

Sandia
National
Laboratories

SAND2018-3008C

Grid Modernization Laboratory Consortium Testing Network (GMLC 1.2.3)

PRESENTED BY

Matthew Lave, PhD

IAPG Electrical Systems Working Group Meeting, Dayton, OH
March 22, 2018

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

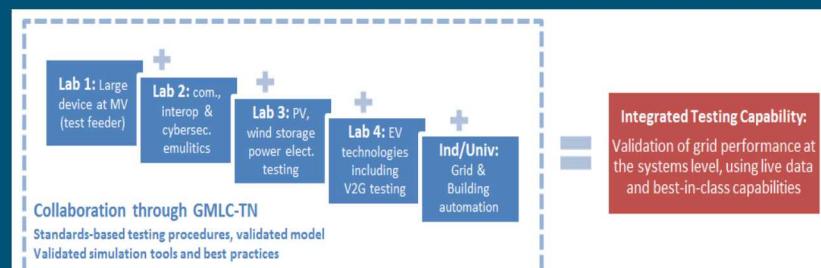
- The Grid Modernization Initiative (GMI) works across the U.S. Department of Energy (DOE) to create the modern grid of the future.
 - Primary funding support comes from the Office of Electricity Delivery and Energy Reliability and Office of Energy Efficiency and Renewable Energy, with the Office of Energy Policy and Systems Analysis providing policy recommendations.
- GMI focuses on the development of new architectural concepts, tools, and technologies that measure, analyze, predict, protect, and control the grid of the future, and on enabling the institutional conditions that allow for more rapid development and widespread adoption of these tools and technologies.

- <https://gridmod.labworks.org/>
- Strategic partnership between DOE and the national laboratories to bring together leading experts, technologies, and resources to collaborate on the goal of modernizing the nation's grid.
- Grid Modernization Lab Call provided funding to GMLC through a comprehensive effort of eighty-eight projects managed by the national laboratories.
- Benefits of the GMLC include more efficient use of resources; shared networks; improving learning and preservation of knowledge; enhanced lab coordination and collaboration; and regional perspective and relationships with local stakeholders and industry.

GRID MODERNIZATION LABORATORY CONSORTIUM (GMLC)

Move from a collection of DOE and lab projects to a DOE-Lab Consortium Model that integrates and coordinates laboratory expertise and facilities to best advance DOE Grid Modernization goals.

- **Core Activities** – These projects (1.1-1.2.5) provide the fundamental knowledge, metrics, and tools needed to support all the Cross-Cut R&D and regional partnerships.
 - e.g., 1.2.5: Grid Sensing and Measurement Strategy
- **Pioneer Regional Partnerships** – These partnerships (1.3.01-1.3.99) involve technical assistance to states, utilities, or other stakeholders that are facing key emerging grid modernization challenges.
 - e.g., 1.3.10 Vermont Regional Partnership Enabling the Use of DER
- **Crosscutting R&D** – These integrated projects (1.4.01-1.4.29) will further advance grid modernization by coupling multiple hardware, software, and institutional solutions into integrated and modernized grids at a scale and a pace necessary to meet national goals.
 - e.g., 1.4.9: Integrated Multi Scale Analytics and Machine Learning for the Grid


GMLC 1.2.3: Testing Network and Open Library

Overall Goal:

Accelerate grid modernization by improving access to and visibility of National Lab testing infrastructure for grid devices and systems, and related models and tools. Enable national labs to drive innovation more effectively and synergistically.

Impact :

- Effectively utilize world-class testing resources and validated models at National Labs and beyond.
- Encourage National Lab-industry, National Lab-government, National Lab-University collaboration
- Enable integrated test capabilities by leveraging multiple facilities

Project Team

Sandia
National
Laboratories

Testing Network (TN)

Federated, lab-based resource for testing and performance validation of grid devices and systems.

Public User Library for Systems Evaluation

Consortium formed to address the project's goals of accelerating grid modernization by enabling access to a comprehensive testing infrastructure and model library

Open Library (OL)

Public repository for validated models, simulation tools, and testing resources.

project organization

project outcome

Significant outcomes so far:

gridPULSE Charter

Executive Summary
The gridPULSE consortium exists to improve access for industry, university, and national laboratory partners to: (a) electric grid related testing resources at the national laboratories; and (b) to electric grid-related, validated models and simulation tools. These are critical to accelerate the development, validation, standardization, adoption, and deployment of new grid technologies, and will enable the national laboratories to drive innovation more effectively and synergistically. Through this consortium of laboratories organized and accessible via an interactive web environment, and using accelerated partnering mechanisms, gridPULSE will support grid innovation and help identify and bridge gaps in testing and modeling resources.

