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The accurate evaluation of the performance of complex engineering devices needs to rely

on high-fidelity numerical simulations and the systematic characterization and propagation

of uncertainties. Several sources of uncertainty may impact the performance of an engi-

neering device through operative conditions, manufacturing tolerances, and even physical

models. In the presence of multiphysics systems the number of the uncertain parameters

can be fairly large and their propagation through the numerical codes still remains pro-

hibitive because the overall computational budget often allows for only an handful of such

high-fidelity realizations. On the other side, common engineering practice can take advan-

tage from a solid history of development and assessment of so called low-fidelity models

which albeit less accurate are often capable to at least capture overall trends and param-

eter dependencies of the system. In this contribution we address the forward propagation

of uncertainty parameters relying on statistical estimators built on sequences of numerical

and physical discretizations which are provably convergent to the high-fidelity statistics,

while exploiting low-fidelity computational models to increase the reliability and confidence

in the numerical predictions. The performances of the approaches are presented by means

of two fairly complicated aerospace problems, namely the aero-thermo-structural analysis

of a turbofan engine nozzle and a flow through a scramjet-like device.

Nomenclature

x Spatial coordinates
ξ Vector of stochastic parameters
p(ξ) Joint probability density function of ξ
t Temporal coordinate
d Number of stochastic parameters
Ω Physical space
Ξ Stochastic space
T Temporal space
Q Generic Quantity of Interest
M Number of discretization degrees-of-freedom
N Number of stochastic realizations
ℓ ML dicretization level
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E [Q] Expected value of Q
Var (Q) Variance of Q
ρ Pearson’s correlation coefficient between low- and -high-fidelity models

Ê[Q] Estimated expected value for Q
Q̂MC

M,N Monte Carlo estimator for E [QM ] based on N samples

Q̂HF,CV
M,N multifidelity control variates MC estimator for QHF

M

Λ Multifidelity variance reduction
λ Lagrange multiplier
C Computational cost
τℓ Ratio between variances of Y̊ LF

ℓ and Y LF
ℓ

θℓ Ratio between covariances (HF,LF) for Y̊ LF
ℓ and Y LF

ℓ

w Cost ratio between HF and LF

Superscripts

(i) ith sample
HF High-fidelity
LF Low-fidelity

I. Introduction

Numerical predictions of the performance of complex multi-physics engineering devices cannot leave aside
the evaluation of the uncertainies’ impact. In presence of complex high-fidelity multi-physics numerical codes
the computational budget is often limited to an handful of realizations whereas the number of uncertain pa-
rameters can be fairly large. In aerospace and aerodynamics applications is also very common to deal with
systems or devices which exhibit high non linearity and even discontinuous responses, as for instance in the
case of presence of shock waves or large structural displacements and deformations. Therefore, the combi-
nation of high dimensional parameter spaces (referred in literature as curse of dimensionality3), non-linear
responses and high computational cost of a single deterministic realization still constitutes a barrier for
uncertainty quantification (UQ). Indeed common UQ techniques, as for instance Stochastic Collocation or
Polynomial Chaos,22 are very efficient in the presence of parameter spaces of moderate dimension and smooth
responses. In recent years, to overcome these difficulties many improvements have been proposed,7, 31 how-
ever in high-dimensional spaces their applicability still remains limited. More recently, statistical sampling
methods, which historically were among the first ones to be proposed, have re-gained popularity. The seminal
Monte Carlo (MC) method has been generalized to multilevel approaches leading to the so-called Multilevel
MC method (MLMC). The MLMC method was first introduced in the context of numerical quadrature19 and
subsequently generalized by Giles to enhance the MC path simulation for stochastic differential equations in
finance.18 More recently, MLMC has been applied to a variety of problems ranging from elliptic, parabolic
and hyperbolic problems.5, 2, 24 The MLMC method has been demonstrated to be superior to MC in all
possible scenarios, and it is a good candidate for many applications which actually are intractable by other
UQ methods. Despite all these advantages, the number of simulations required remains very high, even if
it stays more favorable compared to other techniques. At the same time, in the engineering practice a solid
history of use and assessment of low-fidelity models is present. For instance, in aerodynamics a sequences
of models and numerical methods have been developed in the last fifty years to assist the engineers in the
preliminary design stages. Nowadays the increased computational capabilities led to a broader use of high-
fidelity simulations even in the preliminary stages of design. However, the need for UQ can still motivate
the use of low-fidelity computational models which albeit less accurate are often capable to capture general
trend and parameters dependencies of the model. The goal of this work is to show how the combination of
multilevel techniques and low-fidelity models, by means of the so-called control variates approach, can allow
to generate more reliable statistics in the context of forward UQ studies for large multi-physics applications
for which the computational budget would make the use of other UQ methods very challenging. To demon-
strate the flexibility of the algorithm and the advantages of its application with respect to other sampling
strategies two applications are presented. The first is an aero-thermo-structural analysis of the nozzle of a
F100-PW-220 turbofan engine which powers the Northrop Grumman’s unmanned combat vehicle X-47B.12

