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Why UWBG semiconductors for Power Electronics?

• 2.7 MVA

• 6 tons

• 10 m3

• 2.7 MVA

• 2 tons

• 6.5 m3

• 2.7 MVA

• <1 ton

• <1 m3

➢ DoD-wide electrification of propulsion, sensors, weapons and armor

➢ Electrified systems demand > 100 kV, > 1000 kA, and > 100 MW

Requires higher voltage, power density, and thermal margin than SiC or GaN provides
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III-Nitride Semiconductors Are Ideal WBG and UWBG Materials

Band gap energy (Ed is the fundamental material property driving SWaP-C

at the device-, circuit-, and system-level

Fundamental Materials Capabilities Conventional

Property Si

Bandgap (eV) 1. 11

Critical Electric Field (MV/cm) 0.3
Saturated electron velocity (107 cm/s) 1

Thermal conductivity (W/cm.K) 1.5

Ionization energy (eV/e-h pair) 3.6

Andrew Armstrong - aarmstr@sandia.gov
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Electrical power density scales dramatically with band gap

4V br2
Ron,sp =

EYE c3rit

1
Power density — 11Romsp— EitlE g8

I br 4.5
1

Bandgap energy (eV)

Nishikawa, et al., JJAP 46, 2316 (2007).

Electrical power density of AIN > 30x GaN and > 60,000x Si
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Why UWBG semiconductors for Power Electronics?

UWBGs for continuous power: Size and Weight

Functionality 4H-SiC GaN UWBGs

> 10 kV device YES NO YES

> 1 MHz switching NO YES YES

100% I ds @ 250 °C NO NO YES

Magnetics

Capacitors

UWBGs for pulsed-power: Size, Weight, and Rep-rate

Rep-rate 1/Ron — Eg8 30x improvement over WBG
Andrew Armstrong - aarmstr@sandia.gov
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Need for post-GaN, post-SiC power electronics: USAF

Thermal margin: Eliminate liquid PE cooling in MEA and HALE
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➢ UWBG PE could run at > 250 °C to maximize weight savings in M EA
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Need for post-GaN, post-SiC power electronics: USAF
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Thermal margin: Eliminate liquid PE cooling in MEA and HALE

HIGH
LaW

ALTITUDE ALTITUDE

1
/ 0 20

CONVECTION COEFFICIENT. h c [ Wi 2 CI

D. Bar-Shalom MS Thesis MIT 1989

AIN/A10.6Ga04N HEMT
50 50„„

23 °C
40 V = 2 V _ 40

E 30 step: —2 V _ 30

E
± 20 20

10 10

5 10 15

Vth, V

SiC MOSFET

r
 1 1 

1

i

25 85 65 85 105 125 185

Junction Temperat re, T, CC)

V =2Vgs

step: —2 V _

5 10

Vd,,V

➢ UWBG PE could run at > 250 °C to maximize weight savings in MEA

➢ High altitude: UWBG avionics operating in absence of convective cooling

➢ High altitude: rad-hard UWBG avionics
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GaN power HEMT SOA plateauing
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Unipolar FOM = EgE,3rit

♦'too

Vbr (V)

♦

1 Sun et al. APEX 5 074202 (2012).
2 Herbecq et al. APEX 7 034103 (2014).
3 Srivastava et al., CS MANTECH (2012).
4 Seok et al., Electron. Lett. 49 425 (2013).
5 Herbecq et al., Electron. Lett. 51 1532 (2015).
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Solution: UWBG Power electronics
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Vbr (V)

-.0

1 Sun et al. APEX 5 074202 (2012).

2 Herbecq et al. APEX 7 034103 (2014).

3 Srivastava et al., CS MANTECH (2012).

4 Seok et al., Electron. Lett. 49 425 (2013).

5 Herbecq et al., Electron. Lett. 51 1532 (2015).
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AIGaN HEMT development
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1. Nanjo et al. Appl. Phys. Lett. 92 263502 (2008).

