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Epoxy Selection and Performance

» Degradation tendencies
 Depends on cure behavior and cure state evolution
» Elevated temperature performance

* Research goals and approach:
« Spatially resolved oxidation chemistry
* Understand cure behavior in epoxies
* Identify reasons for unusual cure behavior in Epon 828/DEA
« Better approaches for quantification of cure conversion states

* High temperature epoxy degradation phenomena
* Develop diagnostic tools and lifetime prediction models

Key words: Materials Characterization, Spectroscopy,
Mechanistic Evaluation




mﬁﬁ Reactive Diffusion Models Developed at SNL

Measured intrinsic oxidation behavior for epoxies in Bell XI
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Applied Galerkin FEM DLO model capability for
spatially resolved polymer degradation

New spatial modeling !
capability
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» Oxidation level can be assessed using oxidation rates

110°C 7% oxidation at 30 days
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95°C 3% oxidation at 50 days

Ablecast 931 adhesive, ~ 100 micron films in air ovens
expected to be homogeneous oxidation behavior

10 100
Aging time [days]

Epoxy Oxidation is Real

5.6 mm diameter disks
DLO profile depth < 250 micron

Weight Retention of homogeneously aged thin
films (~110 micron)

Time 140°C 125°C 110°C 95°C

12 days 91.6% 98.1% 99.9% 98.9%
33 days 84.7% 93.2% 98.3% 98.6%
83 days 80.0% 88.2% 95.7% 97.5%
180 days 71.9% 81.2% 89.5% 96.0%
455 days 73.9% 82.6% 90.4%

» At high temperature epoxy oxidation occurs in parallel with weight loss
» High temperature DLO depth is consistent with model

redictions




meSm Diffusion Limited Water Profiles

= Water sorption important for mechanical performance, spatially dependent
= Humid environments result in moisture uptake, sorption kinetics

= Fickian and Langmuir sorption behavior

= Solid mechanics, swelling and cracking, Diffusion Controlled Hydrolysis

1.5 B —H&— 5 days —— 25 days

1.25 —&— S50 days —&— 250 days

—— 500 days —4— 750 days

— —&— 1500 days —4@— 2500 days

C (%]

— permanent state

0.5 1

0.25 -
F. Jacquemin and S. Fréour
Water—Mechanical Property Coupling

e [mm]

Chemistry: Hydrolysis kinetics as a function of [H20] is needed :
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ax Epon 828 cured with DEA

A CHy~CH,—OH OH CHy~CH,—OH
R ~0-CHp~CH-CH, + HN_ —>=  R—0-CH,~CH-CH,~N_
CHp—CH,~OH CH,—CH,~OH

Initial secondary amine addition

o)
/\
X—CHy~OH + CH-CH, —= X—CH,~O—CH-CH,~OH + XCHzo{CHCHZO}QH—CHQOH
R R R R

n

Hydroxyl addition plus parallel epoxy polymerization

 Excess epoxy group reactions:

« A) Epoxy groups can homo-polymerize (exact mechanism unclear)

* B) Epoxy reactions with existing hydroxyl (ethanol and epoxy addition OH)
« Competitive chemistry, is either process dominant? Combination?
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m*"'Sﬁ'ﬂnexpected Reaction Kinetics in 828/DEA

» 828/DEA cure does not follow consistent Arrhenius behavior
- Expectation: Higher temperature should accelerate reaction and push
cure conversion
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The cure reaction starts faster, but is then slower at higher
temperature
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Mid IR — NIR 828/D230

« Epoxy band in some systems (ie. 828/DEA) is convoluted in mid IR (914)
* NIR offers better resolved epoxy absorbance at 6068 and 4529 cm-1

MIR and NIR spectra were acquired at ~8 seconds, 10 mins, 45 mins, and 15 hours at 80°C
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Epoxy as well as amine bands are resolved in NIR

E Duemichen, U Braun et al, Thermochimica Acta, 616 (2015) 49
‘NIR monitoring of epoxy cure with variable heating rate’
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men Mid IR - NIR

« Epoxy band consumption for 914 (mid-IR) and 6068 cm-1 (NIR) for
828/DEA cure at 50°C

