
Photos placed in horizontal position
with even amount of white space

between photos and header

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2015-4701C

Structural Simulation Toolkit (SST)
June 2017

ISCA Tutorial

ISCA Tutorial, June 13, 2015

SAND2017-6513C

Why SST?

 Problem: Simulation is slow
 Tradeoff between accuracy and time to simulate

 Many simulators are serial, unable to simulate very large systems

 Problem: Lack of simulator flexibility
 Tightly-coupled simulations: faster but difficult to modify

 Difficult to simulate at different levels of accuracy

The Structural Simulation Toolkit:

A parallel, discrete-event simulation framework

for scalability and flexibility

2

ISCA Tutorial 2017

What is SST?

ISCA Tutorial 2017

3

Goals
• Become the standard architectural

simulation framework for HPC
• Be able to evaluate future systems on

DOE/DOD workloads
• Use supercomputers to design

supercomputers

Status
• Parallel Core, basic components
• Current Release (7.1)

• Improved components
• Modular core/elements
• More Internal documentation

Technical Approach
• Parallel

• Parallel Discrete Event core with
conservative optimization over
MPI/Threads

• Multiscale
• Detailed and simple models for

processor, network, & memory
• Interoperability

• DRAMSim, ,memory models
• routers, NICs, schedulers

• Open
• Open Core, non-viral, modular

Consortium
• “Best of Breed” simulation suite
• Combine Lab, Academic & Industry

Overview

 Parallel
 Built from the ground up to be scalable

 Demonstrated scaling to 512+ processors

 Flexible
 Enables “mix and match” of simulation components

 Custom architectures

 Custom tradeoff between accuracy and simulation time

 E.g., cycle-accurate network with trace-driven endpoints

4

ISCA Tutorial 2017

Capabilities

 SST Core (framework):
 Time-scale independent: micro-, meso-, macro-scale simulations

 Provides a number of interfaces and utilities for simulation models

 Components: SST’s simulation models
 Components perform the actual simulation

 Many built-in models available: processors, memory, network

 Compatible with external models: Gem5, DRAMSim2, many others

 Open API
 Easily extensible with new models

 Modular framework

 Open-source core

5

ISCA Tutorial 2017

Example SST Element Libraries
 memHierarchy - Cache and Memory

 cassini - Cache prefetchers

 DRAMSim - DDR

 NVDIMMSim - Emerging Memories

 ariel - PIN-based Tracing

 m5C - Gem5 integration layer

 ember - State-machine Message generation

 firefly - Communication Protocols

 hermes - MPI-like interface

 merlin - Network router model and NIC

 scheduler - Job-scheduler simulation models

6

Detailed Memory
Models

Detailed Memory
Models

Dynamic Trace-based
Processor Model

Dynamic Trace-based
Processor Model

Cycle-based Processor
Model

Cycle-based Processor
Model

High-level Program
Communication

Models

High-level Program
Communication

Models

Cycle-based Network
Model

Cycle-based Network
Model

High-level System
Workflow Model

High-level System
Workflow Model

MemHierarchy: Memory system

 Cycle-accurate cache and memory simulation
 Inter- and intra-socket coherence

 Multiple main memory models

 Highly configurable
 Can model any number of caches (L10s!)

 Arbitrary topologies, multiple memories

 Single- and multi-socket configurations

 Capable of modeling modern memory hierarchies
 Intel core i7, Xeon Phi

 Arm Cortex A8, A7, A15, A53, A57

 SPARC T6

ISCA Tutorial 2017

7

Merlin: Network simulator

 Low-level, flexible networking components that can be
used to simulate high-speed networks (machine level) or
on-chip networks

 Capabilities
 High radix router model (hr_router)
 Topologies – mesh, n-dim tori, fat-tree, dragonfly

