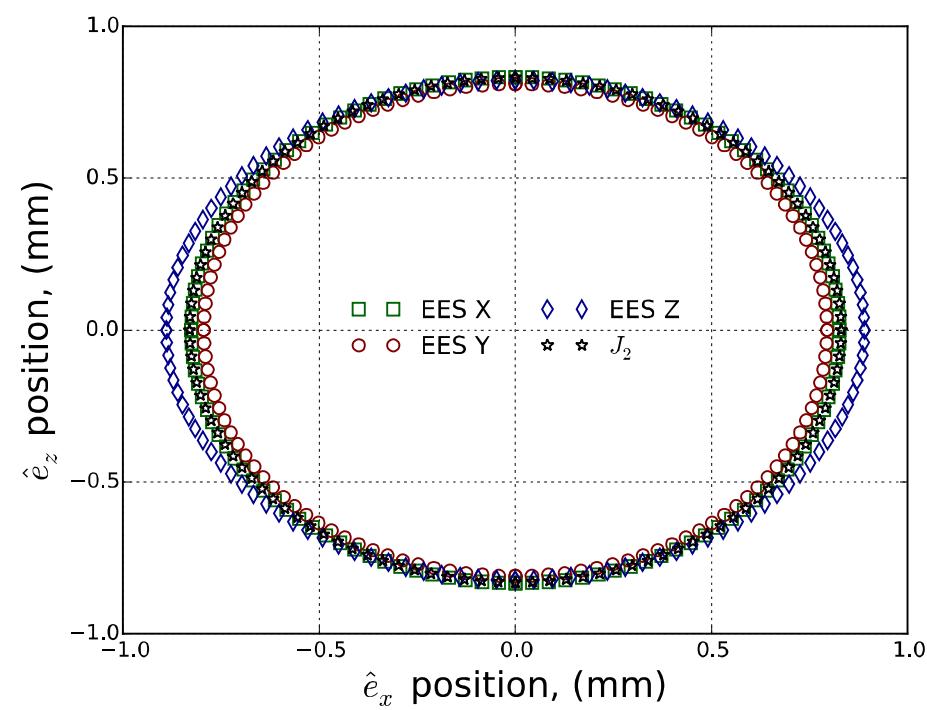
$$\mathcal{D}^{\text{iso}} = \sigma_y^0 \dot{\kappa} \quad \mathcal{D}^{\text{dis}} = N \frac{\partial \phi}{\partial N} \dot{\kappa}$$