For this problem a set of operative and manufacturing uncertainties is considered. A multi-physics analysis
is performed for the flow inside the nozzle and the thermal and mechanical loading on the surrounding struc-
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ture. The second example is a unit model inspired by the HIFiRE (Hypersonic International Flight Research
and Experimentation) Supersonic Combustion RAMJET (SCRAMJET) engine configuration designed at
NASA Langley Research Center.6, 21 The unit problem used in this manuscript targets the subdomain of
the primary injector section of this SCRAMJET and focuses on the interaction betweeen the fuel jet and the
supersonic air crossflow without combustion. The remainder of the manuscript is organized as follows. In
Sec. II we furnish some context regarding the meaning of multilevel and multilevel hierarchies in engineering
applications. Sampling methods, which are the fundamental tool we use in all the following derivations,
are introduced in Sec. III. Afterward, we describe how to build multifidelity estimators, Sec. IV, multilevel
estimators, Sec. V, and eventually how to combine the two ideas to obtain multilevel-multifidelity estima-
tors in Sec. VI. A brief discussion of some relevant issues impacting on the practical implementation of the
algorithms is reported in Sec. VII. We focus on the deployment of the MLMF algorithm on two aerospace
engineering problems, namely an aero-thermo-structural analysis of a nozzle and a unit problem inspired
by the supersonic combustion SCRAMJET engine HIFiRE. These two applications are briefly described in
Sections VIII.A and VIII.B, respectively. Eventually, the numerical results obtained for the UQ forward
analysis of the two problems mentioned above are reported in Sec. IX. Conclusions and perspectives are
drawn in Sec. X.