 Many ways to drive a network
 Simple traffic generation models

 Nearest neighbor, uniform, uniform w/ hotspot, normal, binomial

 MemHierarchy
 Lightweight network endpoint models (Ember – coming up

next)
 Or, make your own

ISCA Tutorial 2017

8

Ember: Network traffic generator
 Light-weight endpoint for modeling network

traffic
 Enables large-scale simulation of networks where

detailed modeling of endpoints would be
expensive

 Packages patterns as motifs
 Can encode a high level of complexity in the

patterns
 Generic method for users to extend SST with

additional communication patterns

 Intended to be a driver for the Hermes,
Firefly, and Merlin communication modeling
stack
 Uses Hermes message API to create

communications
 Abstracted from low-level, allowing modular

reuse of additional hardware models

ISCA Tutorial 2017

9

User
BinaryEmber Engine

Hermes API

Firefly

Merlin Network

Ember Motif

Use Cases

 Processing-in-memory

 Multi-Level Memory

 HW Tradeoffs: capacity ratios,

 SW Tradeoffs: application, runtime, OS, HW control

 Scalable Network Studies

 Network on Chip

 Coherent system interconnect NIC

 Mixed Mode Simulation

 Scheduling

1 1 1 1 1

0.67

0.84

0.99

0.50 0.54

0.69

0.84

1.07

0.50 0.54

0

0.275

0.55

0.825

1.1

1.375

GUPS Stream PF MiniFE Lulesh

PIM Normalized Execution Time

SST Use Cases

11
Network

P

Scratch

P P

"$"

Fast

Slow

Memory

P

Scratch

P P

"$"

Fast

Slow

Memory

P

Scratch

P P

"$"

Fast

Slow

Memory Network

P

Scratch

P P

"$"

Fast

Slow

Memory

P

Scratch

P P

"$"

Fast

Slow

Memory

P

Scratch

P P

"$"

Fast

Slow

Memory

"Quad"

Core

L1

Core

L1

L2

Core

L1

Core

L1

Merlin
Router

Directory
Controller

"Quad"

Core

L1

Core

L1

L2

Core

L1

Core

L1

DDR

Ariel Trace Capture

PIN

Directory
Controller

DDR

Directory
Controller

Logic
Layer

Stacked
Vault

L3

L2

L1

L0

Emerging NV
Memory
Technologies

Photonic
Network
Topology &
Routing

Multi-Level
Memory
(HBM+DDR+NV)

Dissaggregated
Memory

SST: FRAMEWORK FOR PARALLEL
SIMULATION

ISCA Tutorial 2017

12

SST’s discrete-event algorithm

 Simulations are comprised of components connected by links

 Components interact by sending events over links

 Each link has a minimum latency

 Components can load subComponents and modules for
additional functionality

13

ISCA Tutorial 2017

Component Component

SST Core

Configuratio
n

Parititioning

Link

Event

Instantiation Time
Coordination

Parallel
Communication

SST
Component
Type: Core

SST
Component
Type: Cache

SST
Component
Type: Core

SST
Component
Type: Cache

SST
Component
Type: NoC

Router

SST
Component
Type: NoC

Router

SST Link
Latency: 1ns

SST Link
Latency: 2ns

SST Link
Latency: 2ns

SST Link
Latency: 1ns

S
S

T
 L

in
k

L
a
te

n
cy

:
4
n
s

Key objects

 SST::Component
 Simulation model

 SST::Link
 Communication path between two

components

 Has optional EventHandler

 SST::Event
 A discrete event

 SST::Clock::Handler
 Function to handle a clock tick

14

ISCA Tutorial 2017

S
S

T:
:L

in
k

SST::Component
CPU

EventHandler

SST::Component
Cache

EventHandler

SST::Event
Load

Component

 Basic building block of a simulation model
 E.g., processor, cache, network router, etc.

 Performs the actual simulation

 Uses Links and Ports to communication with other components
 Components define ports, links connect ports between components

 Polled: Register a clock handler to poll the link

 Interrupt: Register an event handler to be called when an event arrives

 Both: Receive events on interrupt, send events on clock

15

ISCA Tutorial 2017

Link

 Connects two components
 Connect a specific “Port” on component A to a “Port” on component B

 The ONLY mechanism by which components communicate
 Necessary for parallel simulation

 Has a minimum, non-zero latency for communication
 Except self-links

 Except during initialization (untimed)

 Transparently handles any MPI / threaded communication

16

ISCA Tutorial 2017

Component A Component B

P
o

rt
 X

P
o

rt
 Y

Link 1

Event

 Unit of communication between two components
 Packet format is up to the communicating components

