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Talk overview
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■ An overview of the Compadre project
■ What is meshfree/why meshfree?

■ An introduction to generalized moving least squares (GMLS)
■ A high-level summary of approximation theory
■ A brief survey of our ongoing work

■ Conservation principles for meshfree discretization
■ How to obtain a conservative method, when we don't have a mesh to apply the

Gauss divergence theorem to

■ Asymptotically compatible strong-form discretizations of non-local
mechanics

■ How to obtain accurate quadrature rules for non-local singular operators, with
no reference to an underlying mesh

2



Compadre — Compatible Particle Discretization

Objectives:
• Meshless schemes with rigorous approximation theory and mimetic properties like

compatible mesh-based methods
• Software library supporting solution of general meshless schemes with tools for

coarse+fine grain parallelism and preconditioning

People:
• Pavel Bochev
• Pete Bosler
• Paul Kuberry
• Mauro Perego
• Kara Peterson
• Nat Trask

Students/collaborators:
• Huaiqian You, Yue Yu — Lehigh
• Amanda Howard, Martin Maxey — Brown
• Wenxiao Pan — UW Madison
• Paul Atzberger — UC Santa Barbara
• J.S. Chen — UC San Diego

Key tools:
• Optimization based approaches to develop meshfree discretizations with reproduction

properties
• The Compadre Trilinos library — open source library for scalable implementation of

meshfree methods

Sandia
National
Laboratories
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Why meshfree? Large deformation problems

• Saddle point problems
• div-grad, div-curl, stationary Stokes

• Surface PDE
• Bulk-manifold coupling, deposition

• Local/Non-local Lagrangian mechanics
• Asymptotically compatible discretization

Hard to say anything without a mesh!
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Why meshfree? Automated geometry discretization

Discretization Per Processor
N (Er # Particles # Processor # Particles Load balance

128 6.875e-05 6,083,687 432 14,083 1,0003
192 4.583e-05 19,701,287 1,440 13,682 1.0004
256 3.437e-05 45,803,537 3,432 13,347 1.0007
384 2.291e-05 151,438,991 11376 13,313 1.0006
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• For even experienced
computational engineers,
meshing is still bottleneck in
workflow [1]

• Robust automated geometry
discretization important as we
move beyond forward
simulation

• For uncertainty quantification,
mesh generation scales
exponentially with dimension

• For many meshfree methods,
high ratio of local to global
computation maps well onto
modern architectures

[1] "DART system
analysis" M. Hardwick et
al. SAND2005-4647
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Why meshfree? Data transfer
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• As codes get bigger and more
complex, multiphysics coupling
becomes cumbersome

• Meshfree data transfer provides a
non-intrusive way to transfer
fluxes between codes with no
assumption of underlying
DOFs/boundary conformity
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Compadre Trilinos package

File ReacIL.r/Writer

Input Deck

Problem

Assembly

Physics

I Coordinates

Fields_A

r—Neighborsl

Local

GNUS
Solver

Repartitioning

Curi

Collection of modules for general meshfree discretizations + heterogeneous architectures

• Local modules for efficiently solving small optimization problems on each particle
• Kokkos implementation gives fme grained thread/GPU parallelism

• Global modules for assembling global matrices and applying fast solvers
• MPI based domain decomposition for coarse grained parallelism
• Interfaces to MueLu for efficient AMG preconditioning yielding O(N) solves

Sandia
National
Laboratories
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Why is conservation hard in meshfree?

Generalized Stokes theorem

=dL i; IQ 60
Gauss divergence theorem

fc V' • udV = u• ciA (9
iFE C

a

a

a

a

Two ingredients:
• A chain complex

• A topological structure with a well-defined boundary operator
• An exterior derivative

• A consistent definition of a divergence

/

Sande
Mond
laboratories
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Generalized moving least squares (GMLS)

argmin
pEV

TtU) T 'CO

Ei À) — (

T(P1

Example:
Approximate point evaluation of derivatives:
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-40

Takeaway:
A rigorous way to obtain formulas that look like:

2 3 4 5 6
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Dual problem: equality constrained optimization

Th.( )

ize

subjec to T

Example:
Approximate point evaluation of derivatives:

  74.

'fill fir

0011111.1'

Takeaway:
A rigorous way to obtain formulas that look like:

T h

a
3
.
2
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a -A -(p), via c V.