II. Multilevel/Multifidelity context in engineering applications

In this work we are interested in two complex multi-physics aerospace problems for which the com-
putational cost limits the number of total runs available making the applicability of classical UQ forward
algorithms very challenging. In general, the overall analysis of complex engineering devices consists in at
least three fundamental stages: physical modeling, numerical discretization, and Verification and Validation
(V&V) which encompasses a forward UQ phase. These three steps should not be intended as part of a
complete sequential process, but instead are steps to be taken in the context of an iterative process aiming
to verify the validity of the hypotheses and approximations made at each stage. The first stage, referred
here as physical modeling, is the process of selecting the adequate level of physical description which suits
the application, i.e. equation or system of equations which govern the system. For instance, examples of dif-
ferent physical choices in Computational Fluid Dynamics (CFD) are laminar versus turbulent flows, viscous
versus inviscid fluid, ideal versus real gas thermodynamics equation of state etc. The discretization step is
associated to the choice of the numerical algorithms and parameters which allows the accurate resolution of
the selected set of physical equations. It should be evident that this step is not completely decoupled from
the previous stage since different algorithms are suited for different physical models. For instance, in the
context of CFD, different physical hypotheses may lead to complete different mathematical properties of the
equations, as for instance compressible versus incompressible hypothesis for a fluid lead to a system of equa-
tions which are hyperbolic or elliptic in nature which in turn might require completely different numerical
algorithms, for instance explicit versus implicit time stepping procedures. The discretization step comes also
with associated parameters which impact on the accuracy of the numerical modeling. For instance, the most
common parameters in the numerical resolution of partial differential equations (PDEs) are the spatial and
time discretization steps. The role of the V&V step is to rigorously assess that the combination of physical
and numerical discretization are adequate choices for the problem and also to equip the numerical predictions
with confidence intervals. Indeed, confidence intervals naturally arise from the propagation of uncertainties
that come from the first two stages. In this manuscript we are interested in the forward propagation step
contained in V&V which we refer here generically as forward Uncertainty Quantification (UQ) that con-
sists in the numerical propagation of all the sources of uncertainties through the numerical code in order to
provide confidence intervals for the desired Quantities of Interest (QoIs). Often a very challenging task of
V&V is to provide a framework to rigorously balance the errors that come from the discretization step and
from stochastic variability. This aspect constitutes another element of coupling between the physical and
discretization modeling. Generally it is needed to adjust the numerical discretization to match the accuracy
provided by the chosen physical model avoiding to under- or over-resolve the governing equations. Physical
and discretization models are based on distinct principles, but they also share some important features that
are instrumental to our work. In particular, it is always possible to identify a direction of increasing accuracy
defined in an abstract way as a direction of diminishing ’distance’ with respect to a true solution which at
the same time coincides with an increasing computational cost. In the following, we refer to this direction
as hierarchy of models or discretization levels. For instance, in CFD a clear example of hierarchy between
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physical models might be potential flow, Euler equations, Navier-Stokes equations. However, we stress here
that the choice of an adequate physical model depends on the application and the relevant quantity of in-
terest even if in principle an higher accurate model is present in the hierarchy. For instance, computing the
coefficient of lift for an airfoil flying at low angle of attach in transonic condition might require to solve Euler
equation to satisfy the accuracy needed in practical calculations even if in principle the full accurate resolu-
tion of the flow field would require to solve the Navier-Stokes equations. In some cases one could consider
the possibility of the existence of peers of models/discretizations for which the behavior of the pair compu-
tational cost/accuracy is not known a priori for a fixed problem. For instance, in the context of Reynolds
Averaged Navier-Stokes equations (RANS) for a complex flow the accuracy of k-ǫ versus k-ω models can
be difficult to know beforehand. In the context of the present work we exclude the previous case and we
focus on well defined hierarchies (i.e. increasing computational cost for increasing accuracy) of models and
numerical discretizations (in the following we will refer to it only as discretization). In particular, we limit
ourselves to a scenario in which several discretization levels are available (multilevel), but only two physical
models (multifidelity) are available. We refer to them as low- and high-fidelity. Moreover, we assume that
the applications of interest strictly require the use of the high-fidelity computation to capture features of
the solution which are needed for the accurate evaluation of the QoIs, and that the cost of the high-fidelity
model is such that requires large-scale computational resources to provide only few realizations. For the
UQ context we consider the following scenario, justified by the aerospace applications selected in this work:
high-dimensional stochastic spaces, i.e large number of uncertainty parameters to propagate through the
numerical code and lack of estimation on the accuracy for the QoIs which prevents, at least in the prelimi-
nary stages of the analysis, to take advantage to the fast convergence of methods like PC. In the presence of
less extreme hypothesis, alternative multifidelity approaches based on PC and stochastic collocation recon-
structions have already been demonstrated to be effective.26, 8 According to the UQ context defined above
a natural candidate for the UQ propagation is the Monte Carlo (MC) method which does not requires any
degree of regularity of the solution to converge and retains its order of convergence independently from the
number of stochastic dimensions. Also, in the context of multiphysics applications MC offers another key
advantage which is its non-intrusive character. More specifically, non-intrusive propagation techniques are
such that the deterministic code can be used as a black box avoiding to develop ad hoc codes and solvers. As
a result, its flexibility decreases the time needed for the deployment of the algorithm on a new application.
In the context of our research, both the robustness and the non-intrusiveness of MC are features that we
want to preserve in developing more efficient UQ algorithms.

III. Sampling methods

Monte Carlo algorithm, historically the first developed for stochastic simulations, is popular due to its
simplicity, flexibility and provably convergent behavior. Let consider here an abstract PDE governing the
evolution of a QoI, Q = Q(x, ξ, t), where x ∈ Ω ⊂ R

n and t ∈ T ⊂ R
+ are the spatial and temporal

coordinates respectively and ξ ∈ Ξ ⊂ R
d denotes a vector of d random variables. The role of the random

parameters is to represent the effect of sources of uncertainties in the system, as for instance might happen
for the operative conditions of a flight device or the manufacture tolerances of its components. We are
interested in the evaluations of statistics of Q, for instance its expected value E [Q], over the space Ξ when
a discretization of the PDE is assumed. The definition of the problem also requires the specification of the
probability density distribution (pdf) for each of the random parameters in order to compute statistics. We
do not assume here any particular shape for the joint probability distribution p(ξ) of the random parameters
ξ which in general might be even correlated.

