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» Ultra-wide band gap (UWBG) AlGaN: Needs and opportunities
» Wide band gap GaN has achieved its fundamental material limit
» Mechanism for conductivity collapse in UWBG AlGaN

» Electrically functionalizing UWBG AlGaN

» UV-C opto-electronics of UWNBGs
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Why UWBG semiconductors for Power Electronics?

DR

» DoD-wide electrification of propulsion, sensors, weapons and armor
» Electrified systems demand > 100 kV, > 1000 kA, and > 100 MW

An 3> Requires higher voltage, power density, and thermal margin than SiC or GaN provides




. lII-Nitride Semiconductors Are Ideal WBG and UWBG Materials

Band gap energy (E,) is the fundamental material property driving SWaP-C
at the device-, circuit-, and system-level
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Fig. 12.12. Bandgap energy versus lattice constant of I1I-V nitride semiconductors at
room temperature.
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. Electrical power density scales dramatically with band gap
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Nishikawa, et al., JJAP 46, 2316 (2007).

Electrical power density of AIN > 30x GaN and > 60,000x Si
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Why UWBG semiconductors for Power Electronics?

UWBGs for continuous power: Size and Weight

Magnetics Thermal
Functionality 4H-SiC m UWBGs management
J ? : f_, \;

> 10 kV device

> 1 MHz switching NO YES YES

100% 1, @250°C NO  NO  YES

Semiconductor
switches

Capacitors

UWBGs for pulsed-power: Size, Weight, and Rep-rate

Rep-rate ~ 1/R,, ~ E,# ~ 30x improvement over WBG
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. Need for post-GaN, post-SiC power electronics: USAF

Thermal margin: Eliminate liquid PE cooling in MEA and HALE
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» UWBG PE could run at > 250 °C to maximize weight savings in MEA
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Need for post-GaN, post-SiC power electronics: USAF

Thermal margin: Eliminate liquid PE cooling in MEA and HALE
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» UWBG PE could run at > 250 °C to maximize weight savings in MEA

» High altitude: UWBG avionics operating in absence of convective cooling

» High altitude: rad-hard UWBG avionics
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GaN power HEMT SOA plateauing
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Solution: UWBG Power electronics
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AlGaN HEMT development
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2. Nanjo et al. IEEE Trans. Electron Dev. 60 1046 (2013).
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» Emerging AlGaN channel HEMTs moving into GaN locus

» Proves that AlGaN devices can realize material advantages of AlGaN
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UWBG MESFET development
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» UWBG transistors have proven viability

» Experimental
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» Ultra-wide band gap (UWBG) AlGaN: Needs and opportunities

» Wide band gap GaN has achieved its fundamental material limit
» Mechanism for conductivity collapse in UWBG AlGaN

» Electrically functionalizing UWBG AlGaN

» UV-C opto-electronics of UWBGs
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GaN p-i-n diode foundation

p*-GaN (~400 nm) ' | — v.

n-GaN drift (~ 30 um)

n-GaN substrate (~400um)

Ti/Al/Ti/Ni/Au

» MOVPE-grown GaN on Ammono substrate
» ~3x10% cm™3 net doping in drift layer

» lon-implanted junction termination extension
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Record UFOM for high voltage GaN diode
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A.M. Armstrong, et al., Electronics Letters 52, 1170 (2016).

» Demonstrated E_, for GaN 33% higher than previously thought

crit
» Fundamental power density of GaN >2x larger than previously thought
» Achieved fundamental limit for GaN (probably)
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» Ultra-wide band gap (UWBG) AlGaN: Needs and opportunities
» Wide band gap GaN has achieved its fundamental material limit
» Mechanism for conductivity collapse in UWBG AlGaN

» Electrically functionalizing UWBG AlGaN

» UV-C opto-electronics of UWBGs
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How to electronically functionalize UWBG AlGaN?
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» AlGaN suffers conductivity collapse for Al > 80%

» Understand mechanism: defect compensation or deep dopants?
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. Challenges to studying defects in IlI-Nitrides

Quantitative defect spectroscopy is difficult for ultra-wide bandgap semiconductors
» Thermal emission techniques limited to ~ 1 eV of band edge
» Luminescence insensitive to non-radiative centers and not usually quantitative

AIN (6.2 eV) Si(1.1eV)

Compensating centers

D LOS Recombination centers

Scattering centers

DOS
Solution: Deep Level Optical Spectroscopy (DLOS)
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. Deep Level Optical Spectroscopy

Deep Level Optical Spectroscopy (DLOS)?!

