
Photos placed in horizontal position
with even amount of white space

between photos and header

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2015-4701C

Structural Simulation Toolkit (SST)
June 2017

ISCA Tutorial

ISCA Tutorial, June 13, 2015

SAND2017-6513C

Why SST?

 Problem: Simulation is slow
 Tradeoff between accuracy and time to simulate

 Many simulators are serial, unable to simulate very large systems

 Problem: Lack of simulator flexibility
 Tightly-coupled simulations: faster but difficult to modify

 Difficult to simulate at different levels of accuracy

The Structural Simulation Toolkit:

A parallel, discrete-event simulation framework

for scalability and flexibility

2

ISCA Tutorial 2017

What is SST?

ISCA Tutorial 2017

3

Goals
• Become the standard architectural

simulation framework for HPC
• Be able to evaluate future systems on

DOE/DOD workloads
• Use supercomputers to design

supercomputers

Status
• Parallel Core, basic components
• Current Release (7.1)

• Improved components
• Modular core/elements
• More Internal documentation

Technical Approach
• Parallel

• Parallel Discrete Event core with
conservative optimization over
MPI/Threads

• Multiscale
• Detailed and simple models for

processor, network, & memory
• Interoperability

• DRAMSim, ,memory models
• routers, NICs, schedulers

• Open
• Open Core, non-viral, modular

Consortium
• “Best of Breed” simulation suite
• Combine Lab, Academic & Industry

Overview

 Parallel
 Built from the ground up to be scalable

 Demonstrated scaling to 512+ processors

 Flexible
 Enables “mix and match” of simulation components

 Custom architectures

 Custom tradeoff between accuracy and simulation time

 E.g., cycle-accurate network with trace-driven endpoints

4

ISCA Tutorial 2017

Capabilities

 SST Core (framework):
 Time-scale independent: micro-, meso-, macro-scale simulations

 Provides a number of interfaces and utilities for simulation models

 Components: SST’s simulation models
 Components perform the actual simulation

 Many built-in models available: processors, memory, network

 Compatible with external models: Gem5, DRAMSim2, many others

 Open API
 Easily extensible with new models

 Modular framework

 Open-source core

5

ISCA Tutorial 2017

Example SST Element Libraries
 memHierarchy - Cache and Memory

 cassini - Cache prefetchers

 DRAMSim - DDR

 NVDIMMSim - Emerging Memories

 ariel - PIN-based Tracing

 m5C - Gem5 integration layer

 ember - State-machine Message generation

 firefly - Communication Protocols

 hermes - MPI-like interface

 merlin - Network router model and NIC

 scheduler - Job-scheduler simulation models

6

Detailed Memory
Models

Detailed Memory
Models

Dynamic Trace-based
Processor Model

Dynamic Trace-based
Processor Model

Cycle-based Processor
Model

Cycle-based Processor
Model

High-level Program
Communication

Models

High-level Program
Communication

Models

Cycle-based Network
Model

Cycle-based Network
Model

High-level System
Workflow Model

High-level System
Workflow Model

MemHierarchy: Memory system

 Cycle-accurate cache and memory simulation
 Inter- and intra-socket coherence

 Multiple main memory models

 Highly configurable
 Can model any number of caches (L10s!)

 Arbitrary topologies, multiple memories

 Single- and multi-socket configurations

 Capable of modeling modern memory hierarchies
 Intel core i7, Xeon Phi

 Arm Cortex A8, A7, A15, A53, A57

 SPARC T6

ISCA Tutorial 2017

7

Merlin: Network simulator

 Low-level, flexible networking components that can be
used to simulate high-speed networks (machine level) or
on-chip networks

 Capabilities
 High radix router model (hr_router)
 Topologies – mesh, n-dim tori, fat-tree, dragonfly

