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Abstract— To counter manufacturing irregularities and
ensure ASIC design integrity, it is essential that robust
design verification methods are employed. It is possible to
ensure such integrity using ASIC static timing analysis
(STA) and machine learning. In this research, uniquely
devised machine and statistical learning methods which
quantify anomalous variations in Register Transfer Level
(RTL) or Graphic Design System II (GDSII) formats are
discussed. To measure the variations in ASIC analysis
data, the timing delays in relation to path electrical
characteristics are explored. It is shown that semi-
supervised learning techniques are powerful tools in
characterizing variations within STA path data and has
much potential for identifying anomalies in ASIC RTL
and GDSII design data.
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I. INTRODUCTION

A. Overview

Static timing analysis (STA) validates the timing
performance of a design by checking all possible paths for
timing violations. Because no actual functionality check is
performed, STA does not require use case simulation nor
vector generation. Conversely, Dynamic Timing Analysis
(DTA) requires the generation of an exhaustive set of input
vectors to check the design path timing and behaviour
characteristics through simulation. The amount of analysis
required for DTA versus STA is exponentially greater, and
for this reason STA is the most often used ASIC design
verification method. STA though more efficient, does not in
itself have the capability to detect significant electrical path
variations between STA instances (proxies) representing the
same ASIC design. As an ASIC design is ported to a new
technology library or a new analysis tool, verification using a
baseline reference proxy is essential. The research in this
paper illustrates how ASIC STA design verification is
enhanced such that significant path variations are sensed
within an ASIC design using semi-supervised machine
learning [1]. Semi-supervised learning is utilized to identify
anomalous ASIC design paths by comparing fully-labelled
STA electrical path characteristics of a baseline STA proxy
with other STA proxies of the same ASIC design.

As most design alternations are initiated via modifications
to Register Transfer Level (RTL) [2] or Graphic Data System
II (GDSII) format [3-4], this research investigates methods
capable of sensing when an unintended change has been
made to a design. The STA toolsets used in the research
utilize variants of Critical Path Methodology (CPM) [5] and
Program Evaluation and Review Techniques (PERT) [6] to
find the worst-case delay of the circuits over all possible input
combinations (See Section I.B). Using a devised algorithm
for identifying proxy path differences called Semi-
Supervised Anomalous Path Detection (SAPD), it shown that
individual cross-proxy path variations are efficiently
identified.
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The content of this paper is arranged as follows. In
Section II relevant STA equations are described along with
the analysis approach and assumptions that were made. In
Section III path group and individual path comparative
analysis using our semi-supervised learning methodology is
explained. Finally, in Section IV alternative statistical
methods are described and contrasted with the semi-
supervised algorithm. Finally, in Section V concluding
comments are made along with future recommendations for
related research.

B. Background and Assumptions

In this section, the STA analysis equations are briefly
discussed. The equations below define the propagation
characteristics of a signal along a path:

treq :
Worst case maximum time for a signal to propagate
from its launch register (the start point) to its capture
register (the endpoint).

T: Timing path clock period (-.)

tce: Clock propagation time to the endpoint

ts : Setup time of the endpoint which is a physical
property of the memory element used for the
register.

tarr Observed arrival time of signal

Gate delays on a path

t, : Clock propagation delay

tsl : Setup margin or slack time

treq = T tce - ts

tarr = tcs Ei ti

tsl = treq — tarr

(1)

(2)

(3)

The slack time ts/ is an important metric in that it compares
the worst case maximum signal propagation time treq to the

observed arrival time tarr. A significant change in ts1 may
indicate a path circuitry modification.

Considering equations 1-3, certain analysis approach
assumptions are made when comparing BL 1 (baseline) and
VAR1 (test) proxies:

• Per Equation 3 as arrival time (tarr) increases, the
slack time ( ts1 ) decreases, and we expected to

observe this when inspecting the slack and arrival
times for each path group.