2 3 4 5 6 10



Approximation theory sketch: local reproduction

G ven linear bounded func ional T7 and approxi a

We assume
coefficients {

TA

OIlTh

ay be ssociat th a point x. A pr cess for gene
is a local reproduction over V if:

(p) (p) for all p e V

2. < C h-

3. IP C2h
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(IL).

ting the

• GMLS may be shown to satisfy condition one, provided a solution exists to the
optimization problem, and condition three by choice of kernel.

• Satisfaction of condition two depends upon the target and sarnpling functionals
under consideration.
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Truncation error sketch

Let p E V.

(u) — T h (U) (u) I

(p) A(u)

C h

To proceed, a specific choice must be ade for operators. For ex,
esti ates point e luation of der tives fro point evaluation o

et u E C (Q) 7- := D := a V := P

Taking p as he aylor series abou xi leads to

lipau DZul IL ) cCh

e follow g es

I I lcm+1(o)
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p e, Mi z
ctions.

ate

Mirzaei, Schacback, Dehghan. "On generalized moving least squares and diffuse derivatives" IMA
Journal of Numerical Analysis (2012) 12



Solving PDEs with or without a mesh
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Quadrature with GMLS

Assume a basis, Vf...) V, p= CP and rewrite GMLS problem as

= a rg min —
cGRdim(v.-, 2

eA1(P))2 w(T: Ai).

T(1.4) C:4:T(P+')

Ex: Selecting T = fc u dx, ard defining the vector

= Pdx

we can see that a quadrature functionais rnay be represented as a pairing
of the GMLS reconstruction coefficient vector with some vector in its
dual space

ic[u] = -vIc*

We seek to similarly define meshfree quadr3ture hinctionols with
summation by parts properties.

Sandia
National
Laboratories
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A meshfree Gauss divergence theorem

We assume a collection of particles partitioned over the interior and boundary cf
the domain and characterized by a spacing lengthscale h (X,F, = Xi Xli), and
for each particle on the boundary xli iNe associate a portion of the boundary
(aQ = us-20.

Sekct a velocity space V = (71)d and define Mh = div(Vh).

•
•

Sandia
National
Laboratories

•

Seek to define a discrete divergence theorem ansatz in terms of virtual cells, virtual' faces and physical boundary
faces_

UV. F] = Y: if[F] xc x lar2c F • clA
8c

which, under the assumption that = provides the following global conservation statement

E uvr • F] = ir[F] F•dA
c,FGac 8 c2c

=   f F [IA = F [IA
c]Cli ar2c a 5-2
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Truncation error of ansatz

Let u E C ). We a s e he o o g a z for our vi ua divergence
theorem.

where

3/4 and vfij are

(u)

1 volum

Xicao I u dA
a

and face o be determined

cz(u) are GMLS coefficients associated th the f3th basis ction of the
GMLS reconstructio of u at the virtual face f

• a E 1 ..., d denotes the co ponent f the gradient a >>d rtual face normal

Ob jective:
Define d vf such that ou  VDT holds for yuEP

Sandia
National
Laboratories

16



Summation-by-parts ansatz

Ass e virtual areas vfzi may be expressed
phed by point evaluation of basis functi

(

n te of v
n at virtual

(x )

ua a
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poten als

Theo e Let u c 611(Q), and consider a set of virtual metric nf© ation

) that define a P1-reproducing SBP operator. Assume that the

virtual face moments satisfy the scalings, I 71) I C hd—i and MI <

GO for all a, [3,i, j m If Pit, C II, then there
estimate holds at ch virtual cell

where Vh U = (a

ts C > 0 such that the following

IV • U Vh < Ch
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Proof (skip)

Proof. For an arbitrary p E (n)d,

114 (V • ti Vh 114 V " + 114 (Vh - Vh • un

pa as the Taylor expansion of the ect/̀ -component of u about zi so t

itia =pa + E 1
I ;I

t E (x - Let CTs = maxCa- Then7=2
1/4 U Vh • U) I ECTS IVi (Vh • (X — Xi)7)I

Expanding the defmition of the discrete divergence

074 - 114 ' ((z — zir)

From thc assumed scaling of the virtual areas

— zir)0(zii)

From GMLS literature, there exists CGMLS > 0 satisfying

Ect(f)419(xii) < Cgra h2

Combining eve e obtain

Vi (V • u — Vh - IL) CTsCfhd-1Ggath,h2

lvi (v • It— Vh • /4 Ch.

t 3

❑

Sandia
National
Laboratories
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How to get the areas?