 Many ways to drive a network
 Simple traffic generation models

 Nearest neighbor, uniform, uniform w/ hotspot, normal, binomial

 MemHierarchy
 Lightweight network endpoint models (Ember – coming up

next)
 Or, make your own

ISCA Tutorial 2017

8

Ember: Network traffic generator
 Light-weight endpoint for modeling network

traffic
 Enables large-scale simulation of networks where

detailed modeling of endpoints would be
expensive

 Packages patterns as motifs
 Can encode a high level of complexity in the

patterns
 Generic method for users to extend SST with

additional communication patterns

 Intended to be a driver for the Hermes,
Firefly, and Merlin communication modeling
stack
 Uses Hermes message API to create

communications
 Abstracted from low-level, allowing modular

reuse of additional hardware models

ISCA Tutorial 2017

9

User
BinaryEmber Engine

Hermes API

Firefly

Merlin Network

Ember Motif

Use Cases

 Processing-in-memory

 Multi-Level Memory

 HW Tradeoffs: capacity ratios,

 SW Tradeoffs: application, runtime, OS, HW control

 Scalable Network Studies

 Network on Chip

 Coherent system interconnect NIC

 Mixed Mode Simulation

 Scheduling

1 1 1 1 1

0.67

0.84

0.99

0.50 0.54

0.69

0.84

1.07

0.50 0.54

0

0.275

0.55

0.825

1.1

1.375

GUPS Stream PF MiniFE Lulesh

PIM Normalized Execution Time

SST Use Cases

11
Network

P

Scratch

P P

"$"

Fast

Slow

Memory

P

Scratch

P P

"$"

Fast

Slow

Memory

P

Scratch

P P

"$"

Fast

Slow

Memory Network

P

Scratch

P P

"$"

Fast

Slow

Memory

P

Scratch

P P

"$"

Fast

Slow

Memory

P

Scratch

P P

"$"

Fast

Slow

Memory

"Quad"

Core

L1

Core

L1

L2

Core

L1

Core

L1

Merlin
Router

Directory
Controller

"Quad"

Core

L1

Core

L1

L2

Core

L1

Core

L1

DDR

Ariel Trace Capture

PIN

Directory
Controller

DDR

Directory
Controller

Logic
Layer

Stacked
Vault

L3

L2

L1

L0

Emerging NV
Memory
Technologies

Photonic
Network
Topology &
Routing

Multi-Level
Memory
(HBM+DDR+NV)

Dissaggregated
Memory

SST: FRAMEWORK FOR PARALLEL
SIMULATION

ISCA Tutorial 2017

12

SST’s discrete-event algorithm

 Simulations are comprised of components connected by links

 Components interact by sending events over links

 Each link has a minimum latency

 Components can load subComponents and modules for
additional functionality

13

ISCA Tutorial 2017

Component Component

SST Core

Configuratio
n

Parititioning

Link

Event

Instantiation Time
Coordination

Parallel
Communication

SST
Component
Type: Core

SST
Component
Type: Cache

SST
Component
Type: Core

SST
Component
Type: Cache

SST
Component
Type: NoC

Router

SST
Component
Type: NoC

Router

SST Link
Latency: 1ns

SST Link
Latency: 2ns

SST Link
Latency: 2ns

SST Link
Latency: 1ns

S
S

T
 L

in
k

L
a
te

n
cy

:
4
n
s

Key objects

 SST::Component
 Simulation model

 SST::Link
 Communication path between two

components

 Has optional EventHandler

 SST::Event
 A discrete event

 SST::Clock::Handler
 Function to handle a clock tick

14

ISCA Tutorial 2017

S
S

T:
:L

in
k

SST::Component
CPU

EventHandler

SST::Component
Cache

EventHandler

SST::Event
Load

Component

 Basic building block of a simulation model
 E.g., processor, cache, network router, etc.

 Performs the actual simulation

 Uses Links and Ports to communication with other components
 Components define ports, links connect ports between components

 Polled: Register a clock handler to poll the link

 Interrupt: Register an event handler to be called when an event arrives

 Both: Receive events on interrupt, send events on clock

15

ISCA Tutorial 2017

Link

 Connects two components
 Connect a specific “Port” on component A to a “Port” on component B

 The ONLY mechanism by which components communicate
 Necessary for parallel simulation

 Has a minimum, non-zero latency for communication
 Except self-links

 Except during initialization (untimed)

 Transparently handles any MPI / threaded communication

16

ISCA Tutorial 2017

Component A Component B

P
o

rt
 X

P
o

rt
 Y

Link 1

Event

 Unit of communication between two components
 Packet format is up to the communicating components