2. Nanjo et al. IEEE Trans. Electron Dev. 60 1046 (2013).

3. Tokuda et al. APEX 3 121003 (2010).

➢ Emerging AIGaN channel HEMTs moving into GaN locus

➢ Proves that AIGaN devices can realize material advantages of AIGaN
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UWBG MESFET development
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➢ UWBG transistors have proven viability

➢ Experimental E „it exceed that of GaN HEMTs
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1. OSU-Sandia (2016).
2. Bajaj et al. IWN (2016).
3. Green et al. IEEE EDL 37 902 (2016).
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GaN p-i-n diode foundation

n--GaN drift ("' 3 0 ,um )

➢ MOVPE-grown GaN on Ammono substrate

• 3 x 1015 cm-3 net doping in drift layer

➢ lon-implanted junction termination extension
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A.M. Armstrong, et al., Electronics Letters 52, 1170 (2016).
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Record UFOM for high voltage GaN diode

10

0.1

• Sandia
Avogy

I Cornell
Hosei

/
/
/

I/1 I I I

100 1000
V br (V)

3 3 MV/cm

3.8 MV/cm
3.9 MV/cm

Power density E 3crit

10000

A.M. Armstrong, et al., Electronics Letters 52, 1170 (2016).

➢ Demonstrated Ecrit for GaN 33% higher than previously thought
➢ Fundamental power density of GaN >2x larger than previously thought
➢ Achieved fundamental limit for GaN (probably)
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How to electronically functionalize UWBG AIGaN?

AIGaN electron mobility
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➢ AIGaN suffers conductivity collapse for Al > 80%

➢ Understand mechanism: defect compensation or deep dopants?

Andrew Armstrong - aarmstr@sandia.gov

ENERGY INP40'-% 17



Challenges to studying defects in III-Nitrides

Quantitative defect spectroscopy is difficult for ultra-wide bandgap semiconductors
➢ Thermal emission techniques limited to r- 1 eV of band edge
➢ Luminescence insensitive to non-radiative centers and not usually quantitative

AIN (6.2 eV) Si (1.1 eV)

Alk DLTS

LLI DLOS

E

DOS

Compensating centers

Recombination centers

Scattering centers

Solution: Deep Level Optical Spectroscopy (DLOS)

Andrew Armstrong - aarmstr@sandia.gov
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Deep Level Optical Spectroscopy

Deep Level Optical Spectroscopy (DLOS)1 
➢ Photocapacitance technique
➢ Electrical measurement of optical absorption by deep level defects
➢ Sub-band gap optical stimulation to photoionize defect levels

hv < E

AC
14

• •

e°(hv)

Ec

Ef
0 I. • •

----t---- ET

Andrew Armstrong - aarmstr@sTitingov

1. Chantre et al. PRB 23, 5335 (1981).



Deep Level Optical Spectroscopy

Deep Level Optical Spectroscopy (DLOS)1 

> Deep level defect optical cross-section: o° = e° 1 0 = a/Nt
> (13(h v) oc dqt)/dt l t=0
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Deep Level Optical Spectroscopy

Deep Level Optical Spectroscopy (DLOS)1 

> Deep level defect optical cross-section: o° = e° 1 0 = a/Nt
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Deep Level Optical Spectroscopy

Deep Level Optical Spectroscopy (DLOS)1 

> Deep level defect optical cross-section: o° = e° 1 0 = a/Nt
> (13(h v) oc dqt)/dt l t=0
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Deep Level Optical Spectroscopy

Deep Level Optical Spectroscopy (DLOS)1 

> Deep level defect optical cross-section: o° = e° 1 0 = a/Nt
> (13(h v) oc dqt)/dt l t=0
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Deep Level Optical Spectroscopy

Deep Level Optical Spectroscopy (DLOS)1 

➢ Deep level defect optical cross-section: o° = = a/Nt
➢ (13(h v) dqt)/dt t=0
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Deep Level Optical Spectroscopy