For simplicity of exposure the case in which the discretization level is directly related to the number
of degrees-of-freedom M in the spatial and time spaces tessellation is considered here. We assume that
QM → Q for M → ∞, therefore E [QM ] → E [Q] for M → ∞. Accuracy and practical requirements are
supposed to guide the selection of the resolution M to be employed for the numerical resolution of the PDEs
and the subsequent evaluation of Q. A MC estimator for the expected value of QM , based on N realizations,
is defined as

E [QM ] =

∫

Ξ

Q(x, t, ξ)p(ξ)dξ ≃ Q̂MC
M,N =

1

N

N
∑

i=1

Q
(i)
M , (1)

where we denote a single ith realization Q
(i)
M = Q(x, t, ξ(i)) evaluated for ξ(i) which is drawn according to
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the distribution p(ξ). Important features of the MC estimator can be derived from the analysis of the mean
square error (MSE)

E

[

(Q̂MC
M,N − E [Q])2

]

= N−1
Var (QM ) + (E [QM −Q])

2
. (2)

Of great importance for our analysis is to identify the two main contributions to MSE, namely the variance of
the estimator N−1

Var (QM ) and the deterministic bias (E [QM −Q])
2
. In order to obtain accurate solutions

the deterministic bias must be reduced by using high-fidelity models at sufficiently large resolution, i.e. a
large value of M in our notation. Therefore in the context of UQ the use of high-fidelity simulations is
at some level unavoidable. However, MC estimators are inherently stochastic in nature, i.e. each set of
realizations {ξ}

N
i=1 would produce a different result, therefore the estimator itself Q̂MC

M,N own a variance

associated to it. It is possible to show that the distribution of the values of Q̂MC
M,N is a standard normal

variable, therefore the quantification of its variance directly enables to equip the statistical estimation with
a confidence interval. Indeed, for the UQ prediction not only the single deterministic realization must be
accurate (high resolution and high-fidelity), but also the statistics needs to be computed on a large set of
N realizations in order to reduce the variability of the results. A closed inspection of the variance term in
Eq. (2) reveals that it is directly proportional to the variance of the QoI and inversely proportional to the
number of realizations N . Therefore, in MC simulation is common to increase the number of realizations N
in order to reduce the stochastic contribution to the MSE up to obtain a balance with the deterministic bias.
The remainder of this contribution is focused on alternative strategies to efficiently reduce the variance term
N−1

Var (QM ) resorting to less accurate (low-fidelity and/or low resolution) approximations of QM which
being less computationally expensive enable us to generate a larger set of their realizations. Eventually low
variance estimators lead to smaller confidence intervals for the estimated statistics, hence greater a confidence
in their results can be placed.

IV. Multifidelity estimators

In order to reduce the variance term N−1
Var (QM ) in Eq. (2) beside the direct approach of increasing N ,

many more sophisticated alternatives have been proposed.23, 29, 27 An incomplete list might include stratified
sampling, importance sampling, Latin hypercube lattice, deterministic Sobol’ sequences and control variates
method. We focus in this work on the control variates (CV) method and in particular we present in this
section how to use it where low- and high-fidelity models are available. In the following to distinguish
between fidelity levels we use the superscript LF for low and HF for high-fidelity, respectively.

It is always possible to re-write the generic QoI obtained from high-fidelity computations QHF
M adding a

term which depends only on low-fidelity realizations

QHF,CV
M = QHF

M + α
(

QLF
M − E

[

QLF
M

])

, (3)

where QLF
M is the approximation of Q given by a low-fidelity model for which a fixed discretization level M

is chosen. For the sake of completeness it is necessary to specify that in principle the HF and LF model
can have distinct discretizations, therefore the number M of DOFs of the discretization must be intended
as independent for each model. However, we make use of the same symbol to make evident that we are
assuming a pairing of the two models at a resolution M . The expected value of Eq. (3) is equal to E

[

QHF
M

]

independently from the value of α, therefore a MC estimator for QHF,CV
M is unbiased, i.e. Q̂HF,CV

M → Q̂HF
M

for N → ∞
Q̂HF,CV

M,N = Q̂HF
M,N + α

(

Q̂LF
M,N − E

[

QLF
M

]

)

(4)

At the same time, we can use the additional degree-of-freedom represented by α to obtain a more efficient
estimator; indeed the variance of Q̂HF,CV

M,N is

Var
(

Q̂HF,CV
M,N

)

= Var
(

Q̂HF
M,N

)

+ α2
Var

(

Q̂LF
M,N

)

+ 2αCov
(

Q̂HF
M.N , Q̂LF

M,N

)

, (5)

and it can be minimized requiring dVar
(

Q̂HF,CV
M,N

)

/dα = 0 at which corresponds

α = −ρ
Var1/2

(

Q̂HF
M,N

)

Var1/2
(

Q̂LF
M,N

) = −ρ
Var1/2

(

QHF
M

)

Var1/2
(

QLF
M

) , (6)

5 of 24

American Institute of Aeronautics and Astronautics



where the Pearson’s correlation coefficient between the estimators for the LF and HF (or equivalently QHF
M

and QLF
M ) is denoted as ρ.