 Some standardized interfaces
 Facilitate “mix and match” capability

 sst/core/interfaces/

 Memory (simpleMem)

 Defines commands & event format for communication with memory

 Network (simpleNetwork)

 Defines a header for events sent through a network component

17

ISCA Tutorial 2017

Component/link interface

 Components use these calls to manage links and events

 SST::Component::configureLink()
 Registers a link and (optionally) a handler

 SST::Link::recv()
 Pull an event from a link

 SST::Link::send()
 Push an event down a link

 SST::Component::registerClock()
 Register a clock frequency and a handler to be called on each clock

tick

18

ISCA Tutorial 2017

Simulation lifecycle

 Birth
 Create graph of components using Python configuration file

 Partition graph and assign components to MPI ranks

 Instantiate components

 Connect components via links

 Initialize components using their init() functions

 Setup components using their setup() functions

 Life
 Send events

 Manage clock and event handlers

 Death
 Finalize components using their finish() functions

 Output statistics

 Cleanup simulation, delete components

19

ISCA Tutorial 2017

Component lifecycle

 Pre-construction: define and partition components

 Construction: call component constructors and parse parameters

 Initialization – init()
 Components send “init” events to each other over links

 Discover neighbors, negotiate parameters, initialize data structures, etc.

 Multiple rounds of communication until no more “init” events are sent

 Setup – setup()
 Each component does its final setup and schedules initial events

 Run
 Actual simulation (time begins)

 Continues until a set time, or all components agree to finish

 Finalize – finish()
 Simulation complete

 Write statistics, free memory, etc.
20

ISCA Tutorial 2017

SST in parallel

 SST was designed from the
ground up to enable scalable,
parallel simulations

 Components are distributed
among MPI ranks & threads

 Links allow parallelism
 Hence, components should

communicate via links only

 Transparently handle any MPI
communication

 Specified link-latency determines
MPI synchronization rate

21

ISCA Tutorial 2017

MPI Rank 0

MPI Rank 0 MPI Rank 1 MPI Rank 2 MPI Rank 3

Comp0 Comp2 Comp4 Comp6

Comp1 Comp3 Comp5 Comp7

Comp0 Comp2 Comp4 Comp6

Comp1 Comp3 Comp5 Comp7

Same configuration file

SST Discrete Event Algorithm

 SST Simulation are comprised of components connected by
links

 Components interact by ending events over links

 Each link has a minimum latency (specified in SI time units)

CONFIGURING A SIMULATION

ISCA Tutorial, 2017

23

Configuring a simulation

 SST uses a Python configuration file
 Defines global parameters for the simulation

 Defines and configures components

 Specifies links and link latencies between components

 Open ‘demo.py’

24

ISCA Tutorial 2017

CPU CPU

L1 L1

Bus

L2

CPU CPU

L1 L1

L2

Bus

Network

Memory

Directory

Memory

Directory

Part 1: Configure SST

 Global simulation parameters

 sst.setProgramOption(“stopAtCycle”, “100ms”)
 Kill simulation (nicely!) if it runs to 100ms

 sst.setProgramOption(“timebase”, “1ns”)
 Tell SST that we’re simulating at a granularity around 1ns

 Used by SST core when time units are not specified by a component

 Not a lower limit! (clocks can be > 1 GHz)

25

ISCA Tutorial 2017

Part 2: Define components

 Define: sst.Component(“name”, “type”)

 Configure: addParams ({ “parameter” : value, … })

26

ISCA Tutorial 2017

network = sst.Component(“router”, “merlin.hr_router”)
network.addParams({

“xbar_bw” : “51.2GB/s”,
“link_bw” : “25.6GB/s”,
“num_ports” : 4,
“flit_size” : “72B:
“topology” : “merlin.singlerouter”,
“id” : “0”,
“input_buf_size” : “2KB”,
“output_buf_size” : “2KB”

})

