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3 1 Where Metals Matter in Tribology - Electrical Contacts

RF Micro Electromechanical Systems (MEMS)

switching GHz signals

Upper Actuation Contact Upper Contact
Restoring Spring Electrode Armature Electrode

Contac

Lower / Lower /7
Actuation Electrode Contact Electrode

Source: D. Hyman and M. Mehregany, IEEE Trans. & Pack. Tech. 22-3,1999

Electronics (e.g. PCB blade connectors):
200 - 500 nm thick electroless hard gold

Phone Interconnects

Source: Rockwell Scientific metal-metal switch

Aerospace and Energy

Source: Honeybee Robotics (http://wwwhoneybeerobotics.com/portf olio/ro ing-contact-connector/)



4 The Nanocrystalline Promise

ref: D. Jia, et al. Acta Mat 2003.
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Nanocrystalline metals
have many advantages...
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ref: B. L. Boyce et al. Met Trans 2011.
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5 1 Reduced friction and wear of nanocrystalline metals

Alloying reduces friction coefficient:
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6 The challenge of grain size instability...
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S. Rajasekhara, K. Hattar, P. Ferreira, A. Kinghorn, B. G. Clark, unpublished.

...and mechanically

Nanocrystalline metals
are driven to grain growth
thermally...

H. A. Padilla and B. L. Boyce, Exp. Mech. (2010).



I Intrinsically thermodynamically stable nanocrystalline alloys

Classic grain growth model (GB speed): v = Pk

ref: Simoes et al., Nanotech. (2010)
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RNS Model (Chris Schuh Group at MIT)

Slide courtesy el r Schuh alid H. Murdoch ow)

Solute segregation at grain boundaries:

Thermodynamical/y
prfferred grain ske!

Grain Size

Grain Size, d

References:
Kirchheim, Acta Materialia, 2002
Weissmuller, J. Materials Research, 1994
T. Chookajorn, et al., Science, 2012
D.S. Gianola et al., Acta Materialia, 2006
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Are thermally stable alloys also mechanically stable?

Is thermo-mechanical stability achievable?



9 GB solute segregation reduces thermodynamic drive for growth

Refereace: Alardach Bad Schuh, Scieace (70r)

Increasing solute
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Increasing solute lowers the grain boundary energy
and reduces the stable grain size



Binary metal alloys with favorable segregation

Reference: Murdoch and Schuh, J. Mat. Research (2013)
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11 Sputter-deposited two types of Pt- I 0 at. % Au films

Freestanding 18 nm thick films, lifted from rock salt, transferred to TEM grids:

cross-section view:

Plan view:

\
film surfaces 20 nm

2 pm thick films on silicon wafers:

cross-section view:

Plan view:



12  Heterogeneity, denuded zones, preferential segregation to triple junctions
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13 Comparing thin (freestanding) and thick (columnar) film 500°C anneals

freestanding 18 nm thick films

2 µm thick films on Si wafers



14 PtAu alloy nanocrystalline microstructures are thermally stable
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15 I PtAu alloys have high yield strength and remarkable fatigue resistance

Experimental Tensile Fatigue:

1.5 - Pt-Au max strength — 1.6 GPa
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cycles to failure, Nf

Experimental stress-strain data: Simulation stress-strain data:
*freestanding 5 pm thick films with columnar grains
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16 Stable nanocrystalline PtAu exhibited low friction(against sapphire)
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17 Also, extremely low wear rate — 3x I 0-9 mm3/N-m

SEM of PtAu wear track after 100k passes TEM cross-sections of wear track

Nanoindentation hardness — 7 GPa

20

Average Wear Track Cross-section:
10 

specific wear rate — 3 x 10 9 mm3/N-m

c 0

I avg worn area — 0.32 prn2
total wear cycles = 100k

l max Hertz stress = 1.1 GPa

-50 0 +50 +100

PtAu coating

steel substrate Ti adhesion layer
200 nm

Ultra-low wear and
no evidence of grain size evolution
at peak Hertz stress of 1.1 GPa

position along wear track cross-section (µm)



18 Remarkable Improvement in Wear Resistance
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19 I When scissors beat rock!
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20 I Friction Behavior in Non-Oxygenated Environment
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... in situ tribo-chemical formation of DLC films from "thin air"!
(Albuquerque is at 6,000ft/1,800m of elevation, after al(...)



21 I Alcohol Fixes Everything...
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Unfortunately, water complicates interpretation.
Was addition of humid IPA enhancing or inhibiting?