• It is assumed on average that the slack time for a
path group during each STA session for BL 1 and
VAR1 should not vary greatly.

• It is assumed that the slack times and arrival times
for each path are for all practical purposes
statistically independent.

• To detect design changes between proxies globally,
overall path group slack and arrival time
relationships are inspected.

• When comparing individual proxy paths, it is
expected that in many cases a variety of STA tools,
libraries, and abstractions may be used. Therefore, it
is plausible that slight variations between the
statistical distributions of specific random variables
such as pin capacitance, wire capacitance and delay
will be present.

In Section II the principal methods used in performing path
group analysis and quantifying the amount of variation
present between proxies is described. Additionally, in Section
II individual path analysis methods which quantify the
amount of variation between proxies are defined.

II. MACHINE LEARNING AND ASIC PATH ANALYSIS

A. Path Features

Each data field within the BL 1 and VAR1 proxy datasets
for our analysis is termed a feature as defined in Table 1
below.

Table 1 ASIC STA Features 
Feature Description

fs4
1;5
1;6
fs7
Jo
ffif

B. Path Analysis Flow

Slack Time
Arrival Time
Pin Capacitance
Wire Capacitance
Transition Time
Total Capacitance
Delay Time 

In Figure 1 below the same ASIC design is represented by
the BL 1 proxy and VAR1 proxy datasets. Individual and path
group STA session data from these datasets are introduced to
the SAPD system. In steps 1 and 2 baseline and test proxy



path group distributions and data clusters are compared to
identify anomalous path groups. In step 3 those features
having the largest influence on average on the delay time are
identified within the proxies and this lowers the number of
feature data distributions that need to be compared in step 4.
Finally, in step 4 BL1 and VAR1 individual path distributions
are compared and anomalous paths are identified.

BL1
Proxy Data

(1)

VAR1
Proxy Dots

Path Group Distribution
Comparison

(Section II.D)

Cluster Analysis

(Section II.E)

Individual Path Feature
Selection

(Section II.F)

Individual Path Distribution
Comparison

(Section II.G)

Figure 1: Semi-supervised Anomalous
Path Detection.

C. Path Group Analysis

Proxy path files are organized such that groups of
individual paths are associated with a path group designator.
It should be noted that there is a one-to-one correspondence
between paths and path groups within BL1 and VAR1
proxies. Specifically, the exact same number of distinct paths
and path groups are present in each proxy file. Because BL 1
and VAR1 proxies are assumed to be identical designs, it is
assumed that only slight STA system induced variations
between BL 1 and VAR1 path group characteristics will exist.
The methodologies used in comparing BL1 and VAR1 proxy
path groups includes distribution and data clustering analysis
which are explained in the sections that follow. Experimental
results summarizing the performance of these methods are
described in Section III.

D. Path Group Distribution Comparison

Quantitatively speaking distribution differences between
BL 1 and VAR1 proxies are measured using Kullback-Leibler
Divergence (KL-Divergence) as defined below. Analyzing
useful feature distributions, K-L Divergence measures the
relative entropy increase between feature fi and
f 1 distributions. Where Fi is a baseline feature probability

distribution and is a target or test probability distribution
to be analyzed and i = 1, 2„6.

DKL(Fi'llFi 
1

) =Ef. Prob(f ' 1)1n 
Prob( )

, i Prob(f
(4)

DKL >= 0 and is equal to zero when no change in entropy
is detected between sampled sets.