Finally, the minimized variance of the MC control variates estimator is

Var
(

Q̂HF,CV
M,N

)

= Var
(

Q̂HF
M

)

(

1− ρ2
)

, (7)

which guarantees always a variance reduction with respect to the standard MC estimator since 0 < ρ2 < 1.
We have assumed in the analysis above that the expected value E

[

QLF
M

]

is known exactly or at least
is available with higher accuracy from previous studies. Although this situation may occur when the low
fidelity model is an analytical model, in many engineering applications it might be necessary to consider an
online evaluation of this term during the UQ stage.

An efficient way of accomplishing this task has been proposed in literature with the name of estimated
control means29 and used to build multifidelity estimator for optimization under uncertainty27 and forward
UQ.15 We report here the main results and invite the reader to refer to the above cited literature for additional
details. The main hypothesis that we use is to compute E

[

QLF
M

]

by means of a MC estimator with a set of

realizations greater than N . In particular, we use a set of N identical realizations to evaluate Q̂HF
M,N , Q̂LF

M,N ,

and subsequently we enlarge this set using an additional and independent set of ∆LF realizations. To make
evident the distinction between the two sets we use NHF to denote the realizations needed for the HF model
and we parametrize ∆LF as proportional to it according to ∆LF = rNHF. The MC estimator for E

[

QLF
M

]

can be written as

E
[

QLF
M

]

≃ Ê
[

QLF
M

]

=
1

(1 + r)NHF

(1+r)NHF

∑

i=1

Q
LF,(i)
M , (8)

which plugged in Eq. (4) lead to the following variance (after the minimization)

Var
(

Q̂HF,CV
M,N

)

= Var
(

Q̂HF
M

)

(

1−
r

1 + r
ρ2
)

. (9)

This last result corresponds to the same choice of α than the previous case reported in Eq. (6), because
the minimization problem is independent from r, and it expresses a degradation of the variance reduction
effectiveness due to the presence of the coefficient r/(1+ r) which multiplies the correlation ρ2. The origin of
this reduction of efficiency of the method can be identified in the need for evaluating the LF control variates
expected value term at the same time of the computation of the HF statistics. However, the parameter r
controls the number of additional LF evaluations, therefore can be made arbitrary large for computational
inexpensive LF models (and it is possible to recover the classical control variates results for LF with zero
computational cost and r → ∞).

In fact, in many practical applications the computational cost of a LF fidelity model can be order of
magnitudes inferior to the corresponding HF one, but not negligible. Therefore the computational budget
to allocate for the LF realizations must be taken into account. If the overall computational cost is written
as

Ceq = CHF + CLF(1 + r), (10)

the optimal LF sample increment is

r = −1 +

√

ρ2

1− ρ2
w, (11)

where the ratio between the HF and LF computational cost is w = CHF/CLF. For convenience, we anticipated
here this result that can be obtained solving a more general problem of the optimal allocation of samples
across discretization (multilevel) and model fidelities (multifidelity). We postpone the description of the
minimization problem to Sec. VI after having introduced how to define multilevel estimators which is the
topic of the next section.

V. Multilevel estimators

A peculiar way of obtaining approximate models for the solution of PDEs is relaying on the numerical
discretization. As discussed in the previous sections, the goal of the forward UQ in this work is to propagate
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uncertain parameters through a code for a prescribed resolution level defined by the number M of its DOFs.

We assume here that several resolution levels {Mℓ : ℓ = 0, . . . ,M} with M0 < M1 < · · · < ML
def
= M are

available, therefore we can exploit the linearity of the expected value operator and expanding in a telescopic
sum (through levels) E [QM ] as

E
[

QHF
M

]

= E
[

QHF
M0

]

+

L
∑

ℓ=1

E

[

QHF
Mℓ

−QHF
Mℓ−1

]

. (12)

We define a difference function Yℓ according to

Y HF
ℓ =

{

QHF
M0

if ℓ = 0

QHF
Mℓ

−QHF
Mℓ−1

if 0 < ℓ ≤ L,
(13)

hence the expected value E
[

QHF
M

]

=
∑L

ℓ=0 E
[

Y HF
ℓ

]

. A multilevel MC estimator (MLMC) is obtained when
a MC estimator is written for estimating at each level E [Yℓ]. We obtain

