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Some notations

A linear system is denoted

cjSantha
National
Laboratodes

Ax = b, (1)

we assume that A has size n x n, x is the solution and -Tc. the exact
solution.
The residual vector is defined as

r b — Ax. (2)

Noticing that b = AR we get

r = AR — Ax. ( 3 )

Which prompts us to introduce the error e = —x and the correction
equation

Ae = r. (4)
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Multigrid method
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Two main components

• Smoothers

• "Cheap" reduction of
oscillatory error (high
energy)

• SL AL-1 on the coarsest
level L
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Multigrid method
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• "Cheap" reduction of
oscillatory error (high
energy)

• SI_ AL-1 on the coarsest
level L

• Grid transfers (prolongators and
restrictors)

• Definition of coarse level
matrices (setup phase)

• Data movement between
levels (solve phase).

March 29, 2018 6



Classic smoothers

Split the numerical operator

A = M — N

taking care of choosing an M easily invertible.
Use a fixed point iteration based on the above split

Mxn+i = Nxn + b,

additionally some damping may be introduced:

x,±1 = cuM-1(Nx, + b) + (1 — cu)xn.
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Smoothing 2D problems
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Figure: Damped Jacobi in 2D: images courtesy of the MueLu tutorial
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tve,The effect of coarsening Laboratones

Jacobi iterations remove high frequencies quickly but stall on low

frequencies. This happens to most smoothers...
The smooth error is well represented with much fewer grid points!
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Figure: Representation of the error on two grids
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Now smooth coarse problem or solve with LU if small enough.
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Multigrid properties c] SandiaNational
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Mutligrid

• solves/accelerates the solution of linear problems,

• has a theoretical complexity O(N), with N the # unknowns,

• can be implemented in parallel but requires a lot of programing
effort,

• comes in two main flavors: Geometric and Algebraic.

For Poisson's equation discretized on a uniform grid you can expect
the number of iterations until convergence to remain constant for
varying mesh sizes.

Convergence might depend on mesh size for more complex
equations/discretizations.
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What is MueLu?
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MueLu:

• is the multigrid package succeeding ML within Trilinos1,

• provides an extendable set of grid transfer and smoother
algorithms,

• is programmed in C++11 and relies heavily on polymorphism via
templating (compile time polymorphism) and object oriented
progamming (run time polymorphism),

• is available on multiple platforms: Linux, OsX, Windows, ...

• and runs on multiple architectures: multiple cores, many cores,
GPU,

• can use 64bits indexing to solve problems with more than 4B
equations.

1The Trilinos Project is an effort to develop algorithms and enabling
technologies within an object-oriented software framework for the solution of
large-scale, complex multi-physics engineering and scientific problems.
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Structured grid coarsening cjSandia
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Two approaches can be used to perform structured coarsening on a
mesh:

El coupled coarsening: the sampling of coarse points ignores rank
bonundaries,

El uncoupled coarsening: the sampling of coarse points is done on a
per rank basis.

• • • • • • •

• • • • • • •
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Coupled
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Uncoupled coarsening cjSantha
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El Coarsening rates are variable
and independent in each
direction,

Ig coarse points are chosen to
include rank boundary
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Red dashed lines represent
processor boundaries.
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Characteristic of two approaches cjSandia
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• coupled coarsening: more uniform, less coarse points, improved
performance with linear interpolation, sensitive to global node
ordering.

• uncoupled coarsening: requires less user input and less
communication during setup, easier to implement.

Both implemented in MueLu and availble to all transfer operators:
geometric interpolation, black box and smoothed-aggregation.
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Interpolation based grid transfer
Going from coarse grid to fine grid is easily achieved using:

• Linear interpolation

Coarse grid solution
• • •

• • • • •
Fine grid solution

• Piece-wise constant:
Coarse grid solution

• • •

N. N. I
• • • • •

Fine grid solution
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Properties of transfer operators cjSantha
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Both piece-wise constant and linear interpolation between coarse
points are available.
Linear interpolation:

• relies on Newton iteration to find interpolation weights (more
fragile),

• takes geometric distances into account (requires coordinates).

Piece-wise constant interpolation:

• uses (i,j,k) indexes for coarsening,

• distance based variant relies on coordinates (not tested so far),

• produces less fill on coarse grids.
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Structured line detection cjSantha
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Structured grid coarsening allows for line/plane detection on each grid
level allowing for:

• semi-coarsening with plane relaxation

• line smoothing on anisotropic mesh/problem

• variable coarsening on anisotropic meshes

• • • • • • • •

• • • • •
coarsening

• •• • • • • >•

• • • • •

• • • • • • • •
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Poisson on a cube

a2u a2u a2u

Start with an easy problem:  + + = fax2 a-g2 az2

c] SandiaNational
Laboratodes

Using the exact solution:
u(x, y, z) = sin (7Tx) sin (7-cy ) sin(nz) exp(x + y + z) to compute the
forcing term.

In all the following example we use a geometric multigrid (GMG)
algorithm with a single sweep of damped (0.9) Jacobi pre- and
post-smoother and an LU coarse grid solver.

March 29, 2018 21



tva,Serial experimentations Laboratones

For serial examples 3D uniform grids are used and FEM is chosen as

the discretization method, the grid transfer operators are constructed
using linear interpolation (piece-wise constant gives same results for
Poisson).