E. Cluster Analysis

In cluster analysis BL1 and VAR1 proxy data
characteristics are compared by using agglomerative
hierarchical clustering. If no modifications have been made
to the ASIC design, it is expected that BL1 and VAR1
clustering patterns will be similar. Agglomerative
hierarchical clustering builds a hierarchy from the bottom-up,
and doesn't require the that the number of clusters be
specified beforehand as other methods do (ie. K-means). The
algorithm starts by putting each data point into its own
cluster, and then identifies the closest two clusters. The
closest two clusters are then combined, and the process is
repeated until all data samples are formed into a single
cluster. The clustering process is represented as dendrogram
(see Figures 4 & 5). There are several methods available for
determining the distance between clusters throughout the
agglomeration process. The two most common methods are
complete linkage (CL) and mean linkage (ML) methods
which either finds the maximum possible distance between
points belonging to two different clusters or finds all possible
pairwise distances for such points and then calculates the
average respectively. Ensuring good clustering requires the
measurement of the group sum of squares (GSS) and the
within group sum of squares (WGSS) between cluster data
samples while employing CL and ML.

Sections II.F and II.G describe methods capable of
identifying significant differences between individual
corresponding BL 1 and VAR1 proxy paths.

F. Individual Path Feature Selection

In this section a Bayesian Variable Selection (BVS)
method that calculates the activation probability for each data
feature/predictor is explained. Those predictors exhibiting the
highest activation probability on average are most likely to
affect the value of the target variable (delay time). The BVS
method is used to find the activation probabilities for wire
capacitance (f4), transition time (f5), total capacitance (f6) and
pin capacitance (f3). The regression expression as shown in
Equation 5 is utilized within BVS to find the activation
probabilities for each of the features. In Equation 5, )6'3, )64
  )66 are the corresponding regression coefficients, a =
regression constant and the response variable 0 = the delay
time.



0 = a + fl3f3 + fl4f4 + fl5f5 + fl6f6 (5)

BVS requires that selection of a prior distribution to
predict a posterior distribution mean. If we assume:

Au): Prior distribution with u representing the
mean of the prior

P( fIP) : Likelihood of a samplefi being observed
given assumed mean u

The posterior distribution is found using Equation 6:

Ap f = pU; p)p(p) 
(6)

The normalizing constant p(f) is found using Equation 7:

p(f)=fpcf, 11)19(p)dp
(7)

The normalizing constant p(f) which is unconditional,
ensures the posterior integrates to one. p(f) is a
multidimensional integral over all the model parameters and
is approximated using Markov chain Monte Carlo (MCMC)
algorithms [10] .

G. Individual Path Distribution Comparison

Once the activation probabilities for the features are
identified and those features exhibiting the highest
significance are identified, individual path distribution
analysis is performed using Equation 4. Those paths showing
the greatest KL-Divergence between BL1 and VAR1
distributions are considered anomalous.

III. EXPERIMENTAL RESULTS

A. Experimental Data

To illustrate the detection capabilities of the SAPD
algorithm, two path group databases representing the same
ASIC design were created. The baseline database designated
as BL1, consisted of 6425 paths where the following defects
were removed: data-entry errors, missing values, outliers,
unusual (e.g. asymmetric) distributions, changes in
variability, clustering, non-linear bivariate relationships and
unexpected patterns. A second database was derived from
BL1 designated VAR1 also consisted of 6425 paths, but
random path variations were made in order to simulate
unintended design modifications.

B. Path Group Distribution Analysis

In Figures 2 and 3 show BL1 and VAR1 path group
distributions for arrival and slack times. A comparison of
BL1 and VAR1 distributions showed significant differences
in arrival time and slack time shapes indicating divergence
and the possibility of path group modifications.
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Figure 2: BL1 & VAR1 arrival time distribution
comparison.
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Figure 3: BL1 & VAR1 slack time distribution comparison.

C. Cluster Analysis

Cluster analysis was performed on BL1 and VAR1 path
groups as shown in dendrograms in Figures 4 & 5 and the
cluster plots in Figure 6 & 7 below.



Figure 4: Dendrogram for BL1.
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Figure 5: Dendrogram for VAR1.

Figure 6: Clustering of BL1.

g2reg_FUNC_

Figure 7: Clustering of VAR1.