Dissipation – Tensile Bar



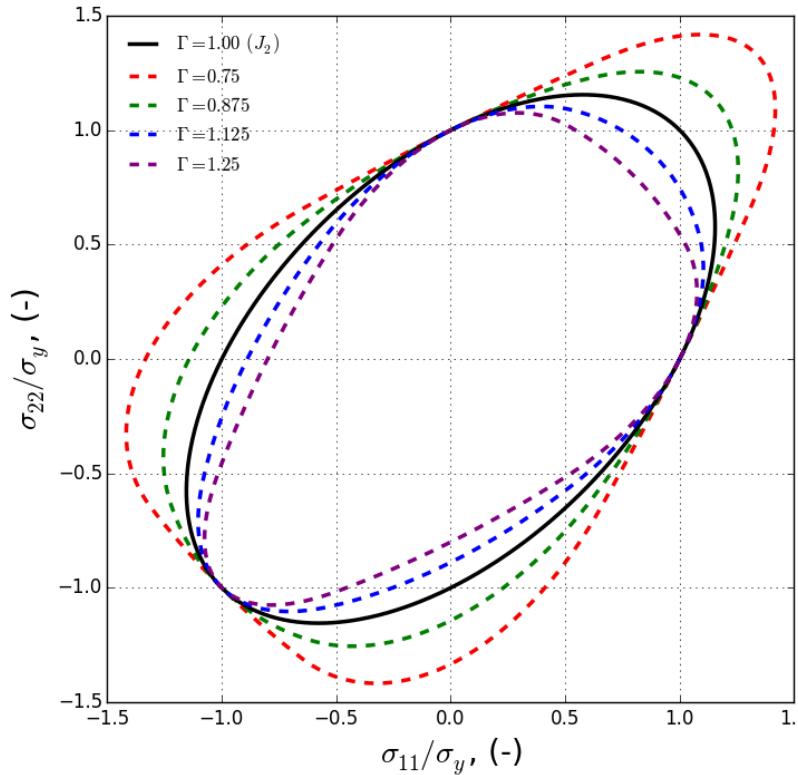
Tensile Bar – Final Shape



Strength-Differential Evolution

- Want to look at the effect of developing strength-differential