Accelerate grid-modernization by improving access to National Lab testing infrastructure for grid-devices and systems, and related models and tools. Enable national labs to drive innovation more effectively and synergistically.

Background
gridPULSE is a response to the public need to accelerate development of the modern electric grid. Reductions of the economic costs of power generation and delivery, decrease in cost of energy reserve margins, and increased reliability of the grid are critical to future sustainability and national security. Government sponsored research is necessary to develop technologies which address these critical needs. Public and private access to government research, especially validated models and simulation tools, is vital to the modernization of electric grid operations. gridPULSE pulls together and makes accessible to the innovation community the unique testing resources as well as simulation and modeling tools developed by the DOE laboratory complex to support this critical mission.

Members and Users
"Members" of gridPULSE will initially be national laboratories involved in the Grid Modernization Laboratory Consortium 1.2.3 project, entities that have testing capabilities and/or modeling tools to deploy. As the consortium advances into years 3-5, membership will include additional national laboratories' resources and capabilities. And as deemed appropriate by the consortium, expansion may include facilities beyond national laboratories (e.g. universities) as the consortium grows.

"Users" of gridPULSE will be those interested in testing or modeling related to grid modernization, including industry, university, and national laboratory employees. Users do not require special authorization, as information presented through gridPULSE will be available publicly.

A governance structure is designed to maintain efficiency, relevance, and organization to the consortium and includes an *Advisory Board* comprised of a designated representative from each consortium member; and, eventually, a *Steering Committee* comprised largely of experts outside of the consortium.

Primary Objective and Summary
gridPULSE will accelerate the development and commercialization of grid-connected devices by making it simpler and faster for users to access members' unique testing and modeling capabilities related to:

gridPULSE
Public User Library for Systems Evaluation

Catalog of National Laboratory Testing Resources for Grid Devices

March 2018

The catalog is a product of gridPULSE, a consortium formed as a result of the Grid Modernization Laboratory Consortium's Testing Network project (GMLC 1.2.3).

Welcome to the

Public User Library for System Evaluation

Funded by the U.S. Department of Energy, in support of the Grid Modernization Initiative

gridPULSE

GRID
MODERNIZATION
LABORATORY
CONSORTIUM
U.S. Department of Energy

gridPULSE consortium established

testing capabilities and facilities catalog

website to facilitate user interaction

- gridPULSE Charter defines members, users, operation, goals, etc.
 - Adopted by the 5 National Lab team members on October 3rd, 2017
 - Modeled after other successful DOE consortia
- “Members” of gridPULSE have testing capabilities and/or modeling tools.
 - Initially 5 project team member national Labs
 - Later, expansion to other national Labs and beyond (e.g. universities)
- “Users” of gridPULSE are those interested in testing or modeling.
 - Publicly accessible: industry, university, national laboratory employees are all users
 - Users can access information on models and testing resources; can submit testing requests
- Working on streamlined approach to executing necessary agreements among members and users.
 - Standardized agreements that members have agreed to which users can accept and quickly enact
 - Agreements which facilitate partnerships among multiple members to enable enhanced capabilities

- Extensive self-assessment of grid-related test capabilities and facilities
 - 12 DOE National Labs
 - 49 distinct facilities
 - 100s of test facility/test capability pairs
- Formatted as report:
 - Introduction on motivation and how to use information
 - Appendix on partnerships
 - Test facility/capability information presented as both overview tables and detailed paragraphs

Test Facility

- Energy Systems Integration Facility (NREL)
- Distributed Energy Technologies Laboratory (Sandia)
- ...

Test Capability

- Communications Interoperability
- Cybersecurity
- Hardware in the Loop
- Grid Compatibility and Interconnection
- Reliability / Safety / Failure Analysis
- Systems Integration and Control

Application Technology

- Building Technologies
- Dist. Sys. Components
- Electric Vehicles
- Energy Storage
- Fuel Cells
- ICT and AMI
- Integrated Energy Systems
- Microturbines and Gensets
- PV
- Trans. Sys. Components
- Wind

GUIDE TO PARTNERING WITH DOE NATIONAL LABORATORIES

The DOE's National Laboratories and facilities combine decades of experience and billions of dollars in research and development to address national security matters, environmental safety, economic viability, and energy sustainability. The technologies and capabilities developed and maintained to support core mission work can have concomitant benefits to industry, academia, and non-profits through technology transfer mechanisms. This section provides a high-level overview of the most common methods utilized in working with the DOE laboratories. While there is a common operating framework through legislation and administrative law, each laboratory/facility may have unique requirements and regulations and any prospective partner should contact a specific laboratory/facility of interest for detailed information.

