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Sandia
Talk overview ) Mot

= An overview of the Compadre project
=  What is meshfree/why meshfree?

* An introduction to generalized moving least squares (GMLYS)
= A high-level summary of approximation theory
= A brief survey of our ongoing work

= (Conservation principles for meshfree discretization

= How to obtain a conservative method, when we don’t have a mesh to apply the
Gauss divergence theorem to

= Asymptotically compatible strong-form discretizations of non-local
mechanics

= How to obtain accurate quadrature rules for non-local singular operators, with
no reference to an underlying mesh




Sandia
Compadre — Compatible Particle Discretization ) foor

Objectives:
* Meshless schemes with rigorous approximation theory and mimetic properties like
compatible mesh-based methods
» Software library supporting solution of general meshless schemes with tools for
coarse+fine grain parallelism and preconditioning

People: Students/collaborators:
* Pavel Bochev * Huaiqian You, Yue Yu — Lehigh
* Pete Bosler * Amanda Howard, Martin Maxey — Brown
* Paul Kuberry * Wenxiao Pan — UW Madison
* Mauro Perego * Paul Atzberger — UC Santa Barbara
« Kara Peterson e J.S. Chen — UC San Diego
* Nat Trask
Key tools:
* Optimization based approaches to develop meshfree discretizations with reproduction
properties

* The Compadre Trilinos library — open source library for scalable implementation of
meshfree methods
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Why meshfree? Large deformation problems

Saddle point problems

* div-grad, div-curl, stationary Stokes
Surface PDE

* Bulk-manifold coupling, deposition
Local/Non-local Lagrangian mechanics

* Asymptotically compatible discretization

Hard to say anything without a mesh!




Why meshfree? Automated geometry discretization

Discretization Per Processor
N dr # Particles || # Processor | # Particles | Load balance
128 | 6.875e-05 6,083,687 432 14,083 1.0003
192 | 4.583e-05 19,701,287 1,440 13,682 1.0004
256 | 3.437e-05 | 45,803,537 3,432 13,347 1.0007
384 | 2.291e-05 | 151,438,991 11,376 13,313 1.0006
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For even experienced
computational engineers,
meshing is still bottleneck in
workflow [1]

Robust automated geometry
discretization important as we
move beyond forward
simulation

For uncertainty quantification,
mesh generation scales
exponentially with dimension
For many meshfree methods,
high ratio of local to global
computation maps well onto
modern architectures

[1] “DART system
analysis” M. Hardwick et
al. SAND2005-4647




Why meshfree? Data transfer
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As codes get bigger and more
complex, multiphysics coupling
becomes cumbersome

Meshfree data transfer provides a
non-intrusive way to transfer
fluxes between codes with no
assumption of underlying
DOFs/boundary conformity




Compadre Trilinos package =

- -

, Repartitioning
Coordinates

Fields [

Neighbors |

File Reader/Writer

Input Deck

- / CurrSHENNN

Collection of modules for general meshfree discretizations + heterogeneous architectures

* Local modules for efficiently solving small optimization problems on each particle
*  Kokkos implementation gives fine grained thread/GPU parallelism

*  Global modules for assembling global matrices and applying fast solvers
* MPI based domain decomposition for coarse grained parallelism
* Interfaces to MueLu for efficient AMG preconditioning yielding O(N) solves
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Why is conservation hard in meshfree? ) foor

Generalized Stokes theorem

/dw:/ w
(1 a(l

Gauss divergence theorem

f V- -udV = f u-dA 8 : ‘-a o _} __} -
¢ FeC

Two ingredients:
* A chain complex

* A topological structure with a well-defined boundary operator
* An exterior derivative

* A consistent definition of a divergence




Generalized moving least squares (GMLS) ) e

7(u) =~ 7"(u)
— argmin (zﬁ Xi(p @9) /x\j(m)) W (T, A;)
peEV
7" (u) := 7(p*)

Example: [
Approximate point evaluation of derivatives: | /\\ |

Takeaway:
A rigorous way to obtain formulas that look like:

() = 3, i (4)




Dual problem: equality constrained optimization

Laboratories
5
- o~ minimize
T(u) =~ 7"(u) i %: W(r )
() = ¥, 05 () subject to 7(p) = 3" a;\s(p), V€ V.
i

Example: [
Approximate point evaluation of derivatives: | /\\ |

Target functional 7; = D% o

Takeaway:
A rigorous way to obtain formulas that look like:

T (u) =35 oA (u)




Approximation theory sketch: local reproduction

Given linear bounded functional 7, and an approximation 7, = ) sx; 7 Aj(u).
7
We assume 7 may be associated with a point z. A process for generating the

coefficients {5 AT } is a local reproduction over V if:

L. > sa~Aj(p) =7(p) forallpe V
J

2. E”S«M,Tm <Cih™@
J

3. Sx; 7 if ||z — :I?j“ < Cah

* GMLS may be shown to satisfy condition one, provided a solution exists to the
optimization problem, and condition three by choice of kernel.
 Satisfaction of condition two depends upon the target and sampling functionals

under consideration.
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Sandia
Truncation error sketch Pl et

Letpe V.
[7(w) — h(u)| <|7(u) — 7(p)| + |70 (P) — Th(u)]
<|r(uw) — ()| + Zﬂsxj,wﬂ 1A () — Aw)]

<[l (u) — 7P|l (@) + C1h™*[|Xj(u) — A(P)||L(0)

To proceed, a specific choice must be made for operators. For example, Mirzaei
estimates point evaluation of derivatives from point evaluation of functions.

Let u € C™(Q2), 7 := D%00;,\; :=46;,V :=P,
Taking p as the Taylor series about z; leads to the following estimate

|[D%u — Dy ul|pe (o) < Cchpmt1-lel |u|cm+1 ()

Mirzaei, Schacback, Dehghan. “On generalized moving least squares and diffuse derivatives” IMA
Journal of Numerical Analysis (2012) 12



Solving PDEs with or without a mesh

To generate mesh free schemes for V¢ = f:

Finite difference Finite volume
Target functional T V2é(x;) ' f Fa-— Vé-dA

Reconstruction space V Py y
Sampling functional A o(xy5) &(x;)

Weighting function W W(llz; —=l)  W(|lz; — =)

—— Collocation P2
—— Collocation - P4
001 —— Collocation - P6
o—o FV-P1
FV-P3
a FV-P5




Quadrature with GMLS ) B

Assume a basis, Vp e V, p=cTP and rewrite GMLS problem as

N
c* = argmin lz (Aj(u) — C*Aj(P})Qw(T; Aj)-
ccRdim(V) =1

T(u) = c*7(P")

Ex: Selecting 7 = [_u dx, and defining the vector

V.= /de

we can see that a quadrature functionals may be represented as a pairing
of the GMLS reconstruction coefficient vector with some vector in its
dual space

IcJu] = vIc*

We seek to similarly define meshfree quadrature functionals with

summation by parts properties.
14




A meshfree Gauss divergence theorem

We assume a collection of particles partitioned over the interior and boundary of
the domain and characterized by a spacing lengthscale h (X, = X; U X), and
for each particle on the boundary xp we associate a portion of the boundary
(892 = uLd,).

Select a velocity space V, = {ﬂ'l]ld and define M, = div( V).

Seek to define a discrete divergence theorem ansatz in terms of virtual cells, virtual faces and physical boundary

faces.
LIV -Fl= 3 I{F] +xcE1b/ F.dA
fedc
which, under the assumption that Iﬂj = _fﬁi provides the following global conservation statement

S LIV-Fl= 3 HFl+ Zf

c,feBc ceXy, * Flc

= ‘ F-dA=| F-.-dA

15
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Truncation error of ansatz

Let u € CY(2). We assume the following ansatz for our wirtual divergence

theorem.
Vi (Oz,u); = Z“’f’ﬁ‘?ﬂ (u) + Xiem/ udA®
3,8 o
where
e Vi and vy,. = —wy,. are virtual volumes and face areas to be determined

