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Drivers of Transportation Fuel 
Research

The Problem

• U.S.  Petroleum Demand is 20.7 mb/d (2007).

• An additional 64 mb/d of petroleum – six times the current capacity of Saudi 
Arabia – will be needed in the U.S. by 2030.

• 1 in 8 casualties in Iraq were protecting fuel convoys

The Solution

• Policy:
 The Renewable Fuel Standard (RFS) and RFS2 of 2005 and 2007

• Targets:
 36 bg/yr renewable fuels by 2022
 15 bg/yr of corn ethanol by 2015
 21 bg/yr from second and third generation cellulosic- or algae-based fuels

• Investments:
 FY2008-FY20011: DOE/EERE/BETO, DOE/SC/OBER) $1B in Bioenergy 

Research Centers, Algae Biofuels Consortia, and Industry-Led Biorefineries
 FY2012: EERE/BETO $195M ($270M FY13 request); SC/OBER $113M
 USDA loan guarantee program.
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A Diversified Policy and R&D 
Portfolio in Needed

Potential Solutions

• Natural Gas Reforming (GTL)

• Hybrid, Plug-in Hybrid, Electric Vehicles

• Biofuels

• Solar Fuels

Technology Options

• Solar Thermochemical

• Artificial Photosynthesis

• Photoelectrochemical (PEC)

• Photocatalysis

• Solar Electrolysis

(H2, H2 & CO)
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S2P: Use the heat of the sun to “energize” 
CO2 and H2O into syngas, a precursor to 
hydrocarbon fuels.

Solar ThermoChemical Fuels:  
Sunshine to Petrol (S2P)

Sunlight + CO2 + H2O → Fuel + O2

Liquid hydrocarbons are the “Gold 
Standard” for transportation fuels.

H2O + energy  H2 + ½ O2 

CO2 + energy  CO + ½ O2

nCO + (2n+1)H2 → CnH2n+2 + nH2O

H2O, CO2 Splitting

Fischer-Tropsch
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Our Solar Thermochemical Process is 
Conceptually Simple

1/δ MOx  1/δ MO(x-δ) + ½ O2

Fe3O4  3 FeO + ½ O2

1/δ MO(x-δ) + CO2  1/δ MOx + CO

3 FeO + CO2  Fe3O4 + CO

R&D focus on:

• Reactor/Engine

 Maximizing Energy usage (continuous 
operation, sensible energy recovery i.e. 
recuperation)

 Interfacing Solar with chemistry

 Minimal parasitic work input

 Decoupling steps (products, conditions, 
rates)

• Catalysts

 Thermodynamics

 Kinetics

 Durability

• Systems

 Setting targets, process optimization , 
economics, life cycle impacts etc.

We envision new domestic industries in 
engines, catalysts, and fuels.
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Sandia has invested nearly $20M 
and built an interdisciplinary team.

Principal Investigator – James E. Miller
Project Manager – Tony Martino

Engines
 Solar Reactor - Rich Diver, Tim Moss, Scott Korey, Nathan Siegel
 Reactive Structures - Nathan Siegel, Terry Garino, Nelson Bell, Rich Diver, 

Brian Ehrhart
 Detailed Reactor Models - Roy Hogan, Ken Chen, Spencer Grange, Siri

Khalsa,  Darryl James (TTU), Luke Mayer (student)

Catalysts
 Reactive Materials Characterization & Development - Andrea Ambrosini, Eric 

Coker, Mark Rodriguez, Lindsey Evans, Stephanie Carroll, Tony Ohlhausen, 
William Chueh

 Bulk Transport & Surface Reactions - Gary Kellogg, Ivan Ermanoski, Taisuke
Ohta, Randy Creighton

 Thermodynamics & Reaction Kinetics - Mark Allendorf, Tony McDaniel, Chris 
Wolverton (Northwestern University), Bryce Meredig (student), Heine 
Hansen (PD), Asegun Henry, Al Weimer (CU), Jon Scheffe (student)

Systems Analysis
 Terry Johnson, Chad Staiger, Christos Maravelias (U-WI), Carlos Henao

(student,) Jiyong Kim (PD),  Daniel Dedrick

Over 20 conference proceedings, 80 conference presentations, 20 
peer-reviewed journal articles, 4 book chapters, and 8 patents
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The CR5 is our First Engine 
Prototype

Figure Credit: Popular Science

“Reactorizing a Countercurrent Recuperator”

Continuous flow, Spatial separation of products, Thermal recuperation

Counter-Rotating-Ring Receiver/Reactor/Recuperator (CR5)
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S2P uses concentrated solar power 
focused on a solar furnace.
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August 1, 2011 Test Overview 

Mountain Daylight Time
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This 12-ring test set the standard for heat-to-
chemical conversion efficiency.
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• Direct solar absorption by
the working material

• Sensible energy recovery
between TH and TL

• Continuous on-sun operation

• Pressure, temperature
and product separation

• Pros:

– Small reactive particles (~100mm)

– Only particles are thermally cycled

– Independent component optimization

– Easy material replacement

• Cons:

– Particle conveyance

– Beam-down optics

Generation 2: Packed 
Bed Particle Reactor
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Incrementally pumping O2 reduces the overall 
flow volume and velocity

The Cascading Pressure Reactor Embodies the 
Packed Bed Reactor Design with Increased 
Efficiencies
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We recently produced 2L of H2 over 
1 hour.
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Energy & Fuels, 22 (2008), 4155

Physical Review B 80, 245119 (2009).