Overview

Although a variety of partnership mechanisms exist, this section highlights the most common. The table below provides a short summary of the mechanisms, each of which are explained in more detail later in the section. For more information on DOE's overall efforts and many opportunities in technology transfer, contact DOE's Office of Technology Transitions at OfficeofTechnologyTransitions@hq.doe.gov or visit the website at <http://energy.gov/technologytransitions/office-technology-transitions>.

Table 6: Partnership Mechanisms

Short Overview

Allow external entities to conduct proprietary or non-proprietary research in diverse technology areas using the National Laboratories' state-of-the-art designated User Facilities.

User Facilities

Strategic (Non-federally Funded)

Agreements Commercial

License Agreements

Cooperative Development

98 1/2 - 99

70 83

22 40

35 23

19

46 56

Capabilities/Technology Areas table

OVERVIEW OF CAPABILITIES

Laboratory capabilities can be present within a single facility, or spread across multiple facilities to incorporate a more robust set of equipment and expertise. As stated in the "Definitions" section of this catalog, capabilities represent a type of test (or set of tests) that can be completed through the combination of available expertise, experience, equipment, and other resources. Table 4 provides an overview of which capabilities are actively available for which technology areas at a given national laboratory. Additional details for each capability are found later in this catalog.

Table 4: Capabilities Matrix

	Technology Areas										
	Building Technologies	Distr. System Components	Electric Vehicles	Energy Storage	Fuel Cells	ICT & AMI	Integrated Energy Sys.	Microturbines & Gensets	PV	Trans. System Components	Wind
Argonne National Laboratory											
Communications Interoperability	■	■	■	■	■	■	■	■	■	■	
Reliability/Safety/Failure Analysis	■	■	■		■	■					
Systems Integration and Control	■	■	■		■	■	■	■			
Brookhaven National Laboratory						■	■	■		■	
Systems Integration and Control						■	■	■		■	
Idaho National Laboratory											
Cybersecurity	■	■	■	■	■	■	■	■	■	■	
Hardware-in-the-loop	■	■	■	■	■	■	■	■	■	■	
Reliability/Safety/Failure Analysis	■	■	■	■	■	■	■	■	■	■	
Systems Integration and Control	■	■	■	■	■	■	■	■	■	■	
Lawrence Berkeley National Laboratory											
Communications Interoperability						■	■				
Hardware-in-the-loop	■	■	■		■	■					
Reliability/Safety/Failure Analysis			■	■							
Systems Integration and Control	■	■			■				■		