Iterations
2

Grid levels
3 4 5

1 0.0062253 0.006397 0.006397 0.006397
2 4.4829e-05 4.6156e-05 4.6156e-05 4.6156e-05
3 3.4685e-07 3.5036e-07 3.5036e-07 3.5036e-07
4 2.4203e-09 2.4898e-09 2.4898e-09 2.4898e-09
5 1.5014e-11 1.6925e-11 1.6925e-11 1.6925e-11

6 9.9889e-14 1.262e-13 1.2619e-13 1.262e-13

7 2.3459e-15 2.4433e-15 2.4363e-15 2.4445e-15

Table: Using GMG as fixed point iteration solver with varying number of
levels on a mesh with 4913 points (173).
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Serial experimentations
Same problem using varying coarsening rate

CJ NLaSaila:ioldes

Iterations
2

Coarsening rate
3 4 5

1 5.3674e-04 1.2750e-03 1.8536e-03 2.0950e-03
2 6.2792e-06 4.3705e-05 1.9476e-04 2.3626e-04
3 1.2070e-07 2.1998e-06 2.8050e-05 4.3682e-05
4 2.6778e-09 1.2962e-07 4.5258e-06 9.7886e-06
5 6.0525e-11 8.4691e-09 7.7184e-07 2.4465e-06

6 1.3386e-12 5.8442e-10 1.3501e-07 6.5032e-07
7 3.0480e-14 4.1147e-11 2.3897e-08 1.7805e-07

8 7.9183e-16 2.9033e-12 4.2500e-09 4.9413e-08
9 1.0104e-16 2.0357e-13 7.5659e-10 1.3802e-08
10 9.2781e-17 1.4138e-14 1.3454e-10 3.8693e-09

Table: The finest grid is discretized with n = (1+ c2)3 points, where c is the
coarsening rate, two grid levels are used and the coarse grid contains 8 points.
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Parallel results C) SandiaNational
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Here we use GMG as a preconditioner for a GMRES linear solver, the

coarsening rate is set to 2 and the coarse grid contains 10 or less

points. The convergence

MPI ranks

criteria for these simulations

Mesh size

is o~l l 10-15.

8,000 64,000 512,000 4,096,000

1 6 7 7 7
2 7 7 7 7
4 7 7 7 7

8 7 7 8 8

Table: Parallel behavior of the multigrid algorithm.

Note: one could use CG instead of GMRES for Poisson but GMRES is
our default solver.
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Concluding remarks
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We have achieved:

■ the implementation of a parallel geometric multigrid algorithm in

MueLu using variable coarsening rate and line smoothing on all

levels,

■ said algorithm performance is tested on simple Poisson 3D
problem in serial and parallel,

■ finally initial experiments are conducted on the blunt wedge

problem to assess the performance of the preconditioner on a
problem of interest.
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Concluding remarks
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We are working on:

• the implementation of a black box multigrid algorithm with

variable coarsening rate: code generates correct grid transfer
operators on simple meshes, more tests are needed before

production runs,

• both geometric and black box algorithms are extended to block

meshes,

• the algorithm need to be tested on more challenging CFD

problems: complex geometries, higher velocities, reacting gas

problem, etc...
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Black box grid transfer
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Black box multigrid is an algorithm designed to take advantage of the

actual operator to compute the grid transfer operators. l was first

proposed by Dendy [?, ?, ?] This algorithm relies on two ideas:

El Schur complement provides "perfect" grid transfer operators

Ah =

Aff[
]

Afc P =
—A

ff 
—lAf

c [ l —1A = A —AC fikff AfCC CC 
Acf ACC

Ic

El dimensional decoupling generates sparsity and triangular structure
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Black box grid transfer
Macro element schematic representation:

• : corner points

• : edge points

x : interior points

Reorder nodes by type: interior, edge, corner
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Black box grid transfer
Collapse stencils on edge, i.e. for a vertical, respectively horizontal
edge:
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0 0 0 1
—1 4 —1 2  ; —1 4 —1

[0
[-1 2 —1] ,

0 —1 0 —1 0 —1 0

which leads to the following sparsity pattern:

• • • • •• • • • • • • • • • ••

Y • • • •• • Yi • • •

Y • • • • • • Y2 • • •

Y • • • • • • Y3 • ••

Y • • • •• • y • • •
[Aff Afc]

c1 • • •• c1 • • ••
Acf Acc

C2 • • • • c2• • • •

C3 • • • • c3• • • •

C4 • • • • c4• • • •
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Black box grid transfer
Now A f f is readily invertible:

Aff =

• • • • •

•

•

•
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[

[A„ Atyl —A,7,1ALyAl
o Â„ -> A f f = 

._

The same ideas also apply to 3D problem:

....•::::::::::::••••1::::•••• •!•• • • • •!::::• • • • • • • ••.:::• • • •:   :   : i • . ••••i ••••

•i • • • • •,t, • .
• • • • • I* • • • •

i • i• • • • i• • • •
• • • • • i • • • •

. .
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Black box grid transfer
Macro element schematic representation:

• : corner points

• : edge points

x : interior points

Reorder nodes by type: interior, edge, corner
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Black box grid transfer
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edge:
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Black box grid transfer
Now A f f is readily invertible:

Aff =
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