 Some standardized interfaces
 Facilitate “mix and match” capability

 sst/core/interfaces/

 Memory (simpleMem)

 Defines commands & event format for communication with memory

 Network (simpleNetwork)

 Defines a header for events sent through a network component

17

ISCA Tutorial 2017

Component/link interface

 Components use these calls to manage links and events

 SST::Component::configureLink()
 Registers a link and (optionally) a handler

 SST::Link::recv()
 Pull an event from a link

 SST::Link::send()
 Push an event down a link

 SST::Component::registerClock()
 Register a clock frequency and a handler to be called on each clock

tick

18

ISCA Tutorial 2017

Simulation lifecycle

 Birth
 Create graph of components using Python configuration file

 Partition graph and assign components to MPI ranks

 Instantiate components

 Connect components via links

 Initialize components using their init() functions

 Setup components using their setup() functions

 Life
 Send events

 Manage clock and event handlers

 Death
 Finalize components using their finish() functions

 Output statistics

 Cleanup simulation, delete components

19

ISCA Tutorial 2017

Component lifecycle

 Pre-construction: define and partition components

 Construction: call component constructors and parse parameters

 Initialization – init()
 Components send “init” events to each other over links

 Discover neighbors, negotiate parameters, initialize data structures, etc.

 Multiple rounds of communication until no more “init” events are sent

 Setup – setup()
 Each component does its final setup and schedules initial events

 Run
 Actual simulation (time begins)

 Continues until a set time, or all components agree to finish

 Finalize – finish()
 Simulation complete

 Write statistics, free memory, etc.
20

ISCA Tutorial 2017

SST in parallel

 SST was designed from the
ground up to enable scalable,
parallel simulations

 Components are distributed
among MPI ranks & threads

 Links allow parallelism
 Hence, components should

communicate via links only

 Transparently handle any MPI
communication

 Specified link-latency determines
MPI synchronization rate

21

ISCA Tutorial 2017

MPI Rank 0

MPI Rank 0 MPI Rank 1 MPI Rank 2 MPI Rank 3

Comp0 Comp2 Comp4 Comp6

Comp1 Comp3 Comp5 Comp7

Comp0 Comp2 Comp4 Comp6

Comp1 Comp3 Comp5 Comp7

Same configuration file

SST Discrete Event Algorithm

 SST Simulation are comprised of components connected by
links

 Components interact by ending events over links

 Each link has a minimum latency (specified in SI time units)

CONFIGURING A SIMULATION

ISCA Tutorial, 2017

23

Configuring a simulation

 SST uses a Python configuration file
 Defines global parameters for the simulation

 Defines and configures components

 Specifies links and link latencies between components

 Open ‘demo.py’

24

ISCA Tutorial 2017

CPU CPU

L1 L1

Bus

L2

CPU CPU

L1 L1

L2

Bus

Network

Memory

Directory

Memory

Directory

Part 1: Configure SST

 Global simulation parameters

 sst.setProgramOption(“stopAtCycle”, “100ms”)
 Kill simulation (nicely!) if it runs to 100ms

 sst.setProgramOption(“timebase”, “1ns”)
 Tell SST that we’re simulating at a granularity around 1ns

 Used by SST core when time units are not specified by a component

 Not a lower limit! (clocks can be > 1 GHz)

25

ISCA Tutorial 2017

Part 2: Define components

 Define: sst.Component(“name”, “type”)

 Configure: addParams ({ “parameter” : value, … })

26

ISCA Tutorial 2017

network = sst.Component(“router”, “merlin.hr_router”)
network.addParams({

“xbar_bw” : “51.2GB/s”,
“link_bw” : “25.6GB/s”,
“num_ports” : 4,
“flit_size” : “72B:
“topology” : “merlin.singlerouter”,
“id” : “0”,
“input_buf_size” : “2KB”,
“output_buf_size” : “2KB”

})