Lawrence Livermore National Laboratory

Cybersecurity

National Energy Technology Laboratory

Systems Integration and Control

National Renewable Energy Laboratory

Cybersecurity

Grid Compatibility and Interconnection

Hardware-in-the-loop

Reliability/Safety/Failure Analysis

Systems Integration and Control

Oak Ridge National Laboratory

Communications Interoperability

Cybersecurity

Grid Compatibility and Interconnection

Hardware-in-the-loop

Reliability/Safety/Failure Analysis

Pacific Northwest National Laboratory

Cybersecurity

Hardware-in-the-loop

Reliability/Safety/Failure Analysis

Sandia National Laboratories

Communications Interoperability

Cybersecurity

Hardware-in-the-loop

Reliability/Safety/Failure Analysis

Systems Integration and Control

Savannah River National Laboratory

Hardware-in-the-loop

Reliability/Safety/Failure Analysis

SLAC National Accelerator Laboratory

Systems Integration and Control

Facilities/Technology Areas table

		Technology Areas										
		Building Technologies	Distr. System Components	Electric Vehicles	Energy Storage	Fuel Cells	ICT & AML	Integrated Energy Sys.	Microturbines & Gensets	PV	Trans. System Components	Wind
ANL	Advanced Powertrain Research Facility											
ANL	Battery Research Facilities											
ANL	EV Smart Grid and Interoperability Center											
BNL	Northeast Solar Energy Research Center											
INL	Battery Test Center											
INL	Cybersecurity Test Facilities											
INL	Electric Grid Test bed											
INL	Electric Vehicle Infrastructure Laboratory											
INL	Power and Energy Systems Real-time Laboratory											
INL	Smart Microgrid Test bed											
LBNL	Building Technologies Test Chambers											
LBNL	Demand-to-Grid Lab											
LBNL	Electrochemical Technologies Laboratory											
LBNL	Facility for Low Energy Experiments in Buildings											
LLNL	Skyfall Cyber-Physical Test bed											
NETL	Electromagnetic Component Testing & Fabrication Lab											
NETL	Energy Infrastructure Monitoring Sensor Dev/Test Lab											
NREL	Energy Storage Facilities											
NREL	Energy Systems Integration Facility											
NREL	National Wind Technology Center											
NREL	Vehicle Testing and Integration Facility											
ORNL	Advanced Cable Test Development Facility											
ORNL	Building Technologies Research and Integration Center											
ORNL	Center for Trustworthy Embedded Systems											
ORNL	Distributed Energy Comms. and Controls Lab											
ORNL	HV Dielectrics Research Facility											
ORNL	Multi-Zone Environmental Chambers											
ORNL	Powerline Conductor Accelerated Test Facility											
ORNL	Power Electronics & Electric Machinery Res. Center											
ORNL	SI-GRID											
ORNL	Technical Testing and Analysis Center											
PNNL	ADMS Test bed											
PNNL	Advanced Battery Facility											
PNNL	Advanced Building Controls Test Facility											
PNNL	Control of Complex Systems Test Bed											
PNNL	Electricity Infrastructure Operations Center											
PNNL	Energy Communications Cyber Test Bed											
PNNL	Pacific Northwest Side-by-Side Laboratory Homes											
PNNL	PMU Metrology Facility											
PNNL	PowerNET											
SNL	Battery Abuse Testing Laboratory											
SNL	Control and Optimiz. Networked Energy Tech. Lab											
SNL	Distributed Energy Technologies Laboratory											
SNL	Emulytics and Threat Analysis Laboratory											
SNL	Energy Storage Testpad and Analysis Laboratory											
SNL	Scaled Wind Farm Technology Facility											
SNL	Secure Scalable Microgrid Test bed											
SRNL	High Current Calibration Facility											
SLAC	Grid Integration, Systems, and Mobility Lab											

Facility description example

The Energy Storage Test Pad and Analysis Laboratory evaluates the controls and operation of the energy storage system through developing control algorithms and conducting real-world development tests. In 2017, Sandia revamped the Test Pad to help answer basic questions such as "How do you optimize the operation of an energy storage system?" Users can analyze system parameters, develop testing procedures, or create new energy storage standards using real-world situations – rather than simulations – that are applicable to renewables, the microgrid, islanding, and the connected grid.

The Test Pad is integrated with Sandia's Distributed Energy Technologies Laboratory (DETL) and allows for access to the microgrid through DETL's interoperability network which is linked to data acquisition systems, grid and photovoltaic simulators, and DER. The Test Pad utilizes a 1 MW hour vanadium redox flow battery for storage and simulators for various grid voltage and voltage current frequency scenarios. The electric distribution switch gear provides connection or disconnection from the grid; configurations are connected to resistive and capacitive load banks and can be taken through a wide range of operational states, which allows the test bed to generate its own microgrid.

BENEFITS OF WORKING WITH THE ENERGY STORAGE TEST PAD AND ANALYSIS LABORATORY

Most energy storage system testing relies on computerized simulations and desktop analysis to generate results. The Energy Storage Test Pad and Analysis Laboratory takes desktop analysis and utilizes it to create actual demonstrations and experiments (using a wide variety of equipment) that provide real-world data that can inform improvements and optimization strategies for controls and operations within energy storage systems. The connection to DETL allows researchers and users to extend experiments to additional physical equipment and simulated systems for a complete understanding of systems-of-systems impacts.

Scaled Wind Farm Technology Facility

ICT and AMI, Wind

Courtesy of Sandia National Laboratories.

OVERVIEW

The Scaled Wind Farm Technology (SWIFT) Facility focuses on enabling rapid, cost-efficient testing and development of transformative wind energy technology. SWIFT operates with the goals of a) reducing

turbine-turbine interaction and wind plant underperformance, b) developing advanced wind turbine rotors, and c) generating and utilizing open-source information to advance simulation capabilities. The facility consists of three variable-speed, variable-pitch modified wind turbines with full power conversion and an extensive sensor suite; two heavily instrumented inflow meteorological towers; and site-wide time-synchronized data collection. As it relates to grid modernization, SWIFT hosts a control building that handles all central control and operations of the facility (including proprietary work). The Control Building is integrated to each turbine via an individual fiber-optic bundle connection, offering data transfer capabilities and flexible site network reconfiguration. The following provides additional detail on the control software for the facility's wind turbines:

- Open source code
- Modularized by subsystem
- EtherCAT up to 1000 Hz
- All DAQ signals available for control
- Running on NI VeriStand
- Parameterized variable speed and torque controller
- Maintains all original safety systems and alarms

UNIQUE FEATURES OF SWIFT

SWIFT is the first public facility specifically designed to use multiple wind turbines to measure turbine performance and wake interactions in a wind farm environment. The site's strategic location at the Reese Technology Center and hosted by Texas Tech University (TTU) in Lubbock, Texas is key; the Lubbock area has a high wind resource and consistent wind direction, which is ideal for research. The site is in the southern end of the U.S. wind corridor which provides favorable weather conditions all year due to Lubbock's directional, high average wind speed.

The SWIFT turbines are research-scale and can operate together to simulate a wind farm or independently from one another for different test scenarios. The arrangement of the turbines has been designed so that interactions typically observed in utility wind farms will occur throughout the year. Additional on-site capabilities provided by research partners include a 1 MWh battery owned by the local electric utility, 150 kW of solar panels owned by TTU, and significant investments by GroupNIRE in electrical substations, leased land, and a microgrid facility.

BENEFITS OF WORKING WITH SWIFT

SWIFT provides open-source turbine access to potential partners and researchers, which allows for a thorough working knowledge of each turbine's structural characteristics and control system programming prior to initiation of a partnership at the site. The control system programming is completely accessible and can be modified to support research objectives. Each turbine has a variable frequency drive whose internal functions are accessible through the turbine control system for torque and power quality control applications. Private wind turbine manufacturers and operators generally do not make these control capabilities accessible to the degree that SWIFT does. SWIFT turbines are smaller than most utility-scale

gridPULSE WEBSITE

- <https://gridmodtools.org/>; being finalized
- Main vehicle for:
 - Viewing resource catalog of test capabilities and facilities
 - Viewing and entering models into the Open Library
 - Submitting testing requests/requests for more details
 - Details on partnerships

The screenshot shows the gridPULSE website homepage. At the top, there is a dark header with the gridPULSE logo (a stylized heart rate line) and the word "gridPULSE". Below the header, a large dark box contains the text "Welcome to the" and "Public User Library for System Evaluation" in white. Below this, it says "Funded by the U.S. Department of Energy, in support of the Grid Modernization Initiative". At the bottom of this box is the GRID logo, which consists of a hexagonal pattern of lines and the text "GRID MODERNIZATION LABORATORY CONSORTIUM U.S. Department of Energy". The background of the page is a dark image of a city at night.

Resource Catalog Open Library How to Partner National Labs About Contact

Welcome to the

Public User Library for System Evaluation

Funded by the U.S. Department of Energy, in support of the Grid Modernization Initiative

GRID
MODERNIZATION
LABORATORY
CONSORTIUM
U.S. Department of Energy

Resource catalog is sortable and searchable for efficient access to info

gridPULSE

Resource Catalog Open Library How to Partner National Labs About Contact

Catalog of Testing Resources

Lab Name: Capabilities: Technology Areas: CLEAR FILTERS

Lab Name	Capabilities	Technology Areas
<input type="checkbox"/> Argonne National Laboratory	<input checked="" type="checkbox"/> Communications Interoperability	<input type="checkbox"/> Building Technologies
<input type="checkbox"/> Brookhaven National Laboratory	<input type="checkbox"/> Cybersecurity	<input type="checkbox"/> Distr Sys Components
<input type="checkbox"/> Idaho National Laboratory	<input type="checkbox"/> Grid Compatibility and Interconnection	<input type="checkbox"/> Electric Vehicles
<input type="checkbox"/> Lawrence Berkeley National Laboratory	<input type="checkbox"/> Hardware-in-the-loop	<input type="checkbox"/> Energy Storage
<input type="checkbox"/> Lawrence Livermore National Laboratory	<input type="checkbox"/> Reliability/Safety/Failure Analysis	<input type="checkbox"/> Fuel Cells
<input type="checkbox"/> National Energy Technology Laboratory	<input type="checkbox"/> Systems Integration and Control	<input type="checkbox"/> ICT and AMI
<input type="checkbox"/> National Renewable Energy Laboratory		<input type="checkbox"/> Integrated Energy Sys
<input type="checkbox"/> Oak Ridge National Laboratory		<input type="checkbox"/> Microturb & Gensets
<input type="checkbox"/> Pacific Northwest National Laboratory	<input checked="" type="checkbox"/> PV	
<input type="checkbox"/> Sandia National Laboratories		<input type="checkbox"/> Trans Sys Components
<input type="checkbox"/> Savannah River National Laboratory		<input type="checkbox"/> Wind
<input type="checkbox"/> SLAC National Accelerator Laboratory		