» Photocapacitance technique

» Electrical measurement of optical absorption by deep level defects
» Sub-band gap optical stimulation to photoionize defect levels

hv<Eg

Q Ko(h V)
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. Deep Level Optical Spectroscopy

Deep Level Optical Spectroscopy (DLOS)*
» Deep level defect optical cross-section: ¢° = e°/¢ = /N,
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. Deep Level Optical Spectroscopy

Deep Level Optical Spectroscopy (DLOS)*
» Deep level defect optical cross-section: ¢° = e°/¢ = /N,
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. Deep Level Optical Spectroscopy

Deep Level Optical Spectroscopy (DLOS)*
» Deep level defect optical cross-section: ¢° = e°/¢ = /N,
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. Deep Level Optical Spectroscopy

Deep Level Optical Spectroscopy (DLOS)*
» Deep level defect optical cross-section: ¢° = e°/¢ = /N,
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. Deep Level Optical Spectroscopy

Deep Level Optical Spectroscopy (DLOS)*
» Deep level defect optical cross-section: ¢° = e°/¢ = /N,
» 0°hv) oc dC(t)/dt] -,
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. Deep Level Optical Spectroscopy

Deep Level Optical Spectroscopy (DLOS)*
» Deep level defect optical cross-section: ¢° = e°/¢ = /N,
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. Deep Level Optical Spectroscopy

Deep Level Optical Spectroscopy (DLOS)*
» Deep level defect optical cross-section: ¢° = e°/¢ = /N,
» 0°hv) oc dC(t)/dt] -,
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Interpretation of DLOS spectra

DLOS of GaN:Si:C
10-12
14 I
10 I
|
c 16 I
o 10 I
© |
|
107 I
|
|
1020 ] ] ] 1 | ] ] ] i | ]
2.5 3.0 1 35
hv (eV) Ev
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Interpretation of DLOS spectra

DLOS of GaN:Si:C
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Interpretation of DLOS spectra

DLOS of GaN:Si:C
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Interpretation of DLOS spectra
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Interpretation of DLOS spectra
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Understand role of deep level defects

DLOS spectra vs. Al mole fraction
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Understand role of deep level defects

DLOS spectra vs. Al mole fraction
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» V,related and near-E, impurity states dominate
» Quantify defect density to assess impact on doping efficacy
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Lighted Capacitance-Voltage identifies compensators

LCV of n-Al,;,Gag 3N for T,=1160 °C

DLOS of n-Al, ;,Gay 5N for 7, =1160 °C 2.0 ———s | .
4 T I rrri I L I LI I | I LI I B | N Dark -
e 15 -
Al 1 %
= ‘©
. - -
< ol | T 10
0 z’ -
o) 1
2 2L - ® 05| —
= -
E.—2.34eV i |
-4 _<I><),( 1 /1 11 1 | | I I - | I | 11 | I_ 0.0 L 1 1 I 1 L L I L L .
1 2 3 4 5 6 50 100 150 200
Photon energy (eV) X (nm)

» Deep level defect too large to measure in usual manner (a la DLTS)
> Lighted Capacitance-Voltage (LCV) measures defect density (N,)
» N,=A(N,— N,) measured by CV under sub-gap, monochromatic illumination
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Lighted Capacitance-Voltage identifies compensators

LCV of n-Al,;,Gag 3N for T,=1160 °C
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» E_—2.34 eV level is not a strong compensation center
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. Lighted Capacitance-Voltage identifies compensators

LCV of n-Al,;,Gag 3N for T,=1160 °C
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. Lighted Capacitance-Voltage identifies compensators

LCV of n-Al,;,Gag 3N for T,=1160 °C
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» E.—3.56 eV and E.—4.74 eV defects are dominant compensating centers
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Understand role of deep level defects

DLOS spectra vs. Al mole fraction AlGaN deep level defect density vs. x
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» V,related and near-E, impurity states dominate
» General trend of increasing deep level defect density with increasing Al
» 75% compensation of Si doping level (2 x 108 cm™3)
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Understand role of deep level defects