Component name Component type

Parameters

demo.py: line 172

SSTInfo: Getting component info

 Prints parameters, port names, and statistics

27

ISCA Tutorial 2017

$ sstinfo memHierarchy.Cache
PROCESSED 25 .so (SST ELEMENT) FILES FOUND IN DIRECTORY /home/sst/build/lib/sst
Filtering output on Element.Component = “memHierarchy.Cache”
==
ELEMENT 18 = memHierarchy (Cache Hierarchy)
COMPONENT 0 = Cache [MEMORY COMPONENT] (Cache Component)
NUM PARAMETERS = 32

PARAMETER 0 = cache_frequency (Clock frequency with units. For L1s, this is
usually the same as the CPU's frequency.) [REQUIRED]

…
PARAMETER 21 = network_bw (Network link bandwidth.) [1GB/s]
…

NUM PORTS = 4
…
PORT 3 [1 Valid Events] = directory (Network link port to directory)

VALID EVENT 0 = MemHierarchy.MemRtrEvent
…

NUM STATISTICS = 32

Optionally filter for a specific component

Parameter Definition

“REQUIRED” or
default value

Port name

Definition

Type of event(s) used on the link

Part 3: Defining links

 Example: Connect socket 0’s L2 cache (l2cache0) to network
 Create a link: sst.Link(“name”)

 Define link endpoints: connect(endpoint1, endpoint2)

 Endpoint is defined as: (Component, Port, Latency)

 Note: Latencies of the two endpoints can differ

28

ISCA Tutorial 2017

…
l2cache0_network_link = sst.Link(“l2cache0_network_link”)
…
l2cache0_network_link.connect(

(l2cache0, “directory”, “50ps”),
(network, “port0”, “50ps”))

…

Link name

Endpoints

demo.py: line 220

Running SST

 Usage: sst [options] configFile.py

 Common options:

29

ISCA Tutorial 2017

-v | --verbose Print verbose information during runtime

--debug-file <filename> Send debugging output to specified file (default:
sst_output)

--add-lib-path <dirname> Add <dirname> to search path for element libraries

--heartbeat-period <period> Every <period> time, print a heartbeat message

--paritioner <zoltan | self | simple |
rrobin | linear | lib.partitioner.name>

Specify the partitioning mechanism for parallel runs

--model-options “<args>” Command line arguments to send to the Python
configuration file

--output-partition <filename> Write partitioning information to <filename>

--output-dot <filename> Output a graph representing the configuration in
“Dot” format to <filename>

Demo: Running the simulation

 Launch simulation

 Output

30

ISCA Tutorial 2017

$ sst demo.py

Inserting stop event at cycle 100ms, 100000000000
ARIEL-SST PIN tool activating with 4 threads
ARIEL: Default memory pool set to 0
ARIEL: Tool is configured to begin with profiling immediately.
ARIEL: Starting program.
Performing iteration 0
Performing iteration 0
Performing iteration 0
Performing iteration 0
…
…
Simulation is complete, simulated time: 125.209 us

Finally: Getting help

 SST wiki contains lots of information (www.sst-simulator.org)
 Downloading, installing, and running SST

 Element libraries and external components

 Guides for extending SST

 Information on APIs

 Information about current development efforts

 https://github.com/sstsimulator

31

ISCA Tutorial 2017

Wrap-up

 SST is a parallel, flexible simulation framework
 Can simulate many systems at many granularities

 Capable of simulating modern architectures

 Modular design for extensibility

 Please keep us posted on your uses of SST as well as any
capabilities you’ve added or would like to see added

 Thank you for attending!

32

ISCA Tutorial 2017

BACKUP

ISCA Tutorial, 2017

33

Getting and installing SST

 www.sst-simulator.org
 Current release (7.1) source download

 https://github.com/sstsimulator/sst-elements

 Detailed build instructions including dependencies for Linux & Mac

 Links to mailing lists for updates and support

34

MemHierarchy: Cache structure

35

ISCA Tutorial, June 13, 2015

CacheController
• Routes incoming events to handlers
• Manages retry of buffered events in

the MSHRs
• Manages cache allocations and

evictions

CoherenceController
• Manages coherence state
• Receives events from CacheController
• Sends outgoing events