Measurement of the group sum of squares (GSS) and the
within group sum of squares (WGSS) between cluster data
samples while employing CL and ML, and found that the
highest value for the ratio of BGSS/WGSS occurred on
average more often when using the CL method.

Comparing the clustering patterns between BL1 (Figure
6) with VAR1 patterns (Figure 7) it is evident the data vector
components in BL1 and VAR1 proxies do not have identical
values. Specifically, it is seen that a cluster shift between path
group reg2reg_FUNC_1 occurs. As shown in Figures 8 and
9, the cluster composition between proxies was inspected to
detect individual sample shifting between clusters.
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Figure 8: BL1 Cluster composition.



1400

1200

vi 1000

TD_ 800

co 600
(r)

400

200

0

VAR1 Cluster Composition

N N
0" Cr
U U
Z Z
u_ u-

I IOD OD
0./

LII:1  .1 ll 

I I
m CO dr
Cri 0"

 
Cri

U U U
Z Z Z

I I I00 00 OA
01 CD CU

NNNNN
0.0 110 ttO 0.0 0.0
CD CU O1 0.) UJ

Path Groups

• Clust 10

• Clust 9

• Clust 8

• Clust 7

• Clust 6

• Clust 5

• Clust 4

• Clust 3

• Clust 2

• Clust 1

Figure 9: VAR1 Cluster composition.

Figures 10 BL1 and 11 VAR1 cluster compositions show
small changes in individual cluster sample composition as
well.

D. Individual Path Feature Selection Analysis

The BVS analysis results are shown in Figure 10 below.

Figure 10: Feature activation probabilities

BVS analysis performed on the BL1 and VAR1 datasets
consistently showed the pin capacitance feature (f3) to have
the highest activation probability (fi> 0.8) while all other
features were (A, fs, f6 < 0.5).

E. Individual Path Distribution Comparison

With the pin capacitance feature (fi) having an average
activation probability (f3 > 0.8) and all others (f4, fs, f6 < 0.5),
we confined the path distribution analysis to the differences

between individual BL1 and VAR1 path pin capacitance
distributions. Figure 11 below shows the results of the
distribution analysis where the vertical axis is the KL-
Divergence (Equation 4) between corresponding individual
BL1 and VAR1 pin capacitance distributions, and the
horizontal axis is the respective path numbers.
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Figure 11: KL-Divergence of pin capacitance per path.

As Figure 11 shows, most feature fi distribution KL-
Divergence (f3 KLD) values fall approximately into the range
of (5 > f3 > 0). Those fi path distributions outside of the (5 >
fi > 0) range required further inspection as these paths are
anomalous. The degree to which individual fi KLD values
were found to be anomalous was measured by establishing a
set of thresholds (Tn, n = 1, 2, ....., 16) and observing which
individualfi KLD values exceeded each Tn. Tn was calculated
by first taking the mean (m) and standard deviation (std) of
all f3 KLD values, and then multiplying std by a factor (fn).
Each T value is equal to std times a distinctfn added to m as
illustrated in Equation 8.

T„, = m + std * Fn (8)

Figure 12 below shows the results of the thresholding
analysis. As illustrated in Figure 12 as fn increases Tn
increases, which results in the number of identified
anomalous paths (PO to decrease exponentially. Table 2
shows a sample of identified anomalous paths and the
respectivefi KLD values when n = 13 andfu.
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Figure 12: Identification of anomalous paths.



Table 2 Path KLD
Path # KLD Value

1665 32.92
1666 36.46
1667 29.11
1668 32.10

Iv. DISCUSSION

A. Statistical Methods Explored

Comparisons were made between standard statistical
methods (cross-correlation and regression) and SAPD.
Correlation between slack and arrival times for both the BL1
and VAR1 proxy datasets were measured. The correlation
coefficients and thus the degree of correlation between slack
and arrival time using both the Pearson and Spearman
methods were found. The Pearson correlation coefficient is
based on the degree to which slack and arrival times change
linearly relative to one another. If non-linearities exist
between the variables, the Pearson method lacks the accuracy
of the nonlinear Spearman method [7].