Deep Level Optical Spectroscopy (DLOS)1 

> Deep level defect optical cross-section: o° = e° 1 0 = a/Nt
> (13(h v) oc dqt)/dt l t=0
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Deep Level Optical Spectroscopy

Deep Level Optical Spectroscopy (DLOS)1 

➢ Deep level defect optical cross-section: o° = = a/Nt

➢ (13(h v) dqt)/dt t=0

Optical analog of Arrhenius plot

h v

Andrew Armstrong - aarmstr@sandia.gov
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Interpretation of DLOS spectra
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Interpretation of DLOS •

10-1

10-1

10-1

DLOS of GaN:Si:C

. I i .

Er - ..„ • ,_ V e

. 1 .

2.5 3.0

hv (eV)

Armstrong et al, APL 84, 374 (2004)

Andn
Chantre, et al., PRB 23, 5335 (1981)

II Lucovsky, Solid State Commun. 3, 299 (1965)

3.5

E,

Ev



Interpretation of DLOS spectra
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Interpretation of DLOS spectra

DLOS of GaN:Si:C

Armstrong et al, APL 84, 374 (2004)

Andn
Chantre, et al., PRB 23, 5335 (1981)

Lucovsky, Solid State Commun. 3, 299 (1965)
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Interpretation of DLOS spectra

DLOS of GaN:Si:C

Armstrong et al, APL 84, 374 (2004)
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M. A. Reshchikov JAP 97 061301 2005

Vibronic motion

Quantify E° for sharp and broad defect absorption spectra
Andn

Chantre, et al., PRB 23, 5335 (1981)

Lucovsky, Solid State Commun. 3, 299 (1965)



Understand role of deep level defects
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Understand role of deep level defects

ob
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DLOS spectra vs. Al mole fraction

- 0
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➢ V,,,-related and near-Ev impurity states dominate

➢ Quantify defect density to assess impact on doping efficacy

Andrew Armstrong - aarmstr@sandia.gov
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Lighted Capacitance-Voltage identifies compensators

DLOS of n-Alo 7Gao 3N for Ta = 1160 °C

1

Ec. — 2.34 eV

Tg = 1160 °C

Ec. — 4.74 eV

Ee. — 3.56 eV

I I I I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 2 3 4 5 6
Photon energy (eV)

2.0

0.0

LCV of n-A10.7Ga0.3N for Ta = 1160 °C

Dark -

50 100 150

x (nm)

> Deep level defect too large to measure in usual manner (a la DLTS)

> Lighted Capacitance-Voltage (LCV) measures defect density (Alt)

> Nt = A(Nd — Na) measured by CV under sub-gap, monochromatic illumination

Andrew Armstrong - aarmstr@sandia.gov
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Lighted Capacitance-Voltage identifies compensators

DLOS of n-A10.7Ga0.3N for Tc, = 1160 °C

1
1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 3 4 5 6
Photon energy (eV)

2.0

0.0

LCV of n-A10.7Ga0.3N for Ta = 1160 °C

Dark
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➢ Ec — 2.34 eV level is not a strong compensation center

Andrew Armstrong - aarmstr@sandia.gov
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Lighted Capacitance-Voltage identifies compensators

DLOS of n-A10.7Ga0.3N for Ta = 1160 °C

T = 1160 °C

Ec —3.56 eV

I I I I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 2 3 4 5 6
Photon energy (eV)

Andrew Armstrong - aarmstr@sandia.gov
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Lighted Capacitance-Voltage identifies compensators
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DLOS of n-A10.7Ga0.3N for Ta = 1160 °C

Tg = 1160 °C
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— 3.56 eV and Ec — 4.74 eV defects are dominant compensating centers
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Understand role of deep level defects

b

o

DLOS spectra vs. Al mole fraction

- 0
— 0.08
— 0.22
— 0.70

J

impurity related

I/Hi-related

-1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 2 3 4 5 6

Photon energy (eV)