* 914 is integrated between 928 and 888 (not deconvoluted)
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mean Epon 828/D230 t-T Cure Behavior

» Traditional epoxy cure
* Final conversion levels drop at lower T, but an ongoing power law
driven cure reaction is evident
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Cure speed increases and higher final conversion is obtained with T
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e Epon 828 /D230 — 70°C Cure

 Epoxy consumption can be compared with amine loss and hydroxyl

formation
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This system can be examined with multiple spectroscopy approaches
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Epon 828 - D230

Epon828/D230 Epoxy(6070cm™) Conversion da k m n
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mMono-functional Epoxy Polymerization

CH3 0O tert. amine X /// K
A catalysis : | \
Q O-CH,—CH-CH, —> { ('ZH—CHZ—O- -Y + { (’ZH—CHZ—O ]
¢h " Gh "
R R
Polyether formation Cyclic-polyether?
Linear polymer requires Is this feasible?

some addition
(initiation and termination)

- |
R—0 + R'3N+—CH2—C|)—O{~CH2—C|)H—O+H —> R—OH + R3N: + H2C:$—0JFCH2—9H—O]LH
C|)H2 C|)H2 : CH, CH, "

How does this reaction proceed? What is conversion with time?
Can water interfere/contribute? 13
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NIR Epoxy Quantification Efforts

- Baseline and spectral correction for ‘physics’ T effects

« Band deconvolution with local baseline optimization (Matlab)

» Gaussian peaks with fixed peak position help the analysis

* Individual band integration and normalization for relative conversion

« Boundaries for conversion, initial reagent concentration (a =0), complete

reaction from high T annealing above Tg (a =1)
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Challenge is peak separation, integration, and conversion boundarigs




* No easy t-T superposition, highly complex cure behavior dependent on T
* Two cure stages result in complicated kinetic cure behavior and model
« Conversion state for transition between cure regimes depends on T

Heloxy62 Epoxy(6070cm™) Conversion Heloxy62 Epoxy(6070cm™) Conversion

1.0 1.0
3 ] \)
g o ¢_E, ® 40C
S 084l o S 08 - @ 50C
8 Y 8 O 60C
c 06| o c 06 @ 80C
9 e 9 © 90C
4 o 4 @ 100C
S 04l o S 04 o troc
5 ® 5 e 120C
o ® () @ 130C
%’ 024 e g‘ 0.2 - ® 140C
e -4 @ 150C
1] 1]

00 n - e i T 0.0 I >\ ; : T T T T T

0.001 0.01 0.1 1 10 100 1000 10" 10° 10" 102  10®  10* 105 106 107
Time [hr] 1st step shift Time [hr]

Delayed cure conversion at high temperatures
What do limited conversion states indicate? L




Early Reaction Kinetics

« Early stage t-T superposition yields 67 kdJ/mol over wide T range
* Is limited to specific conversion level, that decreases with T
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What do limited early conversion states indicate?
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Homopolymerization

» Evidence for ‘ceiling’ temperature behavior
 What is Mw (polymerization degree) for linear polymerization?
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 GPC proves limited chain propagation behavior
o Wi 17




Absorbance

Cure Inhibition -

 Does water contribute?

Water

« Can water favor linear polymers (recall addition needs)?
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Perhaps evidence that atmospheric exposure affects cure behavior
Water loss or separation (density variance) during polymerization’g8
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LT Cure Inhibition - Water

e 6 cure conditions: 0.1% & 0.5% H20 addition vs. control at 50°C & 110°C
« H20 is miscible with epoxy. Rxn carried out in sealed vials over 155 days.