 - Consider isotropic form of Cazacu *et al.* effective stress

$$\phi^{(C)} = \{[|s_1| - ks_1]^a + [|s_2| - ks_2]^a + [|s_3| - ks_3]^a\}^{1/a}$$

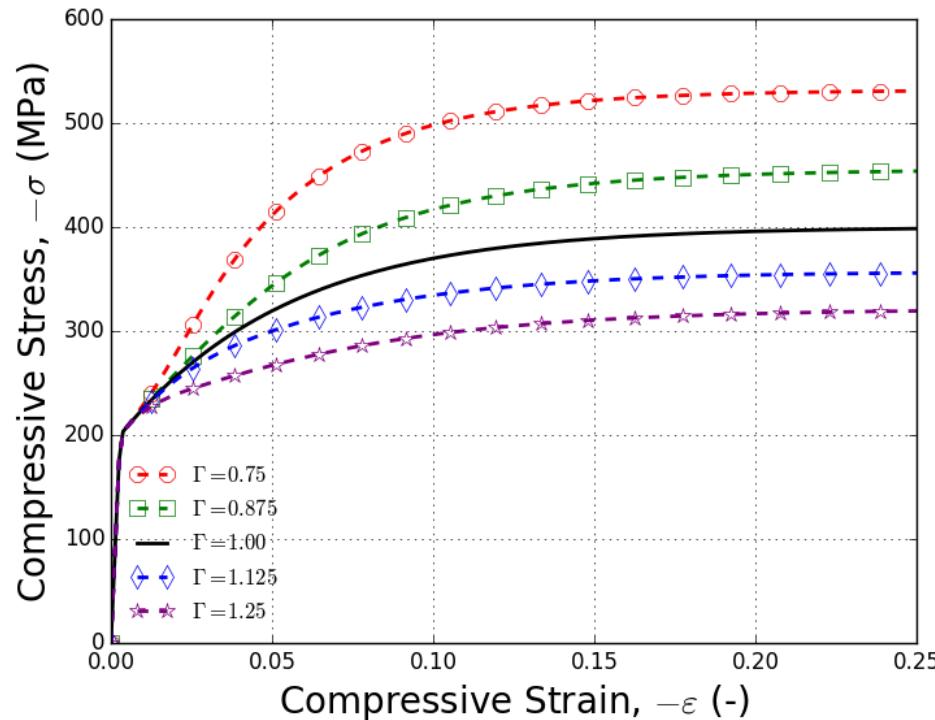
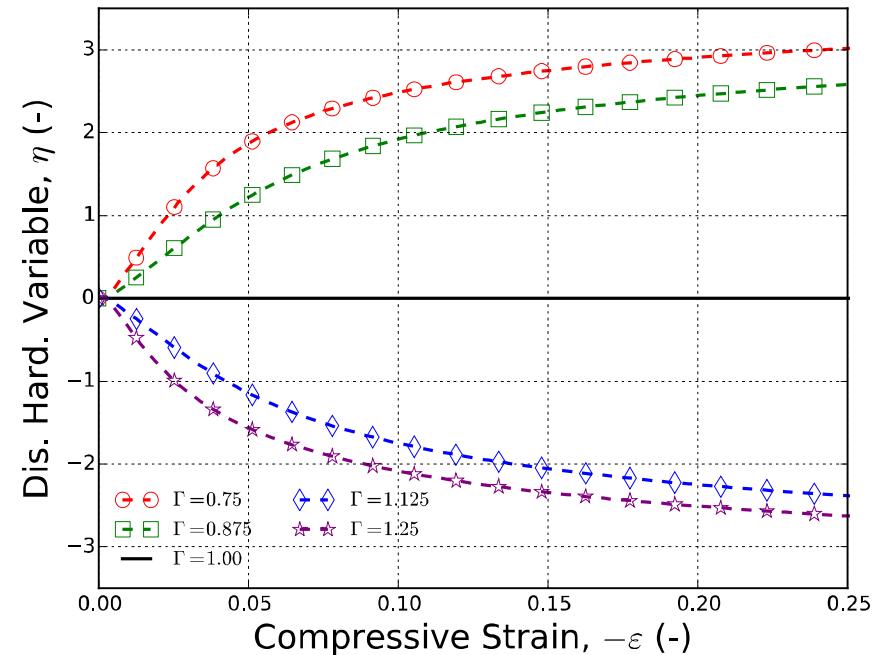