1017

C -
E 1016c.)

z-

1014

AIGaN deep level defect density vs. x

0.00 0.25 0.50 0.75

Al mole fraction

➢ V,,,-related and near-Ev impurity states dominate

➢ General trend of increasing deep level defect density with increasing Al

➢ 75% compensation of Si doping level (2 x 1018 cm-3)

1.00
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Understand role of deep level defects

b

o

DLOS spectra vs. Al mole fraction

- 0
— 0.08
— 0.22
— 0.70

J

impurity related

I/Hi-related

-1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 2 3 4 5 6

Photon energy (eV)

1 018

1 017

C -
E 1016c.)

z-

1 015

1 014

AIGaN deep level defect density vs. x

0.00 0.25 0.50 0.75

Al mole fraction

>. Large reduction in Tg improves doping efficacy through defect reduction

1.00
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  T A Henry, A_ Arrnstro ng,a k Al e rman, and NI_ H. Crawford
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UWBGs self-compensate by native defect formation

VGa defect formation in GaN

3 a)

10

8

( 2 o.)>, 6

2 a)
c 4

o
cv

2

0 O
LL -2

.4

VAI defect formation in AIN

(b)
10

1 1 1 1 1 1
0.0 0.5 1.0 1.5 2.0 2.5 30 a5

Femi level (eM
Lyons et al. PSS B 252 900 (2015)

1 2 3 4 5 6
Fermi level (eV)

Yan et al. APL 105 111104 (2014)

rn

3- 2-

0 p

VAI VAI

➢ Compensating defect formation energy reduced by N Eg
➢ Defect formation pins EF and completely compensates dopants

Andrew Armstrong - aarmstr@sandia.gov
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Understand role of deep level defects

b

o

DLOS spectra vs. Al mole fraction

- 0
— 0.08
— 0.22
— 0.70

J

impurity related

I/Hi-related

-1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 2 3 4 5 6

Photon energy (eV)

1017

C -
E 1016c.)

z-

1014

AIGaN deep level defect density vs. Al

0.00 0.25 0.50 0.75

Al mole fraction

➢ Large reduction in Tg improves doping efficacy through defect reduction

➢ Deep level defects are managed for Al < 0.8 by optimized growth conditions

➢ What about Al > 0.8?

1.00
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Understand role of deep level defects

0.5

0.0

SNL AIGa N resistivity vs. Al

0.6 0.7 0.8

Al mole fraction

0.9

1 018

SNL AlGaN n vs. AI

60 70 80 90

Al content (%)

> Studied AIGaN:Si Al composition series from 60 — 90%

> Conductivity collapse due to decrease in free electrons

> Shallow-to-deep dopant transition or increasing compensation by defects?

Andrew Armstrong - aarmstr@sandia.gov



Understand role of deep level defects

7x101

6x101

cc— 5x101

4x101
O

C.) 3x101

2x101

1x101

0

1

AIGaN deep level defects vs. Al

1 1 1 1 1 1 1 I I I I 1 1 1 1 1 1 1 1 I

60%
—0— 70%

—0— 80%

—A— 90%

A

2,140//a•AAAAAAA A
A A

• 
Alpo • wo 

• 
•

.0400/2/-44k1VWW000106644

I I I I

A

•

• •

1 1 1 , 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 i

2 3 4 5 6

Photon energy (eV)

1019

1 018

"2

1017

SNL AlGaN n vs. Al

60 70 80 90
Al content (%)

➢ Deep level defect density increases strongly with increasing Al

➢ Not sufficient to account for > 2 x 1018 cm-3 reduction in n

➢ Conductivity collapse due to Si DX transition to a deep dopant

Andrew Armstrong - aarmstr@sandia.gov
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➢ Ultra-wide band gap (UWBG) AIGaN: Needs and opportunities

➢ Wide band gap GaN has achieved its fundamental material limit

➢ Mechanism for conductivity collapse in UWBG AIGaN

➢ Electrically functionalizing UWBG AIGaN

➢ UV-C opto-electronics of UWBGs

Andrew Armstrong - aarmstr@sandia.gov



How to overcome UWBG AIGaN deep dopant problem?