Q̂HF,ML
M =

L
∑

ℓ=0

Ŷ HF,MC
ℓ,Nℓ

=

L
∑

ℓ=0

1

Nℓ

Nℓ
∑

i=1

Y
HF,(i)
ℓ . (14)

The multilevel MC estimator Q̂HF,ML
M is unbiased and has a variance equal to

Var
(

Q̂HF,ML
M

)

=

L
∑

ℓ=0

N−1
ℓ Var

(

Y HF
ℓ

)

. (15)

The advantage of this formulation resides in two main differences with respect to the standard MC estimator.
The first peculiarity of MLMC is the expansion of the variance over resolution levels, which does not contain
covariance terms because on each level the MC estimator is, by definition, using independent sets of samples.
The second difference with respect to MC is that the estimator, except for the coarsest ℓ = 0 level, is written
for the difference function Y HF

ℓ . Hence, under the hypothesis that QHF
M → Q for M → ∞, it is legitimate

to assume Y HF
ℓ → 0, therefore the variance contribution of the different resolution levels decreases with ℓ.

The main advantage of this behavior for Var
(

Y HF
ℓ

)

is that a target overall accuracy can be reached with
decreasing allocation of samples Nℓ for ℓ = 0, . . . ,M , i.e. the computational burden is shifted towards the
coarser levels which are computationally cheaper to evaluate. The optimal sample allocation of the MLMC
algorithm can be obtained minimizing the overall computational cost for a fixed target accuracy. In the
hypothesis of a equal redistribution of the MSE between the bias term and the variance of the estimator, we
can write

E

[

(

Q̂HF,ML
M − E

[

QHF
M

]

)2
]

=

L
∑

ℓ=0

(

NHF
ℓ

)

−1
Var

(

Y HF
ℓ

)

+
(

E
[

QHF
M −QHF

])2
=

ε2

2
+

ε2

2
= ε2, (16)

indeed the MLMC algorithm guarantees the same deterministic bias of MC (see Eq.(2)) while reducing the
variance of the estimator. For the multilevel method the overall computational cost is

C(Q̂HF,ML
M ) =

L
∑

ℓ=0

NHF
ℓ CHF

ℓ , (17)

with CHF
ℓ being the cost of the evaluation of Y HF

ℓ (involving either one or two discretization evaluations). The
computational cost Eq. (17) can be minimized under a variance constrain by means of a Lagrange multiplier
λ. The minimization problem reads

argmin
NHF

ℓ
,λ

(f), where f(NHF
ℓ , λ) =

L
∑

ℓ=0

NHF
ℓ CHF

ℓ + λ

(

L
∑

ℓ=0

(

NHF
ℓ

)

−1
Var

(

Y HF
ℓ

)

− ε2/2

)

. (18)

The optimal samples allocation (per level) as result of the minimization Eq. (18) is

NHF
ℓ =

2

ε2

[

L
∑

k=0

(

Var
(

Y HF
k

)

CHF
k

)1/2

]

√

Var
(

Y HF
ℓ

)

CHF
ℓ

. (19)
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VI. Multilevel-Multifidelity MLMF estimators

The multifidelity and multilevel approach presented in Sec. IV and V can be combined to achieve a larger
variance reduction.10, 16, 17 The main idea is to expand the expected value of the QoI over the resolution
levels (multilevel) by targeting the difference function Y HF

ℓ on each level. The MC estimator for each Y HF
ℓ

can be written by using a multifidelity control variate approach with estimated control means for the LF
model, as described in Sec. IV.

More precisely, starting from Eq. (12), we can write

E
[

QHF
M

]

= E
[

QHF
M0

]

+

L
∑

ℓ=1

E

[

QHF
Mℓ

−QHF
Mℓ−1

]

=

L
∑

ℓ=0

E
[

Y HF
Mℓ

]

≃

L
∑

ℓ=0

Ŷ HF,MC
Mℓ

≃

L
∑

ℓ=0

(

Ŷ HF,MC
Mℓ

+ αℓ

(

Ŷ LF,MC
Mℓ

− Ê[Y LF
Mℓ

]
))

.

(20)

We seek for the optimal allocation of the samples NHF
ℓ used to compute the MC estimator Ŷ HF,MC

Mℓ
and

Ŷ LF,MC
Mℓ

and the optimal redistribution of the computational burden towards the LF model, which is defined

by the set of independent samples ∆LF
ℓ used to evaluate Ê[Y LF

Mℓ
] (see Eq. (8)).