. c;%(u) are GMLS coefficients associated with the %" basis function of the
GMLS reconstruction of u at the virtual face f;;

e o € 1,...,d denotes the component of the gradient and virtual face normal

Objective:
Define V; and vy, such that our VDT holds for any u € Py

16




Sandia
Summation-by-parts ansatz i) feema_

Assume virtual areas vy,;, may be expressed in terms of virtual area potentials
multiplied by point evaluation of basis function at virtual face

vy, = @? P~y ”8) ¢ (2:;)
Theorem. Let u € C1(f2), and consider a set of virtual metric information

({V;} g {w%;ﬁ }) that define a P;-reproducing SBP operator. Assume that the

virtual face moments satisfy the scalings, E@j}?’ﬁ — P < Crh®1 and |V;| <
C.h? for all o, B,i,§. If Py C 11, then there exists C > 0 such that the following
estimate holds at each virtual cell

|V‘-fumvh~m§~

7

<Ch

where Vi, - u =) (05, u%);.
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Proof (skip) i)

Proof. For an arbitrary p € (I1)4,

Vi (V-u—Vh-w)| < |[Vi(V-u—V-p) |+ |Vi(Va-p— Vi-u)]
Take p* as the Taylor expansion of the a**-component of u about z; so that
1
u* =p* + 2 -—iD"’u"’(E)(z — ;)
Ivi=2 "

s0 that [u® —p*| < Ca 3 (& — 2:)7. Let Crg = maxCq. Then
=2

Vi(V-u—Vi-u)| <Y Crs|Vi(Va- (2 —x:)")|

y=2

Expanding the definition of the discrete divergence

Vi (V- (@ — 2] = |3 (957 = 957 ) (= — 2:)) # (5)

dsex B

From the assumed scaling of the virtual areas

> (#57 - ) & (@ - 20" ¢ (@s5)

j’m!ﬁ

< dCy Zﬂ’z (2 —=:)") ¢° (=15)| -

j‘,ﬂ

From GMLS literature, there exists Cgasrs > 0 satisfying
Zci(f )6? (2:5) < Comuish®
¥
Combining everything, we obtain

Vi (V-u— Vi -u)| < CrsCrh* 1 Cppush?

Vi (V-u—Vy-u)| <Ch.

18
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How to get the areas?

For each ¢® € V, plug into ansatz and get

Z (zﬁ? - w?’ﬁ> ¢F (€5) = Vi (8z.u); — Xreon / udA®

- o9,
Assume we have a process for generating volumes satisfying

« SVi= |0

o V;>0

then this provides a weighted-graph Laplacian problem for each area moment,
with RHS satisfying Fredholm alternative necessary for singularity.

Solve d + 1 graph Laplacian problems, each with d RH
AMG for O(N) work.

Ss, using

19




How to get the volumes?

Assumed we have a process for generating volumes satisfying
e Y Vi=1Q|
o V;>0

Explored several options:
. V;=[QI/N

o V:=d; (gﬁ%) , where d; are SPH definition of volumes

o V= % S p0%e® -z + x1eon faﬂi - dA]
I
S Volumat | Volumaz | Volume3
1/16 0.081 0.058 0.032
1/32 0.049 0.032 0.018
1/64 0.024 0.015 0.0099

1/128 0.011 0.0072 0.0046




Results: singularly perturbed advection-diffusion i)t

Consider conservation laws
0ip+V -F(¢p)=0

Where we will assume steady state and the following fluxes:

e Darcy:
F=—-uVo

e Singularly perturbed advection diffusion:

F=—-uVo+ag

Skip lots of details: but we’ll show how we handle benchmarks that challenge
conventional mesh-based methods
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Darcy: jumps in material properties ) fooer
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Darcy: jumps in material properties @ e