1000 Molecular Weight 100
Average sample
- No H20
2t ) — 0.1% H20
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temperature
=
< 100 -
E
— H62 pure
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D 0 - - —————
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 H20 lowers chain propagation or increases termination
* Much higher Mw formation at lower temperature 18
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LT Epon 828/DEA Cure Behavior

* Preliminary NIR data for t-T epoxy conversion (initial guidance)
» Peak quantification can be further optimized

1.0

40°C
60°C
70°C
80°C
90°C
100°C
160°C

0.8 -

0.6 -

®@eO0O0O0C@0e

0.4 -

0.2 -

Gaussian Area (6070cm-1)

0.0 T ) T
0.001 0.01 0.1 1 10 100

Time [hr]

1000 10000

Influence of temperature (anomalous cure) is clearly apparent
Pure mathematical data superposition is not the best approach 20
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meE  Fpon 828/DEA Cure Mechanisms

- Extensive literature review with collaborator John McCoy — NM Tech

“Cure mechanisms of Diglycidyl Ether of Bisphenol A (DGEBA) Epoxy with

Diethanolamine” John D. McCoy*, Windy B. Ancipink, Caitlyn M. Clarkson, Jamie M. Kropka**,
Mathias C. Celina**, Nicholas H. Giron**, Lebelo Hailesilassie, Narjes Fredj, under review “Polymer”

At low temperature the DGEBA/DEA gelation reaction is “activated” (shows a pronounced
induction time, similar to autocatalytic behavior) by the tertiary amine in the adduct.

At high temperature, the activated nature of the reaction disappears.

Upper stability temperature of the zwitterion initiator of the activated gelation reaction

Reaction rate of epoxide consumption cannot be generically represented as a function only
of temperature (T) and degree of epoxy conversion (a)

Requires specific consideration of the dilute intermediates in the reaction sequence




"M 1jigh Temperature Performance of Epoxy

» Thermally induced decomposition (pyrolysis chemistry)
* IR based analysis of gaseous decomposition products
* Flow through approach, sealed ampoules, rapid scans
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maaE IR Analysis of Degradation Products

» Proof of principle epoxy aging test in sealed ampoule
* ~100 mg epoxy sample aged for 3.75 d at 240C,~ 1% expected weight loss
» Rapid IR spectral acquisition of flushed out gas with decomposition products
» Evidence for significant water, plus some CO2 and CO as volatiles, some CH signatures
* Integrate water peak between 1588 and 1518 cm-1
» Use corrected calibration for limited water spectral range; content in pg/cc
» Determined 1.078 mg H20 in sealed ampoule; actual weight loss was 2.4 mg (2.2%)
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« At 240C and early on, the epoxy yields ~ 45% weight loss as water,;




Physically Absorbed Water

« Amine cured epoxy has a tendency to absorb water (somewhat hydroscopic)
* NIR can be used to quantify dissolved water in an epoxy

« Water uptake will depend on geometry and permeability (thin lab samples are
expected to more easily pick up water)
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Presence of dissolved water and its chemical formation




Liquid High T Products - Mw

* Pyrolysis leads to some volatile material that can be liquid and solid upon cooling
 GPC was used for guidance on molecular weight of CDCI3 soluble residue
» Two samples: 240°C-10d and 240°C-28d
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« High T pyrolysis products yield ‘organic material’ in 10%-103 Mw range
25
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» Weight loss — Water formation — Material Contraction

» Stress and changes in local chemical environment
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Rinetic Models — Basis for Extrapolations

 Shift factors were determined by time—temperature superposition of multiple
properties referenced to 210°C

Temperature (°C)
240 230 220 210

Weight Loss - 167 kJ/mol
Length Contraction - 174 kJ/mol
Width Contraction - 162 kJ/mol
H20 Formation - 178.5 kJ/mol
CO2 Formation - 163 kJ/mol
CO Formation - 172 kJ/mol

-—
o
1

Shift Factors

194 196 198 200 202 204 206 2.08
1/T[10° K-1]

Initial trends: activation energies range from 162-179 kJ/mol.
27
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Lifetime Prediction Models
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Need to establish Ea for high temperature epoxy degradation
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mean Summary

* Never disregard polymer aging phenomena

* NIR coupled with mid-IR spectroscopy are excellent cure monitoring tools
« Epoxy polymerization can be unexpectedly complex

« 828/DEA contains excess epoxy and shows anomalous cure behavior

- Elevated temperature may not favor rapid increased cure-conversion

« Small amounts of water can mechanistically interfere

» High temperature applications (>150°C) will induce epoxy degradation
* Issues are volatile formation, weight loss and material contraction (stress)

* Ongoing work: Extensive aging studies for lifetime prediction studies

* Impact: Improved methods for cure characterization and aging characterization




