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Epoxy Selection and Performance

• Degradation tendencies
• Depends on cure behavior and cure state evolution
• Elevated temperature performance

' Research goals and approach: 
• Spatially resolved oxidation chemistry
• Understand cure behavior in epoxies
• Identify reasons for unusual cure behavior in Epon 828/DEA
• Better approaches for quantification of cure conversion states

• High temperature epoxy degradation phenomena
• Develop diagnostic tools and lifetime prediction models

Key words: Materials Characterization, Spectroscopy,
Mechanistic Evaluation
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Applied Galerkin FEM DLO model capability for

spatially resolved polymer degradation

New spatial modeling
capability
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min Epoxy Oxidation is Real

• Oxidation level can be assessed using oxidation rates

110°C, 7% oxidation at 30 days

95°C, 3% oxidation at 5 ays19 
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Ablecast 931 adhesive, — 100 micron films in air ovens
expected to be homogeneous oxidation behavior
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DLO profile depth < 250 micron

Weight Retention of homogeneously aged thin

films (-110 micron)

Ti me 140°C 125°C 110°C 95°C

12 days 91.6% 98.1% 99.9% 98.9%

33 days 84.7% 93.2% 98.3% 98.6%

83 days 80.0% 88.2% 95.7% 97.5%

180 days 71.9% 81.2% 89.5% 96.0%

455 days 73.9% 82.6% 90.4%

Aging time [days]

• At high temperature epoxy oxidation occurs in parallel with weight loss
• High temperature DLO depth is consistent with model predictions 4



Diffusion Limited Water Profiles

• Water sorption important for mechanical performance, spatially dependent

• Humid environments result in moisture uptake, sorption kinetics

• Fickian and Langmuir sorption behavior

• Solid mechanics, swelling and cracking, Diffusion Controlled Hydrolysis
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Water—Mechanical Property Coupling

Chemistry: Hydrolysis kinetics as a function of [H20] is needed 5
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Epon 828 cured with DEA

X—CF

/0\ /CH2—CH2-0H 9 /CH2—CH2-0H
O—CH2—CH—CH2 + HN R—O—CH2—CH—CH2—N\

\CH2—CH2-0H CH2—CH2—OH

Initial secondary amine addition

o
/\

—CH—CH2—O + yH-CH2-0 CH—CH2—OHCH-CH2
R R R n R

Hydroxyl addition plus parallel epoxy polymerization

• Excess epoxy group reactions:

• A) Epoxy groups can homo-polymerize (exact mechanism unclear)

• B) Epoxy reactions with existing hydroxyl (ethanol and epoxy addition OH)

• Competitive chemistry, is either process dominant? Combination?

6



nexpected Reaction Kinetics in 828/DEA

7F

• 828/DEA cure does not follow consistent Arrhenius behavior
• Expectation: Higher temperature should accelerate reaction and push
cure conversion
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The cure reaction starts faster, but is then slower at higher
temperature 7



Mid IR NIR 828/D230
• Lpoxy band in some systems (ie. 828/DEA) is convoluted in mid IR (914)

• NIR offers better resolved epoxy absorbance at 6068 and 4529 cm-1

MIR and NIR spectra were acquired at -8 seconds, 10 mins, 45 mins, and 15 hours at 80°C
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E Duemichen, U Braun et al, Thermochimica Acta, 616 (2015) 49
`NIR monitoring of epoxy cure with variable heating rate' 8



Mid IR - NIR

• Epoxy band consumption for 914 (mid-IR) and 6068 cm-1 (NIR) for
828/DEA cure at 50°C

• 914 is integrated between 928 and 888 (not deconvoluted)
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Epon 828/D230 t-T Cure Behavior

• Traditional epoxy cure
• Final conversion levels drop at lower T, but an ongoing power law
driven cure reaction is evident
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Epon828/D230 Epoxy(6070cm-) Conversion
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Epon 828 / D230 70°C Cure

• Epoxy consumption can be compared with amine loss and hydroxyl
formation
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This system can be examined with multiple spectroscopy approaches
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Mono-functional Epoxy Polymerization
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WIR Epoxy Quantification Efforts
• Baseline and spectral correction for 'physics' T effects

• Band deconvolution with local baseline optimization (Matlab)

• Gaussian peaks with fixed peak position help the analysis

• Individual band integration and normalization for relative conversion

• Boundaries for conversion, initial reagent concentration (a 0), complete
reaction from high T annealing above Tg (a 1)
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Rieloxy 62 Complicated Cure Behavior

• No easy t-T superposition, highly complex cure behavior dependent on T

• Two cure stages result in complicated kinetic cure behavior and model

• Conversion state for transition between cure regimes depends on T
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Early Reaction Kinetics

• Early stage t-T superposition yields 67 kJ/mol over wide T range

• Is limited to specific conversion level, that decreases with T
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What do limited early conversion states indicate? 16



Homopolymerization
• tvici 

• 

hence tor ceiiing temperature beavior

• What is Mw (polymerization degree) for linear polymerization?
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• GPC proves limited chain propagation behavior
• Hiaher Mw at lower temneratures 17



Cure Inhibition - Water
• Does water contribute?