More on this...
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22  SEM and Profilometry Reveal Thick,Well-Adhered, Persistent Films

lab air N2 and ppb trace organics
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23 Raman Spectroscopy -- Highly Graphitic Hydrogenated (20%) DLC
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24 TEM Reveals a Nanocomposite Structure (DLC/PtAu Nanoparticles)

FIB C
DLC/PtAu nanocomposite film



25 I Anhydrous hexanes
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26 MD Simulations Show Chain Scission and Possibly a Stress Threshold

Initial Configuration (Pre-Sliding):

shear direction
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reactive force field - meant for hydrocarbon catalysis on Pt, not tribo-chemistry...

Potential Reference: Y. Shin et al., J. Phys. Chem. A, 2016



27 I Closing Remarks

• Demonstration of highly stable nanocrystalline PtAu alloy

• Stable nanocrystalline alloys show promise for tribological
applications in thin film form under cyclic stress and annealing

• Noble metal exemplar addresses confounding arguments like the
presence of metal-oxides (i.e. Zener pinning)

• Ultra-low wear with a metal alloy at relatively high stress!

• Tribo-chemical pathway for in situ DLC film formation from ambient
hydrocarbons was found with wear resistant PtAu... wide range of
possible engineering implications (additives, electrical contacts?)

Color Key: 

Pt FCC atoms
Pt GB atoms

Au atoms

Pt-Au ti, pure Pt 6 Pt-Au

0% strain 7% strain 7% strain

brittle failure
along GBs

electrical contacts

Source:Rockwell Scientific metal-metal switch
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29 Nanocrystalline stability maps: enthalpy of segregation> enthalpy of mixing

Reference: Murdoch and Schuh, J. Mat. Research (2013)

E
n
t
h
a
l
p
y
 o
f 
S
e
g
r
e
g
a
t
i
o
n
 [
k
J
/
m
o
l
]
 

50

20

10

5

Temperature [K]

300 500 750 1000 1500
1

Mg A OAu

Rh
•

0 Pd

Pd

0.91-cr

Ni
X

0 A
Pd

Mn
•

Ni
A

v 1-if

Pd+ X
Pd

5 10 15 25

Ent alpy of Mixing [kJ/mol]

Te
mp

er
at

ur
e,

 °
C
 

1800

1600

1400

1200

1000

800

600

400

Au

10 20 30 4r 50 60 70 80 90 100

at. %

critical temperature = apex of miscibility gap

Pt

ASM International 2006 Diagram No_ 900242



30  Two routes to stabilize nanocrystalline metals — kinetics and thermodynamics I*
ref: Simoes et al., Nanotech. (2070)

Grain growth is essentialy driven by grain boundary
=

described by speed of grain boundary motion (speed), v v

Limit the kinetics of recrystallization (traditional quasi-stability)

grain
boundary

stress
due to
surface
tension

e.g. Zener pinning, solute drag, porosity

GB motion
during recrystallization

drag force: fD = 27z-r a cos 6 sin 9

• 0,4d-

I'•

5°•

0 1

0
1

S

P M, exp
kT

2 70

r

M = grain boundary mobilit

P = pressure on grain bou ary

yo = interfacial energy er unit area

r = mean grain radi

Weissmüller (1993), Kirchheim (2002), and Schuh (2012)
have made significant contributions toward understanding
and achieving thermodynamic stability by lowering grain
boundary energy through solute segregation

Regular Nanocrystalline Solution (RNS) Model:
ref: Chookajorn et al., Science, 2012
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31 GB solute segregation reduces thermodynamic drive for growth

Refereace: Alurdach Bad Schuh, SLVEINE (70r)
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32 I TEM grain growth studies of Pt-Au thin films by annealing at 500°C

freestanding 18 nm thickfilms
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33 I What about mechanical stability? Preliminary tribological testing is promising
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34 I Friction maps of self-mated PtAu show contact stress dependence

Ramped force experiments on
initially nanocrystalline Pt and Pt-
Au films (using hard Au-alloy
probes):
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35 1 Therefore, reduced friction due to high hardness... right?
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36 Albuquerque, NM:
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37 Sandia National Laboratories — Some Highlights

Z-Machine : Pulsed Power Fusion Research
record temperature: 2x109K
350 TW pov,er (f

Col. John Stapp
46.2G Deceleration

Annual Budget (2016) : $2.4B
Employees: — 10k
HQ: Albuquerque, NM '` t 111Pri*