On each level ℓ Eq. (9) holds, therefore we can write the full optimization problem Eq. (18) taking into
account the MF variance reduction on each level

argmin
NHF

ℓ
,rℓ,λ

(f), where f(NHF
ℓ , rℓ, λ) =

L
∑

ℓ=0

NHF
ℓ Ceq

ℓ (rℓ)+λ

(

L
∑

ℓ=0

(

NHF
ℓ

)

−1
Var

(

Y HF
ℓ

)

Λℓ(rℓ)− ε2/2

)

. (21)

The function Λℓ(rℓ) =

(

1−
rℓ

1 + rℓ
ρ2ℓ

)

in the previous equation measures the variance reduction achieved

on each level by means of the LF control variates. The optimization problem Eq. (21) also differs from the
one in Eq. (18) for the presence of the equivalent cost Ceq

ℓ , induced by the LF evaluations, introduced in
Eq. (10).

The solution of the optimization problem is obtained as

NHF
ℓ =

2

ε2





LHF
∑

k=0

(

Var
(

Y HF
k

)

CHF
k

1− ρ2ℓ

)1/2

Λk(rk)





√

(1− ρ2ℓ)
Var

(

Y HF
ℓ

)

CHF
ℓ

, (22)

where the optimal redistribution of samples across LF and HF is given by

rℓ = −1 +

√

ρ2ℓ
1− ρ2ℓ

wℓ, (23)

as anticipated in Sec. IV.
On each level the sample allocation between LF and HF is controlled by rℓ which in turn depends on

the correlation ρ2ℓ and the computational cost ratio wℓ = CHF
ℓ /CLF

ℓ . Useful information can be obtained if,
for each level, we represent the optimal ratio rℓ as a function of these parameters. The optimal value for rℓ
can also be used to compute the corresponding variance reduction 1−Λ(rℓ). In figure 1 it is possible to see
that the algorithm requires an higher number of LF evaluations when both the correlation ρ2ℓ and the cost
ratio wℓ increase, whereas the variance reduction shows a higher dependence on ρ2ℓ than wℓ. Therefore, a
heavily biased LF model can still be useful to achieve a variance reduction (see for instance the numerical
example15) if it is computationally cheaper that the HF model (high value of wℓ), however it needs to exhibit
a non-negligible correlation ρ2ℓ with the HF model.

In order to maximize the correlation between the LF and HF model a natural choice would be to update
the LF improving its predictive capabilities. However, it is common for research efforts in a context of large
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Figure 1. Optimal LF additional evaluations ratio r and variance reduction (%). The contours line for the ratio r are
provided between 0 and 45 with a step of 5, whereas for the variance reduction they are reported between 0 and 90%
with step of 10%.

projects to have a certain degree of segregation between the application team and the UQ one. Therefore,
updating the LF model could require few iterations and possibly a non-negligible effort needs to be invested
in this task. In addition, the correlation evolution of ρℓ with ℓ is fairly complicated to predict a priori.
Indeed, it is possible to obtain LF models which are well correlated for coarser resolution levels where the
solution is underresolved for the HF model too, and less correlated for higher resolution levels. Hence, in
order to mitigate the possible lack of correlation other approaches are possible. For instance, if the HF
model exhibits a certain degree of regularity and also a low-rank structure is present, this feature can be
exploited to build a LF low-rank model which is expected to be well correlated for all the resolution levels.
For more details the reader can refer to Ref. 11. Here, we present an alternative approach in which we try
to maximize the correlation between Y HF

ℓ and Y LF
ℓ by using directly the quantities QHF

ℓ and QLF
ℓ . In fact,

while the behavior of the correlation between discrepancies Yℓ is difficult to predict, we expect the quantities
Qℓ to be better correlated. Eventually the CV is built level by level by seeking for a single additional optimal
coefficient. We make use of the unbiased property on the multifidelity control variate (Sec. IV) to build a
control variate which is based on LF realizations but is not obtained as difference between two adjacent
resolution levels. We instead seek for the optimal generalized difference function Y̊ LF

ℓ given by

Y̊ LF
ℓ = γℓQ

LF
ℓ −QLF

ℓ−1, (24)

where the additional coefficient γℓ (to be determined) offers an additional degree-of-freedom to obtain a
higher correlation.