2 . : : , : : |

— Exact
== dx=1/16
--- dx=1/32

Y - dx=1/64
15 wl — dx=1/128




Darcy: 5-spot problem

O  Exact
\ — h=1/8

. | L 1 |
2() 0.5 1

Length along diagonal

—C
0

O  Exact |
— h=1/8 |
— h=1/16 [
— h=1/32 ‘
— h=1/64

Velocity magnitude

Distance along diagonal




Darcy 5-spot problem




Singularly perturbed advection diffusion )

n-V¢=0

a
—ao+ V- -F=0
Efﬁb

F=ap— eV

Single timestep
Co€ {1, 10, 100, 1000, oo}
demonstrating L-stability
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Talk part 2: Non-local models for mesoscale

By non-local mechanics, we mean a model which evolves
according to an integral operator of the form

These types of models mainly come in two flavors:
= Physics are nonlocal: e.g. Coulombic surface tension models,
density functional theory

= Alocal theory is more conveniently expressed via integral
operators than derivatives, for regularity reasons

27
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Target application: non-local fracture mechanics ) bl

Local mechanics: Natural setting u € H!

p(30) - (30) = Ll ) 5 . uy,

3K
Lul(x) = = (V?u+VV - u) lim
il
h—0

Non-local mechanics: Natural setting u € L?

p(00) - ) = £ ) lim

£2[u](x) = L » ﬁﬂé (u’(y) — u® () dy

For reduced regularity in modelling fracture, we care about so-called
asymptotic compatibility where discrete nonlocal model converges to the
continuous local model
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Non-local setting and notation

COHSl.dGI' a family of integral Ls E’U‘J] (X) _
equations of the form: |y

K(x,y)u(y)dy = f(x)

supp(K(z,-)) =9

K(x,y) = Te—r where n(x,y) < C,

Discretized over the domain:




Motivation: non-local quadrature on mesh

Define quadrature rule:

Liful(x)= [ K(x,y)u(y)dy
JB(x.5)
L3 [u](x:) = > K(xi,xj)u(x;)w;
x;€Xg4 C‘B(xq ,8)

= (Challenges in finite element setting:
= Costly geometric intersection

= Singularity in non-local kernel — particularly
hard on unstructured meshes

= Ex: PO discontinuous approximation, u =1




Asymptotically compatible discretization

lim
h—0
uf - u
lim
5—30

Seek a discretization that recovers local solution
as nonlocal + local length scales both tend to
Zero at same rate

0.01 0.1 1

5/h

0.01

0.001

Tian, Xiaochuan, and Qiang Du. "Asymptotically compatible schemes and applications to robust discretization of nonlocal

models." SIAM Journal on Numerical Analysis 52.4 (2014): 1641-1665.
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Meshfree generation of quadrature rules on balls

minimize Yy w3
11

subject to

I[f] :ijwj? VpeVvV
J

where Idea:

- Construct rule just like Gauss quadrature
- Requires knowledge of how to integrate
against each member of reproducing set

32




Solution of KKT system

o I ¢ RNa*Na _jdentity matrix
e w € RN - quadrature weights
o )\ € R¥m(Vr) _ Lagrange multipliers to enforce reproduction

o B ¢ RN«Xdim(Vr) _ reproducing set evaluated at each quadrature point

e g c R¥™(V2) integral of each function in the reproducing set over the ball

*  O(dim(V)?) work using Schur complement solver
* Requires efficient means to solve g
* Best case scenario, analytic solution available for V over domain
» EXx: integrate some polynomials on balls
* Worst case: need to integrate numerically on a ball

33




Sandia
Singular integrals i) feema_

= As reproducing space, select polynomials + integrand of operator
V5, = P, U Sk nx, where
SK,MX = {K(Xa y)f(y) I f S Pfﬁa}

Theorem. Consider for fized x a kernel of the form K(x,y) = MxY) here

y—x|*’
the numerator n satisfies n(x,y) < C, for all y € B(x,9). A set lof q;mdmmm
weights obtained from the GMLS process with the choice of Vi, = Py, U Sk nx
for w € C™ and m > n satisfies the following pointwise error estimate, with
C > 0 independent of the particle arrangement.