$$\Gamma = \frac{\sigma_y^{0(t)}}{\sigma_y^{0(c)}}$$

$$k = \frac{1 - h(\Gamma)}{1 + h(\Gamma)}$$

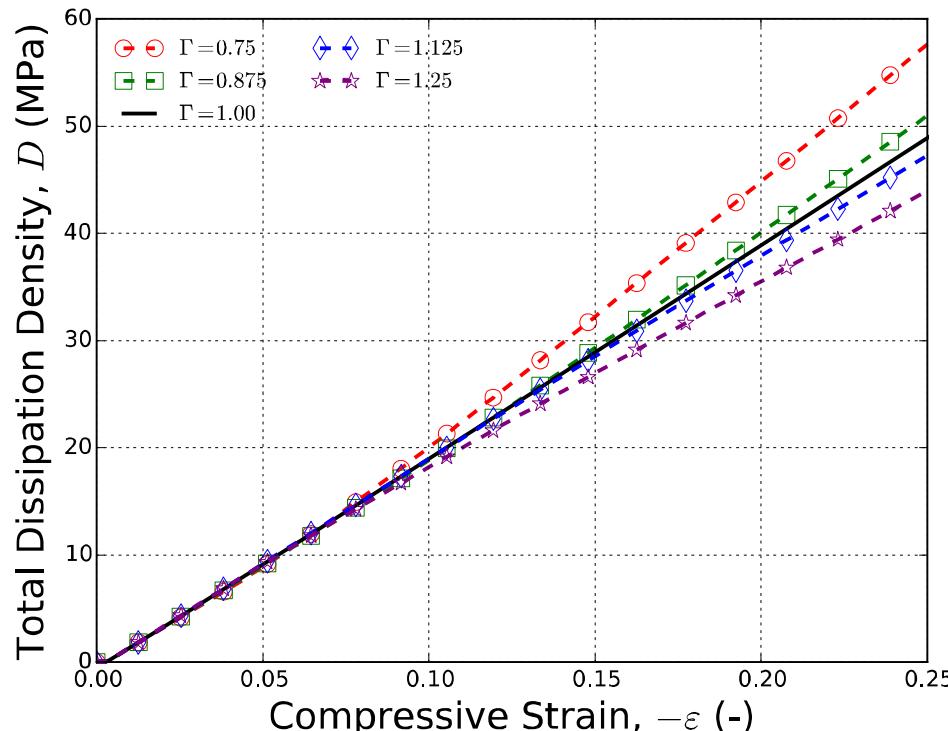
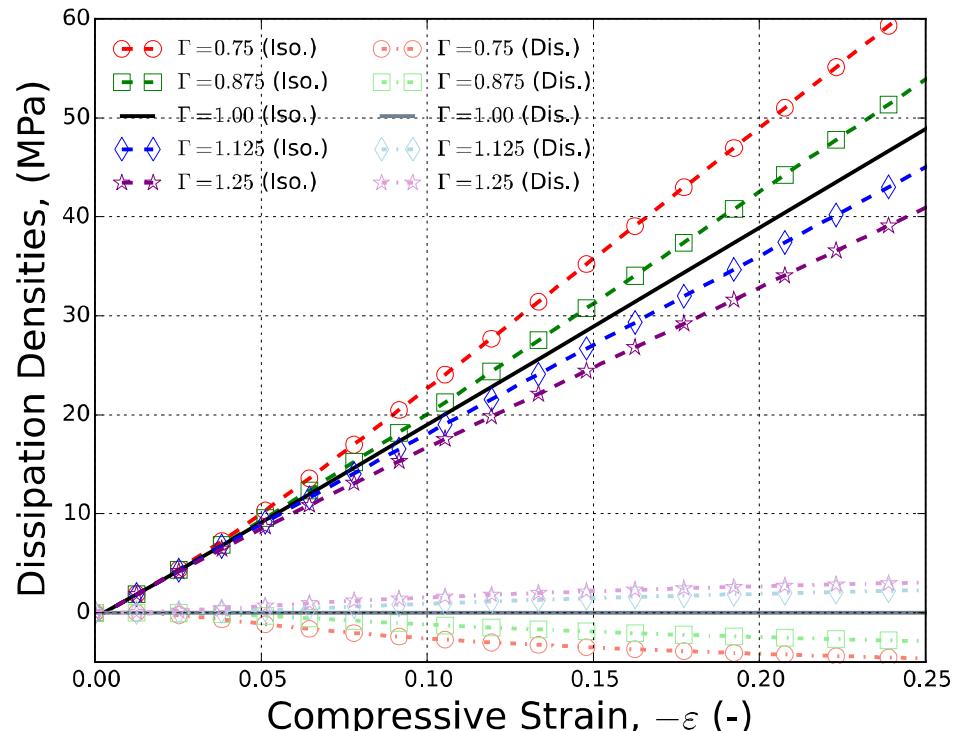
$$h(\Gamma) = \left[\frac{2^a - 2\Gamma^a}{(2\Gamma)^a - 2} \right]^{\frac{1}{a}}$$