Lab Name	Facility Name	Capabilities	Technology Areas	Differentiating Capabilities
Argonne National Laboratory	EV Smart Grid and Interoperability Center	Communications Interoperability, Reliability/Safety/Failure Analysis, Systems Integration and Control	Distr Sys Components, Electric Vehicles, Energy Storage, ICT and AMI, Integrated Energy Sys, PV	Charging interoperability; grid connectivity; metering, communication, and control
National Renewable Energy Laboratory	Energy Systems Integration Facility	Communications Interoperability, Cybersecurity, Grid Compatibility and Interconnection, Hardware-in-the-loop, Reliability/Safety/Failure Analysis/ Systems Integration and Control	Distr Sys Components, Electric Vehicles, Energy Storage, Fuel Cells, ICT and AMI, Integrated Energy Sys, Microturb & Gensets, PV, Trans Sys Components, Wind	HIL at MW scale; petascale computing center; real-time simulation; high-speed data links to different lab facilities for HIL testing
Oak Ridge National Laboratory	Distributed Energy Communications and Controls Lab	Communications Interoperability, Cybersecurity, Grid Compatibility and Interconnection, Hardware-in-the-loop, Reliability/Safety/Failure Analysis, Systems Integration and Control	Distr Sys Components, Energy Storage, ICT and AMI, Integrated Energy Sys, Microturb & Gensets, PV	connected to ORNL distribution system; communications through dedicated network
Pacific Northwest National Laboratory	Electricity Infrastructure Operations Center	Communications Interoperability, Grid Compatibility and Interconnection	Building Technologies, Distr Sys Components, Electric Vehicles, Fuel Cells, PV, Trans Sys Components, Wind	Fully configurable grid control rooms; real-time streaming synchrophasor data; energy/distribution management systems
Sandia National Laboratories	Distributed Energy Technologies Laboratory	Communications Interoperability, Cybersecurity, Grid Compatibility and Interconnection, Hardware-in-the-loop, Systems Integration and Control	Distr Sys Components, Energy Storage, ICT and AMI, Integrated Energy Sys, Microturb & Gensets, PV	Up to 10 inverters in simultaneous test: 120/240 and 480V; up to 600V DC, 150 kW; 40 kW and 200 kW PV simulators
Sandia National Laboratories	Secure Scalable Microgrid Testbed	Communications Interoperability, Cybersecurity, Hardware-in-the-loop, Systems Integration and Control	Energy Storage, ICT and AMI, Integrated Energy Sys, Microturb & Gensets, PV, Wind	Highly configurable through emulation; 9 energy storage emulators capable of 5 kW

Sortable catalog links to full details on each facility

Facilities

Northeast Solar Energy Research Center

The Northeast Solar Energy Research Center (NSERC) is a configurable, utility-scale (up to 1MW) solar PV research facility designed as a flexible test bed for studying renewable energy technologies, grid integration, energy storage, smart grid devices, and microgrid controls. NSERC's versatile main switchgear design enables the connection of inverters, energy storage, load or load simulators, and their controls directly to all, or portions of, the main PV array. This allows for research or experimental testing of new grid technologies. Smart grid devices can also be tested within the main control building or on a larger outdoor test pad that can be interconnected with other systems.

Operational at 518kW, the facility's first expansion to 907kW was completed in November 2016. A suite of research instruments monitors NSERC's components and devices-under-test for electric power performance, power quality, solar irradiation, and meteorological environmental conditions at very high resolution (up to 1/sec) and stores the performance, environmental, and test data in the facility's SCADA


- Main focus of PY3 (Apr. 2018 to Mar. 2019) is on stakeholder outreach and establishing a sustainable organization for gridPULSE
 - Public release of catalog and website
 - Communications outreach including presentations to stakeholders
 - Understanding use cases and what more information might be necessary
 - Governance structure that creates value for members
 - Recruit additional members
- Additionally, working on:
 - Streamlining partnerships mechanisms
 - Keeping information in the Resource Catalog and Open Library up to date

gridPULSE

Public User Library for Systems Evaluation

<http://www.gridmodtools.org>

mlave@sandia.gov