B(x,6) j}e :q
34




Truncation error for smooth displacements

0.01 S

Llu](x) = ? (Vzu +VV- m‘) _____

Bt E8E (5(y)— ui(x - T |
e = /Bxa “fg (O ) Ay -

573 d
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To recap: L ﬁm

= What have we achieved:

= Replaced a difficult geometric quadrature problem with a local, easy
optimization problem that maps well onto modern architectures
= Applicable to general integral equations

= Even in the case where there is a mesh!

= Restrict ourselves now to bond-based peridynamics
= Manufactured solutions to demonstrate asymptotic compatibility
= Combine with damage model to get asymptotically compatible damage

= Extend this to define an extension operator providing a means of
enforcing BCs locally

= Some mechanics examples

36



Manufactured solution to BVP

Let w;; be the weight for particle 7 in stencil j

—c E Kij(u; — wi)wj; = L0[u](x)
JEB(x:,9)

u = (sinz siny, cos z cos y)

Characterize point cloud distribution

h= sup min ||x— x|l

xE08 1<j<N,
qx = min x,g g

ax, < h < cqugx,



solution error

Manufactured solution to BVP

0.01

=)
=
S

le-06

Xe-Og

T TTTTI

| I

I T RRITT

IR

PRI

solution error

0.01

0.0001

T T TTTITT

T T TTTTTI

O.

o

e--6 n=2

e—a n=4

-0 n=3

—— Second order
OO SP -delta’lh =2
[ [] SP-deltath=4
<O SP - delta/h =8

1




Damage modelling

Given a pair (7, 7) in B(x;,d), associate the state of either broken or unbroken

5es — Wik if bond is unbroken
S 0, if bond is broken .

Bonds are either

/

e Broken as a pre-processing step to introduce a crack to the problem

/
e Broken over the course of the simulation if the bond strain [
o o 10— ] — g —
Ix; —xil ’

Exceeds a damage criteria, e.g. s > sg where

Ge —
@\/(Q#+5%,%(N—2M))5’ d =2

30 == Gc; d == 3 .
LY G (D) (=)o




Asymptotic convergence to local condition

0.06 T T T T T T

0.04 -

0.02

Error

-0.02

— h=1/16
- h=1/32
- h=1/64
h=1/128 N

----- h = 1/256

-0.04 -

0.06 ' s
0.4 .02

ER=
=
[
=
N

Damage model recovers analytic traction-free local solution as O(4).
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Type-| crack loading

1/32
1/64
1/128

— Exact
h=
h=
h=

I

_ T — T _ T N T T
axd ) i
wmmm
o
Sece
=
—He% L ]
(o}
] . 1 . | . o
vy =) v — 1 1 1
o @ ! a =
n - JuawadedsTp dAR[Y
o
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Kalthoff-Winkler experiment ) e

Cylindrical impactor 32 m/s

Mass = 1.57 kg L

Maraging steel plate
ﬁ( Thickness =9 mm

50 mm
50 mm

V—L ié—l.Smm

100 mm

200 mm




vy b BEREHT G TeeH i

mopIoM sotreuAprad prepur)s ojul Sy
amjerpenb peseq uoryezimrgdo Jo wORONPOIJU]
:Aya0doad Koy

JUWILIRAXD J3PJUIM-Hoyae




Kalthoff-Winkler experiment




Conclusions

* Meshfree methods provide needed flexibility for many
problems, but historically struggle with notions of
conservation and consistency

= We remedy this with optimization based approaches

= We provide a constructive approach to develop consistent
meshfree summation-by-parts operators, utilizing GMLS to
obtain accuracy and fast graph Laplacian solvers to obtain
virtual definitions of metric information (a meshfree RT)

= For non-local methods, asymptotic compatibility may be
achieved 1n a similar framework, putting peridynamic fracture
models on a sound mathematical foundation

= Many other applications: surface PDE, Stokes flow, local
elasticity, plasma physics
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