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Outline

 Overview of Sierra Mechanics

 Overview of Sierra-SD(Salinas)

 Some acoustics research areas in Sierra-SD

 Example applications of Sierra-SD for acoustics, inverse 
problems
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Overview of Sierra Mechanics

 Goal: massively parallel 
coupled multiphysics
calculations

 Modules for structural 
dynamics, solid mechanics, 
fluids, thermal, etc
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Sierra-SD: A Brief History

 Sierra-SD was created in the 1990’s at Sandia National 
Laboratories for large-scale structural analysis

 Intended for extremely complex structural and structural 
acoustics models
 Routinely used to solve models with 100’s of millions of degrees of 

freedom

 Scalability is the key 
 Sierra-SD can solve n-times larger problem using n-times many more 

compute processors, in nearly constant CPU time
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Overview of Sierra-SD Structural Acoustic 
Capabilities

 Massively parallel

 Hex, wedge, tet acoustic elements (up to order p=6), 
coupled with both 3D and 2D (shell) structural elements

 Linear and nonlinear acoustics

 Allows for mismatched acoustic/solid meshes
 Mortar or multi-point constraints (MPC)’s

 Infinite elements and Perfectly Matched Layers (PML)

 Solution procedures:
 Frequency response (frequency-domain)

 Transient response (time-domain)

 Eigenvalue (modal) analysis

 Linear and quadratic (complex modes) 6



Acoustics Solid Mechanics

Time domain Frequency domain (Helmholtz)

Structural Acoustic Equations of Motion
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 Fully coupled time domain formulation

 Fully coupled eigenanalysis formulation

 Fully coupled frequency-domain formulation
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Discretized Equations of Motion
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 Overlapping Schwarz domain 
decomposition approach
 Effectively handles large numbers of 

constraint equations for mismatched 
fluid/solid meshes

 Elements partitioned into 
subdomains

 Solve local problems on each 
overlapping subdomain with 
Dirichlet BCs on boundary

 Massively parallel implementation 
based on GDSW solver
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Parallel Helmholtz Solver in Sierra-SD



Why Nonlinear Acoustics?

 Small amplitude waves

 Linear constitutive fluid model

 No fluid convection

 Resonance leads to infinite 
amplitude waves

 “Sine wave remains a sine wave”

 No wave distortion

 Wavespeed independent of 
stress state in fluid

Assumptions of Linear Acoustic Theory Consequences

Structural 
model

Acoustic fluid 
model

 Linear acoustics is inadequate for 
many applications:

 Resonating cavities

 Large-amplitude sources

 Far-field explosions

 Aeroacoustic noise
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 The linear acoustic wave equation

 The 2nd order Kuznetsov Equation

 High order nonlinear acoustic equation
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Common Requirement: far-field 
boundary conditions for finite 
element analysis

Structural 
model

Acoustic fluid 
model

Microphone: compute 
far-field response

 Infinite Elements
 Perfectly Matched Layers 

(PML)

Far-Field Acoustics
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Infinite Element Formulation

Acoustic wave equation for fluid
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Weak formulation on exterior domain

Trial and weight functions
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Structural 
model

Acoustic fluid 
model

Microphone: compute 
far-field response

Kirchhoff Integral: 
1. Store entire time history of 

pressure and velocity on 
entire exterior surface

2. Evaluate Kirchhoff integral

Infinite Elements: 
1. Determine which infinite 

element owns microphone 
location

2. Element-level summation

Infinite element rays

Kirchhoff Integral vs Infinite Elements
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General Formulation for PML

Complex coordinate stretching

Helmholtz equation over 
complex coordinates

Weak form over complex 
coordinates

Mapped weak form 
back to real 
coordinates

Re-write as Helmholtz 
equation with variable 
coefficients
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Results: 10-to-1 Prolate Spheroid

For a fixed level of accuracy
• PML required many less 

iterations than infinite 
elements

• PML solution times were 
much faster

• In frequency domain, PML 
is clear winner over infinite 
elements
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What is an Inverse Problem?

 Inverse problems arise when we have partial information and 
indirect observations of a system and need to infer (hidden) 
quantities of interest of the system.

 An inverse problem can be viewed as a quest for information 
that is not directly available from observations or 
measurements.

 The pursuit of a solution to an inverse problem calls for a 
balance synergy between analysis and experimentation.
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Material properties

Geometry

Boundary conditions

Loads

Residual stresses

etc

System parameters

Forward Solver

State Variables
(outputs)

Displacement
Pressure
Temperature
Flow field
etc

Experimental data + inverse solution = missing link! 

Inverse Problems - Motivation
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Abstract Optimization Formulation

Objective function

PDE constraint

Lagrangian

First order optimality 
conditions

Newton iteration

Hessian calculation

Abstract 
optimization 
formulation
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 2-D fluid region with circular VE solid inclusion 
 Inclusion consists of concentric rings with distinct material properties
 Periodic acoustic load applied to end
 Match forward problem pressure distribution by adjusting VE material 

parameters

WATER

ABSORBING 
BOUNDARY

VE SOLID

Inverse Problems: Acoustic Cloaking
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Model setup Forward problem pressure distribution
(500 Hz loading) in model with 50 layers



 Optimized VE foams allow recovery of desired pressure distribution

Left: Target acoustic pressure distribution, from forward problem
Center: Acoustic pressure distribution with initial material guess (2 kHz Loading)
Right: Pressure distribution after convergence to optimized design

Forward OptimizedInitial Guess

Acoustic Cloaking
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800 Hz 1200 Hz 2000 Hz1600 Hz400 Hz

 Optimized VE foams allow recovery of desired forward pressure distribution 
 Top: Acoustic pressure from forward analysis
 Bottom: Acoustic pressure with optimized solid inclusion
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Acoustic Cloaking



Conclusions

 Massively parallel finite element structural acoustics capability 
Sierra-SD has been developed for large-scale analysis

 Applicable to large-scale models with many degrees of 
freedom

 Sierra-SD and optimization code (ROL) have been loosely 
coupled for the solution of source and material inversion 
problems

 Capability has been applied to a variety of problems inside and 
outside of Sandia
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