PIT = V • P
z

47c

10

lo t'
,. 

1 
1 0o 

Apparent electron

0 DEG 1
1 
r concentration (CV)

lo ' 
s o

, •
(a)

CB'
"" Fermi Lever

GaN

o

20 40 60 80 100 120 140

z Inm)

Jena et al APL 81 4395 2002

-2

-4
'1

➢ Strong AIGaN piezoelectricity due to ionicity and non-centro-symmetric lattice

➢ Abrupt heterostructures induce dopant-free 2DEG

Andrew Armstrong - aarmstr@sandia.gov



AIGaN/GaN system operative without impurity dopants

P,r

pi, = AP 1 z

z
AIGaN GaN

10 1

10"

(b)

Linearly Graded
AIGaN (0 - 10%)

CB
  s

Fermi Level

GaN - 2 III

VB.

Apparent slectron
concentracion (CV)

urface cocC,,

3DES °°°
epletion

7 inri

Jena et al APL 81 4395 2002

➢ Generalize concept to form a three-dimensional electron gas (3DES)
➢ Linear grade in Al composition spreads 2DEG evenly over a volume

➢ Acts like uniform impurity doping with zero thermal ionization energy

Andrew Armstrong - aarmstr@sandia.gov
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Investigate polarization-doping in graded UWBG AIGaN

Graded 80 — 90% AIGaN

200 nm UID-graded

A10.8Ga0.2N A10.9Ga0.1N

0.5 ,um UID-A10.8Ga0.2N

AIN on sapphirM

RSh = 20,000 0/0

Graded 80 — 100% AIGaN

200 nm UID-graded

A10.8Ga0.2N AIN

0.5 ,um UID-A10.8Ga0.2N

AIN on sapphiM

Rsh = 2500 Oki

A10.86Ga0.14N

700 nm UID-A10 86Ga0 14N

or 11:9 111=

Rsh > 100,000 0/0

➢ Sheet resistance of graded AIGaN indicates strong electrical conductivity
➢ Sheet resistance decreases with more abrupt grade, as expected
➢ UID-A10.86Ga0.14N control sample showed no electrical conductivity

Andrew Armstrong - aarmstr@sandia.gov



Highly conductive UID graded UWBG AIGaN behaves as expected

Graded AIGaN electron concentration

Graded AIGaN electron concentration

5x1017

4x1017

3x1017

2x1017

1x1017

RSh = 2500 S-2/o

Rsh = 20,000 S-2/o

Nit

- - - - 80% - 100% =
80% - 90% -

II I I I l I I I l I I I l I I 

100 200 300 400 500

Depth (nm)

➢ Uniform polarization-doping scales with Al grade
➢ Confirm expected 200 nm range of polarization-induced doping

➢ Comparison of p, and RSh indicates ,u is a strong function of Al composition

Andrew Armstrong - aarmstr@sandia.gov
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Calculate electron mobility vs. Al composition

Graded AIGaN electron concentration

Graded AIGaN electron concentration

5x1017

4x1017

3x1 017

2x1017

1x1017

RSh = 2500 S-2/o

Rsh = 20,000 S-2/o

- - - - 80% - 100% =
80% - 90% -

I 

<_ 100% Al

I surface depletion depth (zsurf)

effective thickness (zeff)

0 100 200 300 400 500

Depth (nm)

1
= p

cillshzeffn

> Account for surface depletion assuming 1 eV surface potential

> /7180%-96% = 331 cm-2V-I-s-1 and i, 80%-87% = 105 
C111-2v-1s-1

> Weighted average of mobility ranges gives i, 88%-96% 
= 509 cm-2\tis-i

Andrew Armstrong - aarmstr@sandia.gov
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UWBG graded AIGaN electronic properties exceed homoepitaxial AIN