Constitutive Behavior - Cazacu

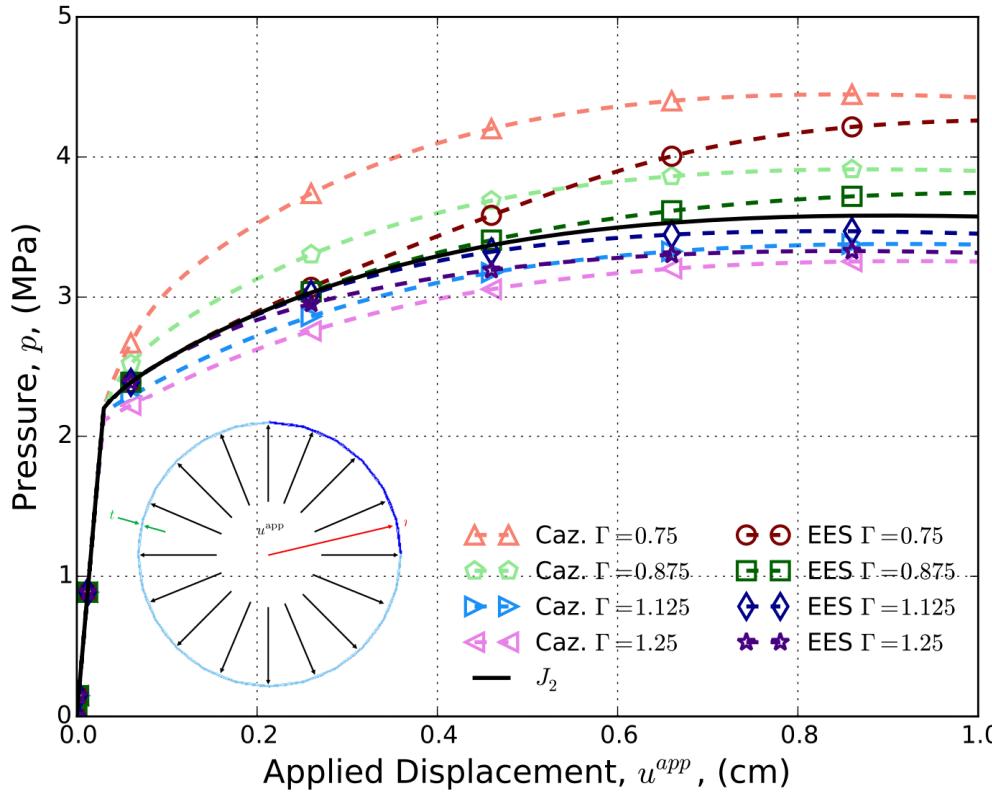
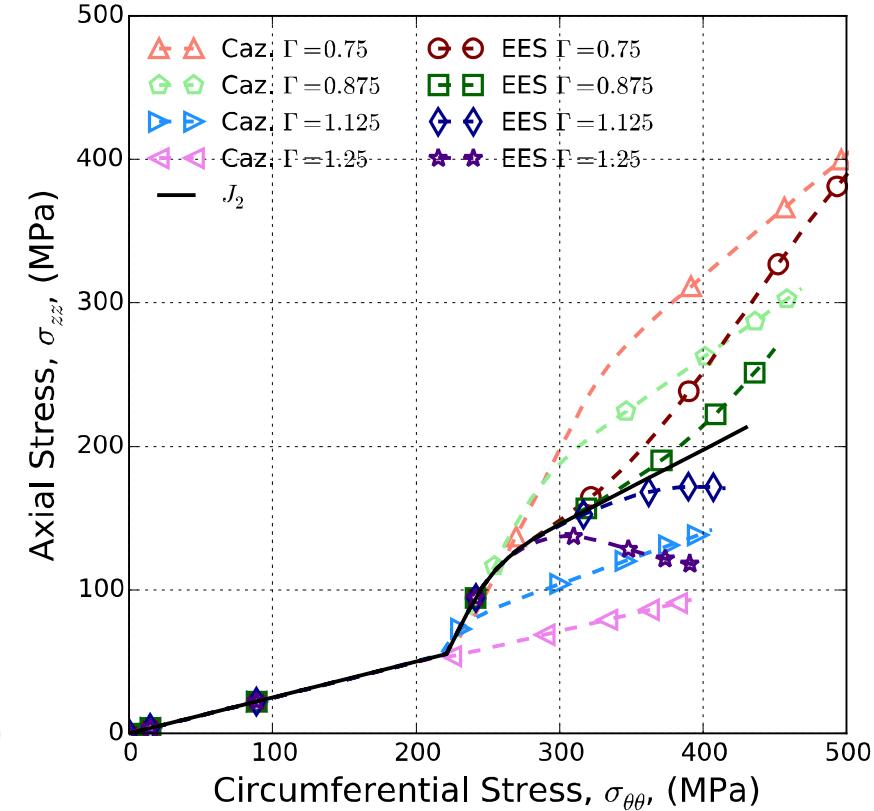