• 
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Perhaps evidence that atmospheric exposure affects cure behavior
Water loss or separation (density variance) during polymerization3.8



Cure Inhibition - Water

• 6 cure conditions: 0.1% & 0.5% H20 addition vs. control at 50°C & 110°C

• H20 is miscible with epoxy. Rxn carried out in sealed vials over 155 days.
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• H20 lowers chain propagation or increases termination
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Epon 828/DEA Cure Behavior
-

• Preliminary NIR data for t-T epoxy conversion (initial guidance)

• Peak quantification can be further optimized
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Pure mathematical data superposition is not the best approach 20



Epon 828/DEA Cure Mechanisms

• Extensive literature review with collaborator John McCoy - NM Tech

"Cure mechanisms of Diglycidyl Ether of Bisphenol A (DGEBA) Epoxy with
Diethanolamine" John D. McCoy*, Windy B. Ancipink, Caitlyn M. Clarkson, Jamie M. Kropka**,
Mathias C. Celina**, Nicholas H. Giron**, Lebelo Hailesilassie, Narjes Fredj, under review "Polymer"

• At low temperature the DGEBA/DEA gelation reaction is "activated" (shows a pronounced
induction time, similar to autocatalytic behavior) by the tertiary amine in the adduct.

• At high temperature, the activated nature of the reaction disappears.

• Upper stability temperature of the zwitterion initiator of the activated gelation reaction

• Reaction rate of epoxide consumption cannot be generically represented as a function only
of temperature (T) and degree of epoxy conversion (a)

• Requires specific consideration of the dilute intermediates in the reaction sequence

21



High Temperature Performance of Epoxy
•• • •

I IICIIIIally Illuut•CLA 1.011C11111.1y1

IR based analysis of gaseous decomposition products

Flow through approach, sealed ampoules, rapid scans
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IR Analysis of Degradation Products

• rroui 
-- -Z 

of principle epoxy dying LUSA bedleU

• 100 mg epoxy sample aged for 3.75 d at 240C,- 1% expected weight loss

• Rapid IR spectral acquisition of flushed out gas with decomposition products

• Evidence for significant water, plus some CO2 and CO as volatiles, some CH signatures

• Integrate water peak between 1588 and 1518 cm-1

• Use corrected calibration for limited water spectral range; content in i.ig/cc

• Determined 1.078 mg H20 in sealed ampoule; actual weight loss was 2.4 mg (2.2%)
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• At 240C and early on, the epoxy yields - 45% weight loss as water23



Physically Absorbei Water

r

• Amine cured epoxy has a tendency to absorb water (somewhat hydroscopic)

• NIR can be used to quantify dissolved water in an epoxy

• Water uptake will depend on geometry and permeability (thin lab samples are
expected to more easily pick up water)
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Liquid High T Products - Mw

• Pyrolysis leads to some volatile material that can be liquid and solid upon cooling

• GPC was used for guidance on molecular weight of CDCI3 soluble residue

• Two samples: 240°C-10d and 240°C-28d
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• High T pyrolysis products yield 'organic material' in 102-103 Mw range
25



olatile Yields - Weight Loss - Contraction
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• Stress and changes in local chemical environment
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Lnetic Models Basis for Extrapolations
• Shift factors were determined by time—temperature superposition of multiple

properties referenced to 210°C

1

Temperature (°C)

240 230 220 210

• Weight Loss - 167 kJ/mol
• Length Contraction - 174 kJ/mol

Width Contraction - 162 kJ/mol
• H20 Formation - 178.5 kJ/mol

CO2 Formation - 163 kJ/mol
• CO Formation - 172 kJ/mol

•

1.94 1.96 1.98 2.00 2.02 2.04 2.06 2.08

1/T[10-3 K-1]

Initial trends: activation energies range from 162-179 kJ/mol.
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Lifetime Prediction Models
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Need to establish Ea for high temperature epoxy degradation
processes through extensive t-T data sets, establish relevant Ea
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Summary

• Never disregard polymer aging phenomena

• NIR coupled with mid-IR spectroscopy are excellent cure monitoring tools
• Epoxy polymerization can be unexpectedly complex
• 828/DEA contains excess epoxy and shows anomalous cure behavior
• Elevated temperature may not favor rapid increased cure-conversion
• Small amounts of water can mechanistically interfere

• High temperature applications (>150°C) will induce epoxy degradation
• Issues are volatile formation, weight loss and material contraction (stress)

• Ongoing work: Extensive aging studies for lifetime prediction studies

• Impact: Improved methods for cure characterization and aging characterization
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