102

102

AIGaN resistivity

* this work on AIN/sapphire
• [5] on AIN/sapphire

[17] on AIN/sapphire
• [3] on AIN/sapphire
• [3] on bulk AIN
• [1, 16] on 4H-SiC

•

•

I;

•

•

o 3 • • • •
0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

aluminum content x

Mehnke et al. APL 103 212109 (2013)

homoepitaxial AI N
mobility

100 200 300 400 500 600
(a) Temperature, T (K)

Taniyasu et al. APL 89 182112 (2006)

homoepitaxial AI N
electron concentration

(a)

0'8

E 1 017

e 1 016

1015

•
N
•

•

A- I 9

0.0 0.4 0.8
Al% in AIGaN

Collazo et al. pss(c) 8 2031 (2011)

➢ Resistivity, n, and it values are highest reported for AlxGal_xN for x > 0.85 at 300K
➢ Graded UID-AIGaN electronic properties exceed those of homoepitaxial AIN:Si

Andrew Armstrong - aarmstr@sandia.gov
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➢ Ultra-wide band gap (UWBG) AIGaN: Needs and opportunities

➢ Wide band gap GaN has achieved its fundamental material limit

➢ Mechanism for conductivity collapse in UWBG AIGaN

➢ Electrically functionalizing UWBG AIGaN

➢ UV-C opto-electronics of UWBGs

Andrew Armstrong - aarmstr@sandia.gov



UWBG solutions to UV-C technology gaps

Raman Spectroscopy
(biological agents)

Excitation laser
220-250 nm

Raman Shifts

• 0 —20 nm
Wavelength shift

PA

Benchtop

Non-line of sight communication
(covert radio)

11.'0 i*-g' -
Solar-blind detection
(missile launch, sniper fire)

Man-portable Microelectronic

Height with
inlet in
operation:
12.5.

Height wr h inlet
in storage 10-

0—.
Q 0,

Ns 'T.ofoo b)6'.00

•••••.••

•
•

• • * •
•

• • 
, 
•• •

➢ Miniaturization and efficiency are key technology drivers

➢ UWBGs can provide both

Andrew Armstrong - aarmstr@sandia.gov
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UWBGs for single photon solar-blind detectors

Technology and Systems Goals

Shaw SPIE 6231 2006

■ •MIIMENI
........ 1.1

Portable to
wearable NLOS

,u-UAS bio-chem

locators

Andrew Armstrong - aarmstr@sandia.gov

Technology and Systems Challenges

Photomultiplier Tubes (PMTs)

High Voltage = Large
14— 82mm—*

Photomulfipllei Tube

High Voltage Supply

Si Avalanche Photodiodes (APDs)

Parameter Hamamatsu 510762-11 Series Derice Suffix 

-025C -100C

Physical area

Number pixels 

Pixel size 

Fill factor 

SPDE at 400am

SPDE at 270om

lx1

40x4-0

25

30_1

25

lxl

20x20

50

61.5

50

17

lxl

100

78_5

65

Expensive (—$21:11() optical filters

Proc SPIE 7320 1 2009

  5ryogenic. 
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New UWBG solar-blind photodetector capabilities

1 o4

0
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2

(/)

f3-Ga203 Schottky diode
Au

(100) p-Ga203

Ti/Al

:annealed at 400 C

••••.******
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o 3
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under illumination

in dark

-12 10 
0 1 2 3 4 5
Reverse bias voltage (V)

•
•

•• • •• •• • •.••

200 250 300
Wavelength (nm)

Suzuki et al. APL 94, 222102 (2009).
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+. I 1
AIN :1.8 pm
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Wavelength [nrn]
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t/Al/Ti/Au)