- EES approach captures development of tension-compression asymmetry

Cazacu Dissipation

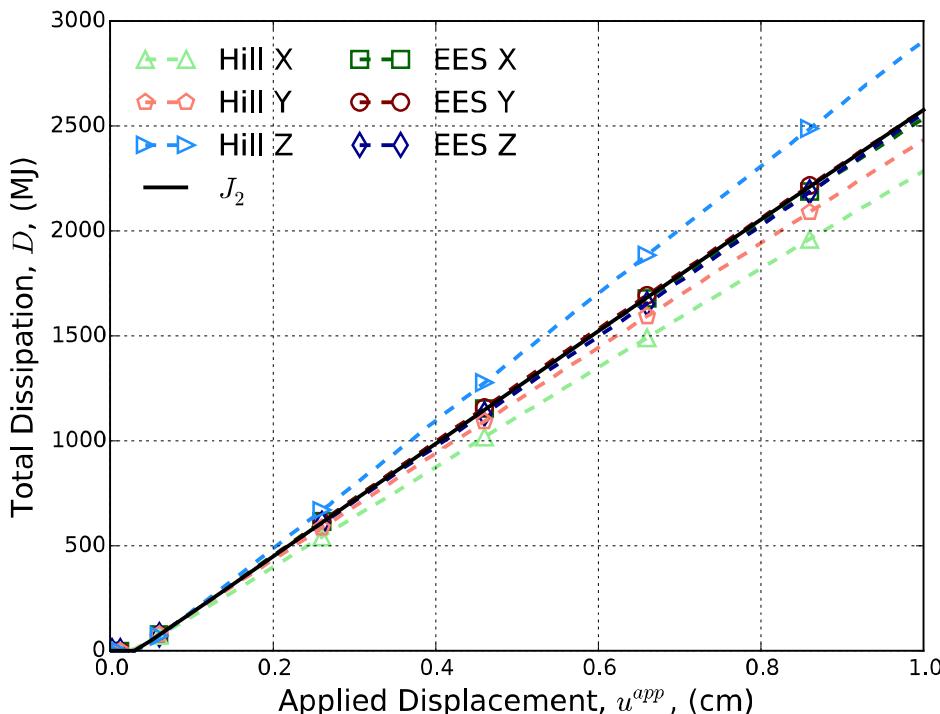
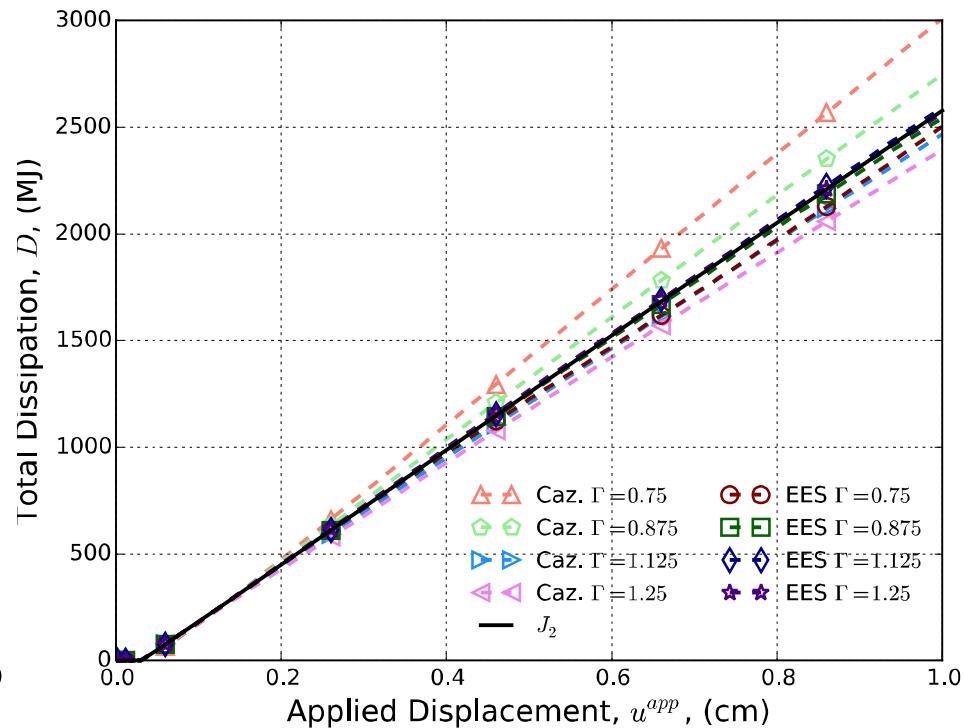