Component name Component type

Parameters

demo.py: line 172

SSTInfo: Getting component info

 Prints parameters, port names, and statistics

27

ISCA Tutorial 2017

$ sstinfo memHierarchy.Cache
PROCESSED 25 .so (SST ELEMENT) FILES FOUND IN DIRECTORY /home/sst/build/lib/sst
Filtering output on Element.Component = “memHierarchy.Cache”
==
ELEMENT 18 = memHierarchy (Cache Hierarchy)
COMPONENT 0 = Cache [MEMORY COMPONENT] (Cache Component)
NUM PARAMETERS = 32

PARAMETER 0 = cache_frequency (Clock frequency with units. For L1s, this is
usually the same as the CPU's frequency.) [REQUIRED]

…
PARAMETER 21 = network_bw (Network link bandwidth.) [1GB/s]
…

NUM PORTS = 4
…
PORT 3 [1 Valid Events] = directory (Network link port to directory)

VALID EVENT 0 = MemHierarchy.MemRtrEvent
…

NUM STATISTICS = 32

Optionally filter for a specific component

Parameter Definition

“REQUIRED” or
default value

Port name

Definition

Type of event(s) used on the link

Part 3: Defining links

 Example: Connect socket 0’s L2 cache (l2cache0) to network
 Create a link: sst.Link(“name”)

 Define link endpoints: connect(endpoint1, endpoint2)

 Endpoint is defined as: (Component, Port, Latency)

 Note: Latencies of the two endpoints can differ

28

ISCA Tutorial 2017

…
l2cache0_network_link = sst.Link(“l2cache0_network_link”)
…
l2cache0_network_link.connect(

(l2cache0, “directory”, “50ps”),
(network, “port0”, “50ps”))

…

Link name

Endpoints

demo.py: line 220

Running SST

 Usage: sst [options] configFile.py

 Common options:

29

ISCA Tutorial 2017

-v | --verbose Print verbose information during runtime

--debug-file <filename> Send debugging output to specified file (default:
sst_output)

--add-lib-path <dirname> Add <dirname> to search path for element libraries

--heartbeat-period <period> Every <period> time, print a heartbeat message

--paritioner <zoltan | self | simple |
rrobin | linear | lib.partitioner.name>

Specify the partitioning mechanism for parallel runs

--model-options “<args>” Command line arguments to send to the Python
configuration file

--output-partition <filename> Write partitioning information to <filename>

--output-dot <filename> Output a graph representing the configuration in
“Dot” format to <filename>

Demo: Running the simulation

 Launch simulation

 Output

30

ISCA Tutorial 2017

$ sst demo.py

Inserting stop event at cycle 100ms, 100000000000
ARIEL-SST PIN tool activating with 4 threads
ARIEL: Default memory pool set to 0
ARIEL: Tool is configured to begin with profiling immediately.
ARIEL: Starting program.
Performing iteration 0
Performing iteration 0
Performing iteration 0
Performing iteration 0
…
…
Simulation is complete, simulated time: 125.209 us

Finally: Getting help

 SST wiki contains lots of information (www.sst-simulator.org)
 Downloading, installing, and running SST

 Element libraries and external components

 Guides for extending SST

 Information on APIs

 Information about current development efforts

 https://github.com/sstsimulator

31

ISCA Tutorial 2017

Wrap-up

 SST is a parallel, flexible simulation framework
 Can simulate many systems at many granularities

 Capable of simulating modern architectures

 Modular design for extensibility

 Please keep us posted on your uses of SST as well as any
capabilities you’ve added or would like to see added

 Thank you for attending!

32

ISCA Tutorial 2017

BACKUP

ISCA Tutorial, 2017

33

Getting and installing SST

 www.sst-simulator.org
 Current release (7.1) source download

 https://github.com/sstsimulator/sst-elements

 Detailed build instructions including dependencies for Linux & Mac

 Links to mailing lists for updates and support

34

MemHierarchy: Cache structure

35

ISCA Tutorial, June 13, 2015

CacheController
• Routes incoming events to handlers
• Manages retry of buffered events in

the MSHRs
• Manages cache allocations and

evictions

CoherenceController
• Manages coherence state
• Receives events from CacheController
• Sends outgoing events