For e h 11) c V, plug into satz d get

= V (a. — xicact

Ass me we have a process for genera

> 0

g vol es sa isfying

u dA
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then this provides a weighted-graph Laplacia pro e for each area o ent,
th S satisfyi g Fred olin alternative necessary for singularity.

Solve d graph placian pr ble
AMG for O(N

s, each with d Ss, using
work.

19



How to get the volumes?

Assumed we have a process for generating volumes sa isfying

• Evi =
• vi 0

Explored several o .o

• Vi IQI/N

d   here di are SPH definition of vo

1
d

h Volumel Volume2 Volume3

1/16 0.081 0.058

1/32 0.049 0.032

1/64 0.024 0.015

1/128 0.011 0.0072

0.032

0.018

0.0099

0.0046

Sandia
National
Laboratories
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Results: singularly perturbed advection-diffusion

Consider conse tion laws

± V - F(0)

Where w .11  s  me s eady s a e and the follo

• D cy:

Singularly

/LW

rbed advection di usion:

  071)+ a(i)

Skip lots of details: but
conventional mesh-based

es:

Sandia.
4 Fr I, tiatioo:, 10 ries

11 sho e h dle benchm that chal 
t ods

enge
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Darcy: jumps in material properties

70
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Darcy: jumps in material properties

01

15

g 10
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1 l4

— Exact
dx = 1/16

- dx = 1/32
- dx = 1/64
— dx = 1/128

0.2 0.4



Darcy: 5-spot problem
Santla
!Mond
laboratories

0 Exact
— h = 1/8
— h = 1/16
— h = 1/32
— h = 1/64

1

0.5
Length along diagonal

1

0.5
Distance along diagonal

0 Exact
— h= 1/8
— h = 1/16
— h = 1/32
— h = 1/64

1
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Darcy 5-spot problem
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Singularly perturbed advection diffusion

VO -

= 0

at

F = — €V4i

Single tinnestep
Co E {1, 10, 100, 1000} ccp}
demonstrating L-stability
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Talk part 2: Non-local models for mesoscale

By non-local mechanics, we mean a model which evolves
according to an integral operator of the form

0*

)d

These types of models mainly come in two flavors:

• Physics are nonlocal: e.g. Coulombic surface tension models,
density functional theory

• A local theory is more conveniently expressed via integral
operators than derivatives, for regularity reasons

Sandia
National
Laboratories
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Target application: non-local fracture mechanics

Local xnechanics: Natural setting u E H1

Non-local 40' S:

p(x) dt
(x) — ](x)

1'100 = 
 
(V2u +VV

8

atural setting u E L2

19(x) d t2 (x) =
[C4

[uRx) = lc 
B(x,6) II (Y)— (x)) dy

For reduced regularity in modelling fracture, we care about so-called
asymptotic compatibility where discrete nonlocal model converges to the
continuous local model

Sandia
National
Laboratories
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Non-local setting and notation

Consider a family of integral
equations of the form:

Discretized over the dornain:

B(x )

y

Oft

n(x,

Sandia.

tiatioogo r es

K ,y)u(y) dy = f(x)

supp(K (x •)) = å

here n(x y) < Cn
y — xl

29



Motivation: non-local quadrature on mesh

Define quadrature rule:

f1( ) K y)u(y) dy

[114( K x )u
xjcx.qcBocg

• Challenges in finite element setting:

• Costly geometric intersection

• Singularity in non-local kernel — particularly
hard on unstructured meshes

Ex: PO discontinuous approximation, u = 1

Sandia
National
Laboratories
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Asymptotically compatible discretization

0.01

1
4 

Seek a discretization that recovers local solution
as nonlocal + local length scales both tend to
zero at same rate

0.1 1
10

0.1

0.01

0.001

Santla
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Tian, Xiaochuan, and Qiang Du. "Asymptotically compatible schemes and applications to robust discretization of nonlocal
models." SIAM Journal on Numerical Analysis 52.4 (2014): 1641-1665.
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Meshfree generation of quadrature rules on balls

sub jec

I[f]

whe

I[f

Yp E V

Sandia
National
Laboratories

0 0

Idea:
- Construct rule just like Gauss quadrature
- Requires knowledge of how to integrate

against each member of reproducing set

32



Solution of KKT system

• I E RNx Nq _ ide a

• co E RN - quadrature we

A E (vh) Lagrange ultipliers to enforce reproduction

• B Nq x dim(V h) reproducing set evaluated at e quadrature point

dimorh)• g integra  of each function in the reproducing set over the ball

• O(dim(V)3) work using Schur complement solver
• Requires efficient means to solve g