Pressurized Cylinder - Cazacu



- Implementation robust under complex, non-proportional, multiaxial load paths

Cylinder Dissipation



Numerical Solution

$$\Delta\kappa = \frac{-\frac{\partial\phi}{\partial\sigma_{ij}}\mathcal{L}_{ijkl}r_{kl}^\varepsilon + r^f - \frac{1}{\omega}\left(\frac{\partial\phi}{\partial\eta} - d\kappa\frac{\partial\phi}{\partial\sigma_{ij}}\mathcal{L}_{ijkl}\frac{\partial^2\phi}{\partial\sigma_{kl}\partial\eta}\right)\left(r^\eta - d\kappa\frac{\partial^2\phi}{\partial N\partial\sigma_{ij}}\mathcal{L}_{ijkl}r_{kl}^\varepsilon\right)}{\frac{\partial\phi}{\partial\sigma_{ij}}\mathcal{L}_{ijkl}\frac{\partial\phi}{\partial\sigma_{kl}} + \frac{\partial\sigma_y}{\partial\kappa} + \frac{1}{\omega}\left(\frac{\partial\phi}{\partial\eta} - d\kappa\frac{\partial\phi}{\partial\sigma_{ij}}\mathcal{L}_{ijkl}\frac{\partial^2\phi}{\partial\sigma_{kl}\partial\eta}\right)\left(\frac{\partial\phi}{\partial N} - d\kappa\frac{\partial\phi}{\partial\sigma_{ij}}\mathcal{L}_{ijkl}\frac{\partial^2\phi}{\partial\sigma_{kl}\partial N}\right)}$$

$$\omega = 1 + d\kappa\left(\frac{\partial^2\phi}{\partial N\partial\eta} - d\kappa\frac{\partial^2\phi}{\partial N\partial\sigma_{ij}}\mathcal{L}_{ijkl}\frac{\partial^2\phi}{\partial\sigma_{kl}\partial\eta}\right)$$

$$\Delta\eta = \frac{1}{\omega}\left[-r^\eta + d\kappa\frac{\partial^2\phi}{\partial N\partial\sigma_{ij}}\mathcal{L}_{ijkl}r_{kl}^\varepsilon - \left(\frac{\partial\phi}{\partial N} - d\kappa\frac{\partial^2\phi}{\partial N\partial\sigma_{ij}}\mathcal{L}_{ijkl}\frac{\partial\phi}{\partial\sigma_{kl}}\right)\Delta\kappa\right]$$

$$\Delta\sigma_{ij} = -\mathcal{L}_{ijkl}\left(r_{kl}^\varepsilon + \frac{\partial\phi}{\partial\sigma_{kl}}\Delta\kappa + d\kappa\frac{\partial^2\phi}{\partial\sigma_{kl}\partial\eta}\Delta\eta\right)$$

$$\mathcal{L}_{ijkl} = \left[\mathbb{C}_{ijkl}^{-1} + d\kappa\frac{\partial^2\phi}{\partial\sigma_{ij}\partial\sigma_{kl}}\right]^{-1}$$

Convexity

- To maximize dissipation, minimize constrained Lagrangian

$$\mathcal{L}(\sigma_{ij}, K, \mathbf{N}, \lambda) = -\mathcal{D}(\sigma_{ij}, K, \mathbf{N}) + \lambda f(\sigma_{ij}, K, \mathbf{N})$$

$$\mathcal{D} = \sigma_{ij} \dot{\varepsilon}_{ij}^p - K \dot{\kappa} - \mathbf{N} \dot{\eta} \geq 0$$

- Second-order necessary and sufficient conditions for relative minimum satisfied if

$$y \cdot \nabla^2 \mathcal{L} y = \lambda y \cdot \nabla^2 f y \geq 0 \quad \forall y \quad \text{s.t.} \quad y \cdot \nabla f = 0$$

$$\hat{\sigma}_{ij} \frac{\partial^2 \phi^*}{\partial \sigma_{ij} \partial \sigma_{kl}} \hat{\sigma}_{kl} + 2 \hat{N} \frac{\partial^2 \phi^*}{\partial \sigma_{ij} \partial N} \hat{\sigma}_{ij} + \hat{N}^2 \frac{\partial^2 \phi^*}{\partial N^2}$$

- Some issues need to be addressed for general convexity of distortional hardening