• Forwarded requests, responses, etc.
• Decides when events need to stall

MSHRs
• Buffers stalled

and blocked
events

CacheArray
• Stores cache lines –

data and coherence
state

• Replacements via the
replacement policy
manager

MemHierarchy: Main memory

 MemoryController
 Contains a ‘backing store’ for simulated data

 Can communicate over a network or via a direct link with a cache or
directory

 Interfaces with multiple memory backends

 Available backends
 SimpleMem – basic read/write with associated latencies

 DRAMSim2 – DRAM (external)

 NVDIMMSim – Non-volatile memory (e.g., Flash) (external)

 HybridSim – non-volatile memory with a DRAM cache (external)

 VaultSimC – stacked DRAM

36

ISCA Tutorial, June 13, 2015

Merlin: Network simulator

 Low-level, flexible networking components that can be used
to simulate high-speed networks (machine level) or on-chip
networks

 Capabilities
 High radix router model (hr_router)

 Topologies – mesh, n-dim tori, fat-tree, dragonfly

 Many ways to drive a network
 Simple traffic generation models

 Nearest neighbor, uniform, uniform w/ hotspot, normal, binomial

 MemHierarchy

 Lightweight network endpoint models (Ember – coming up next)

 Or, make your own
37

ISCA Tutorial, June 13, 2015

Ember: Network traffic generator

 Light-weight endpoint for modeling network traffic
 Enables large-scale simulation of networks where detailed modeling

of endpoints would be expensive

 Packages patterns as motifs
 Can encode a high level of complexity in the patterns

 Generic method for users to extend SST with additional
communication patterns

 Intended to be a driver for the Hermes, Firefly, and Merlin
communication modeling stack
 Uses Hermes message API to create communications

 Abstracted from low-level, allowing modular reuse of additional
hardware models

38

ISCA Tutorial, June 13, 2015

Ember: Overview

39

ISCA Tutorial, June 13, 2015

User
BinaryEmber Engine

Hermes API

Firefly

Merlin Network

Ember Motif

Message Passing Semantics
Collectives, Matching etc

Packetization and Byte Movement Engine
Generates packets and coordinates with network

Flit Level Movement, Routing, Delivery
Moves flits across network, timing etc

Event to Message Call, Motif Management
Handles the tracking of the motif

High Level Communication Pattern and Logic
Generates communication events

Ember: Motifs

 Motifs are lightweight patterns of communication
 Tend to have very small state

 Extracted from parent applications

 Models as an MPI program (serial flow of control)

 Many motifs acting in the simulation create the parallel behavior

 Example motifs
 Halo exchanges (1, 2, and 3D)

 MPI collections – reductions, all-reduce, gather, barrier

 Communication sweeping (Sweep3D, LU, etc.)

40

ISCA Tutorial, June 13, 2015

Ember: Motifs (continued)

 The EmberEngine creates and manages the motif
 Creates an event queue which the motif adds events to when probed

 The Engine executes the queued events in order, converting them to
message semantic calls as needed

 When the queue is empty, the motif is probed again for events

 Events correspond to a specific action
 E.g., send, recv, allreduce, compute-for-a-period, wait, etc.

41

ISCA Tutorial, June 13, 2015

Firefly: Network traffic

 Purpose: Create network traffic, based on application
communication patterns, at large scale
 Enables testing the impact of network topologies and technologies on

application communication at very large scale

 Scales to 1 million nodes

 Supports multiple “cores” per Node
 Interaction between cores limited to message passing

 Supports space sharing of the network
 Multiple “apps” running simultaneously

42

ISCA Tutorial, June 13, 2015

Firefly: Simulating large networks

 A network node consists of
 Driver (the “application”)

 NIC

 Router

 Nodes are connected together via
the routers to form the network
 Fat tree, torus, etc.

 Firefly is the interface between the
driver and the router
 Message passing library Firefly

Hades

 NIC Firefly NIC
43

ISCA Tutorial, June 13, 2015

Ember
(driver)

Firefly Hades

Firefly NIC

Merlin Router

Scheduler

 Models HPC system-wide job scheduling

 Three components
 Sched: schedules and allocates resources for a stream of jobs

 Node: runs scheduled jobs on their allocated resources

 FaultInjection: injects failures onto the resources

 The scheduler is currently a stand-alone element library
 The schedComponent and nodeComponent must be used together

 The faultInjectionComponent is optional

44

ISCA Tutorial, June 13, 2015

