- e

The Promise of Stable Nanocrystalline Metals:
Ultra-low Wear and Diamond-like Carbon from Thin Air

PRESENTED BY

Nicolas Argibay

Sandia National Laboratories is a multi-
mission laboratory managed and operated by
National Technology and Engineering
Solutions of Sandia LLC, a wholly owned
subsidiary of Honeywell International Inc. for
the U.S. Department of Energy’s National
Nuclear Security Administration under
contract DE-NA0003525.

Material, Physical, and Chemical Sciences Center
Sandia National Laboratories
Albuquerque NM USA



2 I The Team Experiments

i

Miké Dugger Andrew Kustas Tim Furnish
. L

fir

Brendan Nation Blythe Clark ~ John Curry Tomas Babuska
Simulations Synthesis Microscopy

o w AQ; i \\&‘\“ S W\W B =8
Mike Chandross Adam Hinkle Chris O’Brien Dave Adams Kathy Sobcza
(“Heisenberg”)

Mark Rodriguez




3 I Where Metals Matter in Tribology - Electrical Contacts
RF Micro Electromechanical Systems (MEMS)

Phone Interconnects

switching GHz signals
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Source: D. Hyman and M. Mehregany, IEEE Trans. & Pack. Tech. 22-3, 1999 Source: Rockwell Scientific metal-metal switch

Aerospace and Ener
Electronics (e.g. PCB blade connectors): e 4

200 - 500 nm thick electroless hard gold

Source: Honeybee Robotics (http://www.honeyb: botics. P io/rolling-contact-connector/)




4 I The Nanocrystalline Promise

ref: D. Jia, et al. Acta Mat 2003.
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Nanocrystalline metals
have many advantages...

High Tensile Strength
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friction coefficient
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ref: B. L. Boyce et al. Met Trans 2011.
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5 I Reduced friction and wear of nanocrystalline metals

Alloying reduces friction coefficient:

15 . 99.999% pure Au
3 ol Alloying improves
o M . .
£ | friction & wear
S performance by reducing
S 05/ 99.9% Au and stabilizing grain size
& —
- (add immiscible species like Ni or ZnO)
0.0 !

0 10 20 30 40 50 60 70 80 90 100
cycle number

...by reducing and stabilizing grain size:
99.9% Au 99.5% Au 99% Au




6 I The chaIIenge of grain size instability...
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Nanocrystalline metals
are driven to grain growth
thermally...

...and mechanically

H. A. Padilla and B. L. Boyce, Exp. Mech. (2010).




ref: Simoes et al., Nanotech. (2010)
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kinetics thermodynamics

Classic grain growth model (GB speed): v =M||P=|M exp(— g;j

Intrinsically thermodynamically stable nanocrystalline alloys E.!



RNS Model (Chris Schuh Group at MIT)

Slide courtesy of [ Schuh and H. Murdoch (MI7)

Free Energy

Thermodynamically
preferred grain size!
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References: co™
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Solute segregation at grain boundaries:

......... '_ <:>_>Q a6 =7

Are thermally stable alloys also mechanically stable?
Is thermo-mechanical stability achievable?




9 I GB solute segregation reduces thermodynamic drive for growth

Reference: Murdoch and Schuf, Science (Z017)
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Increasing solute lowers the grain boundary energy

and reduces the stable grain size




10 I Binary metal alloys with favorable segregation

Reference: Murdoch and Schuh, J. Mat. Research (2013)
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11 | Sputter-deposited two types of Pt-10 at. % Au films

Freestanding 18 nm thick films, lifted from rock salt, transferred to TEM grids:

inital ~'8 nm grain size gs
cross-section view:

Plan view:

film surfaces

cross-section view:

Plan view:




12 I Heterogeneity, denuded zones, preferential segregation to triple junctions
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13 I Comparing thin (freestanding) and thick (columnar) film 500°C anneals

freestanding 18 nm thick films
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grain size (nm)

PtAu alloy nanocrystalline microstructures are thermally stable

XRD in situ grain growth
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PtAu alloys have high yield

Experimental Tensile Fatigue:

1.5 Pt-Au max strength ~ 1.6 GPa
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MD Simulation Snapshots (grain growth during uniaxial tensile stress exposure):
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strength and remarkable fatigue resistance

Experimental stress-strain data:
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16 | Stable nanocrystalline PtAu exhibited low friction(against sapphire)

friction coefficient
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17 I Also, extremely low wear rate — 3x10-? mm3/N-m

SEM of PtAu wear track after 100k passes

Nanoindentation hardness ~ 7 GPa/,-—""/

.

20 pm s |

Average Wear Track Cross-section:
10

| specific wear rate ~ 3 x 10° mm>*/N-m

o
t

: avg worn area ~ 0.32 um?
| total wear cycles = 100k

1 I max Hertz stress = 1.1 GPa
-30 " T T T

N
o
L

wear depth (nm)
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position along wear track cross-section (um)

TEM cross-sections of wear track

<—— sliding direction ——
T T

PtAu coating

N .
steel substrate Tiadhesion layer T
200 nm

Ultra-low wear and
no evidence of grain size evolution
at peak Hertz stress of 1.1 GPa
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Remarkable Improvement in Wear Resistance

specific wear rate (mm?*/N-m)
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19 I When scissors beat rock!

wear depth (um)

wear depth (nm)

[
0 50

sapphire ball (wear)
K~4.4x10° mm3/Nm

VIOSS ~ 8.7 x107 mm?

avg profile (wear)
K~ 2.6x10° mm3/Nm “
V. ~52x107 mm?

total sliding distance = 200m
max Hertz stress = 1.1 GPa

loss

| 1
150
position along wear track cross-section (um)

|
200

E'i



20 | Friction Behavior in Non-Oxygenated Environment

friction coefficient
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Compounds Identified

trichloroethylene

acetic acid

benzaldehyde

tridecane

phenol

acetophenone
2-heptyl-1,3-dioxolane
butylated hydroxytoluene
benzoylformic acid
phenylmaleic anhydride

(20-100 ng/L)

... In situ tribo-chemical formation of DLC films from “thin air”!

