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Application space for GaN in power electronics
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high power • high temperature • high frequency • low power losses • low weight and volume
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Understanding minority carrier diffusion length is
important for improving device performance

Sandia
National
laboratories

State-of-the-art devices do not achieve the theoretical limits of performance
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Literature reports of GaN diffusion length, L, vary

Sandia
National
laboratories
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Sample: Ni Schottky on n-GaN
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8 nm Ni

8 um n-GaN, MOCVD
n-GaN

Photoluminescence

spectrum comparable to

high quality HVPE GaN:
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Reshchikov and Morkoc, J. Appl. Phys. 97, (2005)
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Configurations for diffusion length measurements
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National
laboratories

Electron Beam Induced Current (EBIC)

probe
tip

e-beam
Schottky
contact secondary

electrons

space-charge
region

GaN Ni

probe
tip/

SEM 5 um

• cvo
•

e-h
pairs

ohmic contact

1-;lanar-Collector

Configuration

• Vary d

• Straightforward
implementation

• Simple model

J
rNormal-Collector

Configuration

• Vary d

• Challenging

implementation

• Simple model

W

iDepth-Dependent

Configuration

• Vary R

• Straightforward
implementation

• More complex

model

W R

J
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Conventional approach: planar-collector EBIC
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National
laboratories

(Advantages:

• Straightforward

implementation

• Same configuration
used for studying

defects

• Simple model

Disadvantages:

• Model
assumptions
difficult to satisfy
for materials with
small L

/ Typical values for Gal\l-

Schottky diodes:

• W 100 nm
, • 100 nm < L < 1 um

Yakamov, J. Alloy. and Comp. 627 (2015)

Simple, commonly used model:

i(d) = exp(-d/L)•d-n

n = 0.5 for slow surface recombination (v 0)
n = 1.5 for fast surface recombination (v 00)

Main assumptions:

• R » W
• d »
• d » L
• Generation at a point source

101
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0

d» R is difficult to satisfy due to signal-to-noise issues
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Fitting regardless of model assumptions gives high,
inconsistent values for L
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Alternate approach: depth-dependent EBIC
Sandia
National
laboratories

Vary R by changing

accelerating voltage, Eb

io4

1

le
o

)< 12 keV

l
e-beam

R = 531 nm

0 Casino
—simple model

5 10 15 20 25 30

Eb (keV)

( Advantages: Disadvantages: \

• Straightforward • More complex

implementation model

• Insensitive to surface

recombination

Casino (Monte Carlo) simulation of electron trajectories:

Ni

GaN

30 keV
e-beam

MN=

R = 2.55 um

www.gel.usherbrooke.ca/casino/download2.html
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Model for collected current in depth-dependent EBIC
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collected current

1
h(z) = 

depth-dose dependent
e-h generation rate

= efl h(z)dz+

1

tm

A
total number

ll carriers

of e-h pairs 
generated in

created by 
the space-
charge region

e-beam
are collected

( floc

jw h(z) exp [— (z — W)/L]dz

Carriers generated in the
bulk semiconductor must
diffuse to the space-charge
region to be collected

Yakamov, J. Alloy. and Comp. 627 (2015)

®
II II 011PARTObtivT 01 

ill a V lielftWa

ENERGY infk,,'AZI
10



Data and model fitting results
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• Metal thickness target was 8 nm

• Independent measurements

found W — 100 nm
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Comparison to normal-collector shows good agreement
Sandia
National
laboratories

<-0 • :0 IR 

Advantages:

• Simple model

Disadvantages:

• Challenging

implementation

Ni GaN

•

Ni

SEM

GaN

1 um

Luke et al., J. Appl. Phys. 57 (1985)
EBIC

Ong et al., Solid-State Elec. 37 (1994)

i(d) oc exp(-d/L) 1

Requires:

• d > R
• R « L

• R/L<4
• Negligible surface
recombination (v 0)

contact W+R
\ 4-*

-500 0 500 1000 1500 2000 2500 3000
d (nm)
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Comparison to literature
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• We use EBIC to measure the hole diffusion length for high-quality homoepitaxial GaN, and

explore three measurement implementations.
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Planar-Collector Configuration \

• Use with caution!

• Not a good choice for low L materials.

• Gives high, inconsistent L values.

Normal-Collector Configuration

• Use if possible

• Challenging implementation, but
 1 reliable results

• 0

.-•

Depth-Dependent Configuration

• Best choice

}

}

• Straightforward implementation and
reliable results that are consistent with
the normal-collector configuration
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