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Effects of CdC(l, treatment on the local electronic properties of polycrystalline CdTe measured

with photoemission electron microscopy
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Cadmium telluride (CdTe) 1s a polycrystalline photovoltaic (PV)
material that has recently achieved power conversion efficiencies
(21.5%) 1n research cells rivaling those of multicrystalline silicon.
Further improvement of CdTe PV technology requires surpassing current
limits in our understanding of fundamental mechanisms that influence
processing-structure-property-performance relationships in CdTe. In
particular, the influence of grain-boundary (GB) limitations and nano- or
microscale nonuniformities have been 1identified as issues needing
improved understanding.

CdTe GB models [Reviewed in J. D. Major, Semicond. Sci. and Technol. 31, 093001 (2016).]
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Objective and approach boundaries.

e Objective: Determine processing-structure-property-performance-
relationships critical for improving thin-film PV materials and devices.

e Key Question(s): How does CdCl, treatment, a widely-used
processing step, influence the local electronic structure of CdTe thin
films? Does oxygen (via air exposure) impact this step?

e Approach: Leverage a highly interdisciplinary team to develop and
apply a new metrology tool — spec-PELEEM - to measure nanoscale
chemical and electronic structure of PV materials and devices.
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Introduction

Local ionization energy (PEY) : Intensity (/) vs. Wavelength (4)
-Take a set of images while sequentially varying the wavelength (1). Extract an ionization

/Sumple preparation protocol

energy (/E) value for each pixel. * NSG TEC 10 glass superstrates coated with
_ . . _ _ CdCl,-treated Untreated transparent conducting oxide (TCO):
Microcrystalline grain domains, twin v e — e _ $n0,/Si0,/Sn0,:F

boundaries, & polish marks are visible
in all maps, as is grain-to-grain
variation of the ionization energy.
CdCl, treatment did not produce grain
boundary contrast.

¢ 100 nm Mg, ,37Zn,-,,0 (MZO) window layer

* 4-5 um closed-space sublimation (CSS) CdTe

* (dTe films are mechanically polished

* Low-energy 1on desorption step:
— 50eV Artions/ 10-20 min / ~0.1-0.15 pAecm

* Sample transfer with no additional air exposure by use
of an 1nert gas (dry N,) glove box

* X-ray Photoelectron Spectroscopy was used to verity
surface composition after preparation steps

No air exposure

CdCl, treatment and
air exposure
produced grain (GB)
boundary contrast
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Oxygen increased the average i1onization DY it . VN 7 e ¥ 5, e
energy while CdCl, treatment decreased . R i-Y
the average 1onization energy. K /

 Local photoemission spectra (PES) : Intensity (/) vs. Voltage (V)
—-Take a set of images (stack) while sequentially varying the start voltage (V). Extract vacuum level cutoff (£

CdCl,-treatedCdTe
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activated grain
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) threshold at each pixel.

vac

— — Grain-to-grain_variation results
' in stepwise-like variation in the
- 0.05 vacuum level and i1onization energy

Grain-to-grain variation
of the vacuum level
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e Surface photovoltage measurements (SPV): Intensity (/) vs. Voltage (V), with and without add’l illumination
mpl - he shift in PE r h pixel. . . L .
Sample Sample Sl gl shotoemitted Note the shift > spectra at each pixe Additional illumination shifted E, . to lower
e- _
omcp @ electrons CdCl,-treated Untreated energy for CdClz treaFed CdTe' = up.ward
e- ) _ surface band bending, while E, . shifted to higher
to MCP ® detector - _ ¥ J ~0.32 eV ~0.29 6V Hvac B
d T o T —~ poi 403 nm, ~3 mW TP 403 nm, ~3 mw energy for untreated CdTe, indicating downward
etector photoemitted ~~~~~~~ . Q| S ‘., CW laser CW laser .
- 5| < surface band bending.
<[ . electrons empty © T < . —ON
- — states hv'{| hv hv o = . .
+\/i[ f Z 22 The general model of SPV interprets the switch
S Gerdor e ® _*GE-'J | I | | from upward to downward surface band bending
— [empty | filled ¢ 5 d \ S 0.0 1.0 2.0 0.0 1.0 2.0 as inversion from p-type to n-type.
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PR — K cores S L —o : —on Conclusions and Impacs
Photoemission spectra filled f----VBE *--- = . . :
/ states *i Sample 0 : We use the local information of electronic bands
| Photoemission vield i N OV T N that PEEM provides to determine processing-
cores [ + \ curve 0.0 1.0 2.0 0.0 1.0 2.0 structure-property-performance-relationships  in
Relative electron kinetic energy (eV) CdTe. The effects of CdCl, treatment and air
exposure on CdTe surfaces were investigated. In
Sample IE=E,, - VBE Oxygen decreased/increased E . shifts for CdCl,-treated/untreated addition to identifying individual e.ffects, we
CdTe. Along with 1onization energy trends, this suggests that found that both CdCl? treatm.ent and all CXpOsure
R Vs = oxygen hole dopes CdTe films were necessary to activate grain boundaries.
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