• Best case scenario, analytic solution available for V over domain
• Ex: integrate some polynomials on balls

• Worst case: need to integrate numerically on a ball

Sande
Mond
laboratories
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Singular integrals
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• As reproducing space, select polynomials + integrand of operator

vh P SK,n,x, where

K(x y)f(y) I f c Pm}

Theore Consider for fixed x a ke el of the fo = iny(xx'yia) , where

the numerator n satisfies n(x, y) < Cn f©r all y C BOC7 8). A set of quadrature
weights obtained from the GMLS process with the choice ©f Vh = P U SK,n,x
for u C C and m > n satisfies the following point e error estimate, with
C > 0 independent of the particle a ngement.

K(x, y)u(y) dy — K(x, x < C k-1-1—a-Fd

34



Truncation error for smooth displacements

r[u]( ) = 
3K
8 (V2u+ VV -

= J.Bor.,å)

72K 
57re53
18K 
7r,54

(y) u (x)) dy

< C

0.01

0.0001

lc-06

1c-08
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To recap:

■ What have we achieved:
■ Replaced a difficult geometric quadrature problem with a local, easy

optimization problem that maps well onto modern architectures

■ Applicable to general integral equations
■ Even in the case where there is a mesh!

Sandia
National
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■ Restrict ourselves now to bond-based peridynamics
■ Manufactured solutions to demonstrate asymptotic compatibility

■ Combine with damage model to get asymptotically compatible damage

■ Extend this to define an extension operator providing a means of
enforcing BCs locally

■ Some mechanics examples
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Manufactured solution to BVP

Le be the weight for particle i

—c Ki-(

jEB(x,,b)

u  (sin x y, cos x cos y)

Characterize point c e ud dis

h = sup min I lx —
xErel<j<Np

1
qxh, = -minl — Xj 22

qxh < h < Cquqx„

ribution

e cil j

Sandia
National
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Manufactured solution to BVP

1

0.01

ir

$ 0.0001

1 e-06

1e-08
v.01

delta
0.1

C3On=2
O 0 n= 3
O 0 n= 4
— p= 2.224
— p = 2.276

— p =4.314
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c, ...

3 .

O . . ....

cP--0 n= 2
n= 4

0—* n= 3
— Second order
O 0 SP - deltath =2
O O SP - delta/h = 4
0- SP - delta/h = 8

0.01 0.1
delta

38



Damage modelling

Given a p j) in B(xi, ~i), ~~.~,~::.~ci~~~~te the state of either br ken or unbroken

111ds are either

if bond is rir broken

if bond broken .

/
• Broken a pre-pr© sing step to oduce a k to the problem

• Broken over the ©$ the simulation if the bond str

X

1;1 — —

— l

a d age iteria, e.g. s > so where

1 so =

G, 
  9' 62 

(r
, 214)6

Gc 

014+0)4 
3
))6

X
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Asymptotic convergence to local condition

Da ge mode

u f = (x y x 3y))

(u)

(Dyers

0.06

0.04

0.02

-0.4 -0.2

action- ree

0
x

SO

0.2 0.4
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ntion as 0(6).
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Type-I crack loading

CIO -411-

Cf0

x

a a

1 1 1
Cr0

cro

1

0.5

0

-0.5
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-1
-2

2

1

0

-1

-1
1 
0

2x/a

— Exact
h = 1/32

- h= 1/64
  h= 1/128

1 2

— Exact
h= 1/32

-•-• h= 1/64
  h= 1/128

0
2y/a

1 2
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Kalthoff-Winkler experiment

Cylindrical impactor
Mass = 1.57 kg i

50 mm

100 mm

50 mm

200 mm

32 mis

c
Maraging steel plate
Thickness = 9 mm

1.5 mm

Santia
National
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Kalthoff-Winkler experiment

11.

1•••••••••••••••••,1

256

h

 ►
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Conclusions
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■ Meshfree methods provide needed flexibility for many
problems, but historically struggle with notions of
conservation and consistency

■ We remedy this with optimization based approaches

■ We provide a constructive approach to develop consistent
meshfree summation-by-parts operators, utilizing GMLS to
obtain accuracy and fast graph Laplacian solvers to obtain
virtual definitions of metric information (a meshfree RT)

■ For non-local methods, asymptotic compatibility may be
achieved in a similar framework, putting peridynamic fracture
models on a sound mathematical foundation

■ Many other applications: surface PDE, Stokes flow, local
elasticity, plasma physics
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