• Forwarded requests, responses, etc.
• Decides when events need to stall

MSHRs
• Buffers stalled

and blocked
events

CacheArray
• Stores cache lines –

data and coherence
state

• Replacements via the
replacement policy
manager

MemHierarchy: Main memory

 MemoryController
 Contains a ‘backing store’ for simulated data

 Can communicate over a network or via a direct link with a cache or
directory

 Interfaces with multiple memory backends

 Available backends
 SimpleMem – basic read/write with associated latencies

 DRAMSim2 – DRAM (external)

 NVDIMMSim – Non-volatile memory (e.g., Flash) (external)

 HybridSim – non-volatile memory with a DRAM cache (external)

 VaultSimC – stacked DRAM

36

ISCA Tutorial, June 13, 2015

Merlin: Network simulator

 Low-level, flexible networking components that can be used
to simulate high-speed networks (machine level) or on-chip
networks

 Capabilities
 High radix router model (hr_router)

 Topologies – mesh, n-dim tori, fat-tree, dragonfly

 Many ways to drive a network
 Simple traffic generation models

 Nearest neighbor, uniform, uniform w/ hotspot, normal, binomial

 MemHierarchy

 Lightweight network endpoint models (Ember – coming up next)

 Or, make your own
37

ISCA Tutorial, June 13, 2015

Ember: Network traffic generator

 Light-weight endpoint for modeling network traffic
 Enables large-scale simulation of networks where detailed modeling

of endpoints would be expensive

 Packages patterns as motifs
 Can encode a high level of complexity in the patterns

 Generic method for users to extend SST with additional
communication patterns

 Intended to be a driver for the Hermes, Firefly, and Merlin
communication modeling stack
 Uses Hermes message API to create communications

 Abstracted from low-level, allowing modular reuse of additional
hardware models

38

ISCA Tutorial, June 13, 2015

Ember: Overview

39

ISCA Tutorial, June 13, 2015

User
BinaryEmber Engine

Hermes API

Firefly

Merlin Network

Ember Motif

Message Passing Semantics
Collectives, Matching etc

Packetization and Byte Movement Engine
Generates packets and coordinates with network

Flit Level Movement, Routing, Delivery
Moves flits across network, timing etc

Event to Message Call, Motif Management
Handles the tracking of the motif

High Level Communication Pattern and Logic
Generates communication events

Ember: Motifs

 Motifs are lightweight patterns of communication
 Tend to have very small state

 Extracted from parent applications

 Models as an MPI program (serial flow of control)

 Many motifs acting in the simulation create the parallel behavior

 Example motifs
 Halo exchanges (1, 2, and 3D)

 MPI collections – reductions, all-reduce, gather, barrier

 Communication sweeping (Sweep3D, LU, etc.)

40

ISCA Tutorial, June 13, 2015

Ember: Motifs (continued)

 The EmberEngine creates and manages the motif
 Creates an event queue which the motif adds events to when probed

 The Engine executes the queued events in order, converting them to
message semantic calls as needed

 When the queue is empty, the motif is probed again for events

 Events correspond to a specific action
 E.g., send, recv, allreduce, compute-for-a-period, wait, etc.

41

ISCA Tutorial, June 13, 2015

Firefly: Network traffic

 Purpose: Create network traffic, based on application
communication patterns, at large scale
 Enables testing the impact of network topologies and technologies on

application communication at very large scale

 Scales to 1 million nodes

 Supports multiple “cores” per Node
 Interaction between cores limited to message passing

 Supports space sharing of the network
 Multiple “apps” running simultaneously

42

ISCA Tutorial, June 13, 2015

Firefly: Simulating large networks

 A network node consists of
 Driver (the “application”)

 NIC

 Router

 Nodes are connected together via
the routers to form the network
 Fat tree, torus, etc.

 Firefly is the interface between the
driver and the router
 Message passing library  Firefly

Hades

 NIC  Firefly NIC
43

ISCA Tutorial, June 13, 2015

Ember
(driver)

Firefly Hades

Firefly NIC

Merlin Router

Scheduler

 Models HPC system-wide job scheduling

 Three components
 Sched: schedules and allocates resources for a stream of jobs

 Node: runs scheduled jobs on their allocated resources

 FaultInjection: injects failures onto the resources

 The scheduler is currently a stand-alone element library
 The schedComponent and nodeComponent must be used together

 The faultInjectionComponent is optional

44

ISCA Tutorial, June 13, 2015