(Albuquerque is at 6,000t/ 1,800m of elevation, after all...)
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friction coefficient

Alcohol Fixes Everything...
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Unfortunately, water complicates interpretation.
Was addition of humid IPA enhancing or inhibiting?

More on this...
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22 I SEM and Profilometry Reveal Thick, Well-Adhered, Persistent Films

N, and ppb trace organics N, and concentrated IPA/H,0 vapor
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23 I Raman Spectroscopy -- Highly Graphitic Hydrogenated (20%) DLC

(N, and trace organics wear track)
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24 I TEM Reveals a Nanocomposite Structure (DLC/PtAu Nanoparticles)

DLC/PtAu nanocomposite film

PtAu film
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friction coefficient
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Alcohol helps, but only in moderation

... and don’t water down your alcohol.




26 I MD Simulations Show Chain Scission and Possibly a Stress Threshold

Initial Configuration (Pre-Sliding):

hexane
monolayer

shear direction

Pt rigid slab

a0 0 a0 2 0 B

Pt rigid slab

A

After Shearing for ~ 8 ns:

hexane
bilayer

shear direction

Pt rigid slab

Pt rigid slab

&
<«

carbon-carbon bonds

fraction change
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1
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0
1
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reactive force field - meant for hydrocarbon catalysis on Pt, not tribo-chemistry...

Potential Reference: Y. Shin et al., J. Phys. Chem. A, 2016




Closing Remarks

Demonstration of highly stable nanocrystalline PtAu alloy

Stable nanocrystalline alloys show promise for tribological
applications in thin film form under cyclic stress and annealing

Noble metal exemplar addresses confounding arguments like the
presence of metal-oxides (i.e. Zener pinning)

Ultra-low wear with a metal alloy at relatively high stress!

Tribo-chemical pathway for in situ DLC film formation from ambient
hydrocarbons was found with wear resistant PtAu... wide range of
possible engineering implications (additives, electrical contacts?)

Pt-Au
7% strain

Pt-Au
0% strain

pure Pt
7% strain

(o)

AccV Magn F———1 100pm
20 0 kv 280 2.1 0T2 @Tilt 46de:

Source: Rockwell Scientific metal-metal switch

Color Key:
PtFCCatoms
Pt GB atoms

brittle failure

Ruistems along GBs
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Supplementary Slides




29 I Nanocrystalline stability maps: enthalpy of segregation> enthalpy of mixing

Reference: Murdoch and Schuh, J. Mat. Research (2013)
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30 I Two routes to stabilize nanocrystalline metals — kinetics and thermodynamics

ref: Simoes et al.,, Nanotech. (2010)

Grain growth is essentialy driven by grain boundary 2
v=|M|{PE|M_ exp _9 127,

described by speed of grain boundary motion (speed), v kT r

Limit the kinetics of recrystallization (traditional quasi-stability) /

M = grainboundary mobili

e.g. Zener pinning, solute drag, porosity P = pressure on grain boupdary
‘ . v 7, = Interfacial energy per unit area
e a’\u"‘- (] . -
. f Y r =mean grain radi
@ svj Weissmiiller (1993), Kirchheim (2002), and Schuh (2012)
° b © have made significant contributions toward understanding

and achieving thermodynamic stability by lowering grain
boundary energy through solute segregation

Regular Nanocrystalline Solution (RNS) Model:
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ref: Murdoch et al., Acta Mat. (2013)
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31 I GB solute segregation reduces thermodynamic drive for growth

Reference: Murdoch and Schuf, Science (Z017)
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Increasing solute lowers the grain boundary energy
and reduces the stable grain size



12 I TEM grain growth studies of Pt-Au thin films by annealing at 500°C

freestanding 18 nm thick films
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33 I What about mechanical stability? Preliminary tribological testing is promising

capacitive probes wear track axial position (mm)
two axis double leaf ] t‘_’ measure cantlle:rer 0 1 2 3
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34 | Friction maps of self-mated PtAu show contact stress dependence

Diagram of ramped contact force experiment

Ramped force experiments on
initially nanocrystalline Pt and Pt-
Au films (using hard Au-alloy
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g
high friction (> 0.8) low friction (< 0.3)
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35 I Therefore, reduced friction due to high hardness... right?

grain size, d (um)
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Reference: C. Lo, J. Augis, and M. Pinnel, JAP (1979)

nano limit (d < 100 nm)

hardness (GPa)

pure, coarse grained Au
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Sandia National Laboratories — Some Highlights

Z-Machine : Pulsed Power Fusion Research
record temperature: 2x10°K

Annual Budget (2016) : $2.4B
Employees: ~ 10k
HQ: Albugquerque, NM

: e
glar Tower - Molten Salt - QMW