In Figures 13(a) BL1 path group arrival and slack time
vectors are correlated and cross-correlated. In Figures 13(b),
VAR1 path group arrival and slack time vectors are
correlated and cross-correlated as well. As shown, significant
differences were observed between the correlation values
Pearson: { -0.1920 versus -0.5277}, Spearman: { - 0.0258
versus 0.0534} between BL1 and VAR1 proxies. Because an
identical order and one-to-one correspondence between BL1
and VAR1 path groups exists, the cross-correlation [8] values
of arrival and slack times were compared as well. As shown
we also observed significant differences in these values as
well between plots 13(a) and 13(b).
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Figure 13(a): Correlation analysis of all path groups BL1
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Figure 14(b): Correlation analysis of all path groups VAR1

Correlation values using both Pearson and Spearman
were found to be relatively low negative correlations with
Pearson performing better with the inherently linear
relationship between slack and arrival time. Because there is
a relatively large amount of value change between correlation
values between the two proxies, correlation as an ASIC
modification indicator was not found to be a reliable metric
when many outlier points are present.

Linear regression modeling was performed to estimate the
relationship between slack and arrival times with slack time
as the dependent/response variable and arrival time as the
independent/predictor variable. Figure 14 below shows the
results of the analysis.
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Figure 15: Plot of Slack time versus Arrival time. (slack time
vertical axis, arrival time horizontal)



As shown in Figure 14 and per Equation 3 slack time
decreases linearly as arrival time increases. It was observed
in Figure 6 that this linear relationship existed for disjointed
clusters of data with a principal linear cluster of samples at
the top of the plot. Table 3 below shows the regression
statistics for BL1 and VAR1 proxies.

Metric BL1 VAR1
Adjusted r2 0.0367 0.00263
p-value 2.2e-16 2.78e-5
Residual standard Error
(RSE)

4.03 3.93

Table 1: Regression Statistics

The adjusted r2 measures the amount of variation witnessed
in slack time when the arrival time value changes. Table 3
indicates that only a slight change in slack value occurs when
arrival times change: approximately 3.6% for BL1 and
0.26% for VAR1 proxies. A low p-value (p-value < 0.05) for
a predictor (arrival time) is significant in the regression
model. Both BL1 (p-value = 2.2e-16) and VAR1 (p-value =
2.78e-5) are much lower than 0.05 and thus arrival time value
changes significantly affect the variation in the value of slack
time. The residual standard error (RSE) values for both BL1
(4.03) and VAR1 (3.93) indicate the regression models as
slack time prediction tools will exhibit a nominal amount of
error when many outlier points are present.

There were notable differences observed between the data
plots of Figure 14. This difference is both a horizontal and
vertical shift in the notated data cluster in 14(a) and 14(b).
From the Table 3, it was apparent that significant differences
between BL1 and VAR1 proxy adjusted r2 and p-values
existed.

B. Method Comparisons

Cross-correlation and regression techniques could
identify path group variations between BL1 and VAR1
proxies, but unlike SAPD could not be used to identify
distinct path anomalies. Although distinct path anomalies
could not be verified using either method alone, the
regression linearity properties (r2 and p-value) provided a
wealth of predictive information.

V. CONCLUSIONS AND FUTURE WORK

SAPD provides both a coarse and find grained approach to
ASIC verification during manufacturing. Using lightweight
unsupervised learning (clustering) it can effectively sense
path variations between proxies. Additionally, SAPD is
capable of efficiently identifying individual path anomalies
by first using BVS to reduce the dimensionality of the
detection model and then sensing which paths have been
altered using KL-Divergence.

Armed with SAPD as a lightweight path variation
detection algorithm, future research should include unique
methods for self-correction of anomalous paths.
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