DLOS spectra vs. Al mole fraction AlGaN deep level defect density vs. x
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» Large reduction in T, improves doping efficacy through defect reduction

Andrew Armstrong - aarmstr@sandia.gov
'!'_ A__ Henry, A. Armstrong,® A. A. Allerman, and M. H. Crawford ——

AFPLIED PHYSICS LETTERS 104}, 043509 (2012)




UWABGs self-compensate by native defect formation

V,, defect formation in GaN V,, defect formation in AIN
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» Compensating defect formation energy reduced by ~ £,
» Defect formation pins E; and completely compensates dopants
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Understand role of deep level defects

DLOS spectra vs. Al mole fraction AlGaN deep level defect density vs. Al
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» Large reduction in T, improves doping efficacy through defect reduction
» Deep level defects are managed for Al < 0.8 by optimized growth conditions
» What about Al >0.8?

Andrew Armstrong - aarmstr@sandia.gov
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. Understand role of deep level defects

SNL AlGaN resistivity vs. Al SNL AlGaN n vs. Al
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» Studied AlGaN:Si Al composition series from 60 — 90%
» Conductivity collapse due to decrease in free electrons
» Shallow-to-deep dopant transition or increasing compensation by defects?
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AlGaN deep level defects vs. Al

Understand role of deep level defects

17
£ I I IR B B B SNL AlGaN n vs. Al
17 60% ]
6x10 70% /A\\ ] 10" | | | —
—80% E
510" i ;
? ——90%
L % ) -
= 410 '~ -] A10 — E
O i . @ :
S 3x10" [ - 5
Z.u 17 1 = 10" b _
o~ 2x10 — §
i 10" L—! ' ! L
L1 1 1 I L1 11 I L1 1 1 I L1 1 1 I L1 1 1 I 1 60 70 80 90

1 2 3 4 5 6 Al content (%)

Photon energy (eV)

» Deep level defect density increases strongly with increasing Al
> Not sufficient to account for > 2 x 108 cm-3 reduction in n
» Conductivity collapse due to Si DX transition to a deep dopant

Andrew Armstrong - aarmstr@sandia.gov
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» Ultra-wide band gap (UWBG) AlGaN: Needs and opportunities
» Wide band gap GaN has achieved its fundamental material limit
» Mechanism for conductivity collapse in UWBG AlGaN

» Electrically functionalizing UWBG AlGaN

» UV-C opto-electronics of UWBGs

Andrew Armstrong - aarmstr@sandia.gov




. How to overcome UWBG AlGaN deep dopant problem?

g 10"

£ 10 Apparent electron
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» Strong AlGaN piezoelectricity due to ionicity and non-centro-symmetric lattice
» Abrupt heterostructures induce dopant-free 2DEG
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. AlGaN/GaN system operative without impurity dopants

pr =AP/z ?
g
P \
<>
Pr Z

- z (nm)
AlGaN GaN

Jena et al APL 81 4395 2002

» Generalize concept to form a three-dimensional electron gas (3DES)

» Linear grade in Al composition spreads 2DEG evenly over a volume
» Acts like uniform impurity doping with zero thermal ionization energy

Andrew Armstrong - aarmstr@sandia.gov
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. Investigate polarization-doping in graded UWBG AlGaN

Graded 80 — 90% AlGaN Graded 80 — 100% AlGaN Al gsGa, 14N

200 nm UID-graded 200 nm UID-graded
AlGaN AlGaN

AlpgGag N — Aly oGag 4N AlpgGag N — AIN 700 nm UID-Al, gsGa, 14N

R, = 20,000 QO/0 R, = 2500 Q /0 R, > 100,000 QO/C0

» Sheet resistance of graded AlGaN indicates strong electrical conductivity
» Sheet resistance decreases with more abrupt grade, as expected
» UID-Al, ¢.Ga, 14N control sample showed no electrical conductivity

Andrew Armstrong - aarmstr@sandia.gov
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. Highly conductive UID graded UWBG AlGaN behaves as expected

Graded AlGaN electron concentration

Graded AlGaN electron concentration
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» Uniform polarization-doping scales with Al grade
» Confirm expected 200 nm range of polarization-induced doping
» Comparison of p_and R, indicates u is a strong function of Al composition
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. Calculate electron mobility vs. Al composition