900

➢ UWBG solar-blind detectors can be low voltage (small), non-avalanche (low dark count),
filter-free (inexpensive), non-cryogenic (robust)

>. Pathway toward ubiquitous, unobtrusive/clandestine, multi-vector threat detection
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Strong fi-Ga203 Schottky diode photoconductive gain

Spectral Photoresponse

1 1 1 1 1 1 1 1 1 1 1 1 1 1 I

8 - 101

;Et- - 10-1
0 = 10-2

- 10-3
'5 10-4.- 4 - 10-5

10-6
a 2 2 3 4 5

a) 
_______ __________

iii , i, 

2 3 4 5 6

Photon energy (eV)

➢ Solar rejection-ratio > 105

➢ Peak optical gain > 50x

➢ Strong optical gain not expected for Schottky diodes

>. Attributed to Schottky metal-induced gap states*

Andrew Armstrong - aarmstr@sandia.gov
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Defects and hole localization

ob

a)
o

Deep Level Optical Spectroscopy

elle eel e elle elle

-0

• •
r 0
Pe 

(16k
•

Back

2 3 4 5 6

Photon energy (eV)

➢ Backside: DLOS only senses deep level defects
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Defects and hole localization

Deep Level Optical Spectroscopy

elle eel e elle elle

—0— Back
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4 5 6
Photon energy (eV)

➢ Backside: DLOS only senses deep level defects
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Defects and hole localization

Deep Level Optical Spectroscopy

1 1 1 1 I 1 1 1 1 I I I I 1 1 1 I

2 3 4 5

Photon energy (eV)
6

\.\ •
• ,..............„),
•
•
N 0•

--- • • •

> Backside: DLOS only senses deep level defects

> Frontside: DLOS shows hole localization for above-gap illumination

Andrew Armstrong - aarmstr@sandia.gov
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Defects and hole localization

Deep Level Optical Spectroscopy

1 1 1 1 I 1 1 1 1 I I I I 1 1 1 I

2 3 4 5

Photon energy (eV)
6

Ef
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T

> Backside: DLOS only senses deep level defects

> Frontside: DLOS shows hole localization for above-gap illumination
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Defects and hole localization

Deep Level Optical Spectroscopy

e e e

 Ef
• • •_ _ _ _ E

2 3 4 5
Photon energy (eV)

6

➢ Backside: DLOS only senses deep level defects

➢ Frontside: DLOS shows hole localization for above-gap illumination

➢ Hole localization unrelated to deep level defects 
Andrew Armstrong - aarmstr@sandia.gov
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Self-trapped holes predicted to form in /3-Ga203

STH configuration-coordinate

Fo
rm
at
io
n 
e
n
e
r
g
y
 

(CBM)
+tyl/BM)

bulk
absorption

bulic+e-+r1+

ar
o

• frg
a a▪ me•

4*
+EST

Configuration Coordinate

*Varley, et al., PRB 85 081109(R) (2012).

>. Self-trapped holes (STH) or small polarons are localized in the valence band

➢ Self-trapped holes behave similarly to an AX center*

Andrew Armstrong - aarmstr@sandia.gov
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Photo-gain from self-trapped holes

0

Andrew Armstrong - aarmstr@sandia.gov

100
xd (nm)
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`Ls-NI/el et al., J. Semicond. 33 07003 (2012).
OL



Photo-gain from self-trapped holes

0 100
xd (nm)

>. Intrinsic mechanism for long-lived, near-surface holes in fi-Ga203

>. a> 107 cm-1#

➢ STHs lower Ob by 300 meV and increase reverse current as exp(d0b/kT) — 105

Andrew Armstrong - aarmstr@sandia.gov #Takaura et al., Physica B 404 4854 (2009).
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5x1 017
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UWBG AIGaN
— 60%
— 70% deep levels

— — 80%
- 90%

2 3 4 5

Photon energy (eV)
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UWBGs for novel

UV-C detection -
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