Thermodynamics
Computational 

Materials Science

Kinetics of Real 
& Model Systems

8600 in collaboration with 
Northwestern U.

8300, U. Colorado, 1800

8600, NWU

8600, 1800, 6100

Sandia uses Predictive Simulations and 
Characterization to Design New 
Materials Formulations
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Redox Materials Most Determine 
Process Efficiency

Surface Science in situ, ex situ Characterization Fabrication and Testing
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Solar Resources Analysis Shows the 
Promise of Scale and Requirement for High 
Efficiency Target

• U.S.  Petroleum Demand is 
20.7 mb/d (2007)

• 12.5% lifecycle efficiency 
could produce 16.6 mb/d 
(80% of total U.S. demand)

• NM alone could produce 23% 
of U.S. demand

• 12.5% of available land (17.4 
× 109 m2) could provide 10%
of U.S. demand

Land 

Are a

Solar 

Capacity

S ta te (109  m2 ) (T W) (G W) (mb/d)

AZ 49.9 3.37 421 5.9

C A 17.7 1.20 150 2.1

CO 5.5 0.37 46 0.7

N V 14.5 0.98 122 1.7

NM 39.3 2.65 331 4.7

T X 3.0 0.20 25 0.4

UT 9.2 0.62 78 1.1

T otal 139.2 9.39 1,174 16.6

Fue l C apacity

Filters applied (Resource analysis by NREL):  Over-filtered

• Sites > 6.75 kwh/m2/day

• Exclude environmentally sensitive lands, major urban areas, etc.

• Remove land with slope > 1%.

• Assume 25% packing density

• Only contiguous areas  > 10 km2 (675 MWprimary ) 10 km2 = 107 m2 = 3.86 mi2

139 billion m2 is 1.5% of total U.S. land

1515
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• Hundreds of large 
industrial CO2
emissions sources 
exist in the United 
States in areas of high 
solar insolation.

• 4-Corners Power 
Plant: 15.6 Mt/y and 
San Juan 13.4 Mt/y

• At 81% utilization 
these two plants can 
supply fuel plants up 
to 9.8 GW (139 kb/d)

• ~25 plants of 
comparable size to 4-
Corners could supply 
US CO2 for 10% of 
U.S. demand.

Industrial CO2 
Emissions Sources

Solar Insolation 
Zones

Numerous Large CO2 Sources 
Exist

Substantial resources can be tapped.  
Infrastructure exists for CO2 transport.

16



16 January 2012

17

We Investigated a Number of Pathways 
and Products including MeOH and FT.

Mixed	pathway	to	Fischer-Tropsch	(FT) products

Fluegas CO2	capture		
system

Transport

100miles
CO2

2H O H2

CO2	separationCO2/CO CODish	&		
Solar	engine

FT
Synthesis

• Feed
CO2:	352	kmol/hr
H2O:	395	kmol/hr
• Product
Gasoline	(C7)/Diesel	(C14)/Wax	(C25):		
24/10/1	kmol/hr		(333	kmol	C/hr)

Gasoline		

Diesel		

Wax

FT	reactionsystem

Gasoline		
Diesel		
Wax

H2Orecycle#2
H2Orecycle

Dish-CR5 array

CO2

H2

H2O

CO2

recycle

2CO	/CO mix

H2/CO mix

H2Omakeup

CO2	separation system

CO
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Economic Evaluation:  Minimum Selling 

Price
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Economic Evaluation:  Sensitivity 

Analysis

Mixed	pathway	to MeOH
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Summary

• Thermochemical approaches have great promise
– Potential for high efficiency

– Field is rapidly advancing, Global interest and investment

• Efficiency is key for cost and scalability
– Sunlight is the high cost feedstock (capital to capture)

– Adjacency to other technologies (e.g. solar electric, solar reforming) offers benefits

• High utilization is essential to achieving high efficiency
– Recuperation, reduction extent, kinetics

– Need for new materials with optimized thermodynamics, transport properties, 
structures, physical properties,  and thermally efficient reactors

• Three aspects to  advancing materials
– Improved compositions (modification and discovery)

– Structuring materials

– Integrating materials and reactor design

• Production and testing of Gen1 CR5 completed; Gen 2 packed bed reactor 
tested

– Efficiency > 0.8%, Scales to > 1.5 %

– Full-days of continuous on-sun testing at powers up to 9 kW.

– Applying lessons to Gen2 designs and Materials
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Efficiency → Costs:
Collector Area

Assumptions:  GGE = 36 kWh, Solar Resource = 2600 kWh/m2/yr, 
Favorable Financing (5% interest, 30 years)

Capital expenditures ($/m2)
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$10,000/acre 6 inch concrete slab
Parabolic Dish

Large Scale Photovoltaic
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$3/GGE
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Cost Breakdown For 
$5/GGE; S2P 12.5% LCE

23

• Costs for S2P are in the ballpark of viability

• Learning curve will reduce the most expensive contributions

• Very sensitive to the cost of capital recovery