Graded AlGaN electron concentration

Graded AlGaN electron concentration
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» Account for surface depletion assuming 1 eV surface potential
> Ugouos = 331 cm2V-istand pgge g0, = 105 cm2V-ist
> Weighted average of mobility ranges gives [ggo g¢o, = 509 cm2V-1st
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UWBG graded AlGaN electronic properties exceed homoepitaxial AIN

AlGaN resistivity
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» Resistivity, n, and u values are highest reported for Al,Ga, ,N for x > 0.85 at 300K
» Graded UID-AlGaN electronic properties exceed those of homoepitaxial AIN:Si
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» Ultra-wide band gap (UWBG) AlGaN: Needs and opportunities
» Wide band gap GaN has achieved its fundamental material limit
» Mechanism for conductivity collapse in UWBG AlGaN

» Electrically functionalizing UWBG AlGaN

» UV-C opto-electronics of UWBGs

Andrew Armstrong - aarmstr@sandia.gov




. UWBG solutions to UV-C technology gaps

Raman Spectroscopy
(biological agents)

Excitation laser
220250 nm G

)‘k Ra'"a“Sh'“s Benchtop ‘ Man-portable ‘ Microelectronic
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Non-line of sight communication
(covert radio)

-

Solar-blind detection
(missile launch, sniper fire)

» Miniaturization and efficiency are key technology drivers
» UWBGs can provide both
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UWABGs for single photon solar-blind detectors

Technology and Systems Goals Technology and Systems Challenges
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Proc SPIE 7320 1 2009
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. New UWBG solar-blind photodetector capabilities
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» UWBG solar-blind detectors can be low voltage (small), non-avalanche (low dark count),
filter-free (inexpensive), non-cryogenic (robust)

» Pathway toward ubiquitous, unobtrusive/clandestine, multi-vector threat detection
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. Strong (+Ga,0, Schottky diode photoconductive gain

Spectral Photoresponse
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> Solar rejection-ratio > 10°

» Peak optical gain > 50x

> Strong optical gain not expected for Schottky diodes
» Attributed to Schottky metal-induced gap states

Andrew Armstrong - aarmstr@sandia.gov
*R. Suzuki et al., APL 94 222102 (2009).
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. Defects and hole localization

Deep Level Optical Spectroscopy
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» Backside: DLOS only senses deep level defects
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. Defects and hole localization

Deep Level Optical Spectroscopy
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» Backside: DLOS only senses deep level defects
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. Defects and hole localization

Deep Level Optical Spectroscopy
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» Backside: DLOS only senses deep level defects

» Frontside: DLOS shows hole localization for above-gap illumination
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. Defects and hole localization

Deep Level Optical Spectroscopy
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» Backside: DLOS only senses deep level defects

» Frontside: DLOS shows hole localization for above-gap illumination
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. Defects and hole localization

Deep Level Optical Spectroscopy
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» Backside: DLOS only senses deep level defects
» Frontside: DLOS shows hole localization for above-gap illumination

» Hole localization unrelated to deep level defects

Andrew Armstrong - aarmstr@sandia.gov




Self-trapped holes predicted to form in -Ga,O,

STH configuration-coordinate
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Formation energy
o
=
>

*Varley, et al., PRB 85 081109(R) (2012).

» Self-trapped holes (STH) or small polarons are localized in the valence band

» Self-trapped holes behave similarly to an AX center*
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ERWYI i W R Sadl=3

National Nuclear Security Administration



Photo-gain from self-trapped holes

I 1 1 1
1+ —
A
_ Ec
- o
> | _
| S
o
: -
L
4 |- -
I \ EV -
-5 _I 1 1 1 I 1 1 1
0 100 200
x, (nm)

Andrew Armstrong - aarmstr@sandia.gov

t2"Wei et al., J. Semicond. 33 07003 (2012).
EnExor

i W R Sadl=3

National Nuclear Security Administration



Photo-gain from self-trapped holes
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» Intrinsic mechanism for long-lived, near-surface holes in -Ga,0,
> a>10"cm™#

» STHs lower ¢, by 300 meV and increase reverse current as exp(A44,/kT) ~ 10°

Andrew Armstrong - aarmstr@sandia.gov #Takaura et al., Physica B 404 4854 (2009).




Summary
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