Equation (25) can be re-written with the new control variates Y̊ LF
ℓ

E
[

QHF
M

]

≃

L
∑

ℓ=0

(

Ŷ HF,MC
Mℓ

+ αℓ

(

Y̊ LF,MC
ℓ − Ê[Y̊ LF

ℓ ]
))

, (25)

where the new correlation between Ŷ HF
Mℓ

and Y̊ LF
ℓ is now a function of γℓ as

ρ̊2ℓ = ρ̊2ℓ (γℓ) = ρ2ℓ
θ2ℓ
τℓ
, (26)

with

θℓ = θℓ(γℓ) =
Cov

(

Y LF
ℓ , Y̊ LF

ℓ

)

Cov
(

Y LF
ℓ , Y LF

ℓ

)

τℓ = τℓ(γℓ) =
Var

(

Y̊ LF
ℓ

)

Var
(

Y LF
ℓ

) .

(27)
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We seek for the optimal γℓ coefficient which maximizes the correlation ρ̊2ℓ that corresponds to the maxi-
mization of the function θ2ℓ/τℓ and, finally to the following formulation

argmax
γℓ

(F(γℓ)) , where F(γℓ)
def
=

(

Cov
(

Y HF
ℓ , Y̊ LF

ℓ

))2

Var
(

Y̊ LF
ℓ

)

=

[

γℓCov
(

Y HF
ℓ , QLF

ℓ

)

− Cov
(

Y HF
ℓ , QLF

ℓ−1

)]2

γ2
ℓVar

(

QLF
ℓ

)

+ Var
(

QLF
ℓ−1

)

− 2γℓCov
(

QLF
ℓ , QLF

ℓ−1

) ,

(28)

where its analytical solution is given by

γℓ =
Cov

(

Y HF
ℓ , QLF

ℓ−1

)

Cov
(

QLF
ℓ , QLF

ℓ−1

)

− Var
(

QLF
ℓ−1

)

Cov
(

Y HF
ℓ , QLF

ℓ

)

Var
(

QLF
ℓ

)

Cov
(

Y HF
ℓ , QLF

ℓ−1

)

− Cov
(

Y HF
ℓ , QLF

ℓ

)

Cov
(

QLF
ℓ , QLF

ℓ−1

) . (29)

Eventually, the full solution, in term of optimal allocation of samples across discretization levels and
model fidelities, is given by

rℓ = −1 +

√

ρ̊2
HL

1− ρ̊2
HL

wℓ, where wℓ = CHF
ℓ /CLF

ℓ

Λℓ = 1− ρ̊2
HL

rℓ
1 + rℓ

NHF
ℓ =

2

ε2





LHF
∑

k=0

(

Var
(

Y HF
k

)

CHF
k

1− ρ̊2
HL

)1/2

Λk(rk)





√

(

1− ρ̊2
HL

) Var
(

Y HF
ℓ

)

CHF
ℓ

In the following, whenever we present numerical results for the MLMF estimator we will always assume to
use this latter formulation with ρ̊ℓ which, in separate studies, demonstrated to achieve better performances
than the one based on ρℓ.

VII. Some practical considerations

In the previous sections we described how to efficiently define multifidelity, multilevel and multilevel-
multifidelity MC statistical estimators. However, from a practical standpoint additional details should be
clarified in order to apply the methods described above. Indeed, two main difficulties arise during the
deployment for large scale engineering applications. First, in many applicatins the UQ step should take into
account a vector of quantities of interest not only a scalar QoI. Moreover, the computational budget available
might be insufficient to reach the optimal allocation of samples NHF

ℓ provided an arbitrary tolerance ε. In the
following we describe possible practical solutions to these two issues that we resorted in this work to obtain
the numerical results reported in Sec. IX. For all the numerical computations we also use the DAKOTA4

software which features an implementation of the algorithms described here.

VII.A. Extension to multiple QoIs

All the estimators described in the previous sections are based on a scalar QoI. This approach impacts
the optimal allocation r between model fidelitites, Eq. (11), in the multifidelity estimator, and the sample
allocation NHF

ℓ in both the multilevel, Eq.(19), and multilevel-multifidelity, Eq.(22). For the multifidelity
estimator the distinction between the case with a scalar or vector of QoIs resides in the selection of the
correlation. Instead, to build the multilevel operator it is also necessary to know the variance for the
difference function Y HF

ℓ (of a scalar QoI). The multilevel-multifidelity estimator, being the combination of
the two ones mentioned above, requires either a scalar correlation and variance.

In principle, for the multilevel based estimator the variance for each QoI can be constrained by a separate
Lagrange multiplier, however this approach poses some mathematical difficulties since it can lead to the
activation of distinct Lagrange multipliers, i.e. constraints, on each level. To overcome this issue we use the
following heuristic procedure: for both the ratio rℓ and the correlation squared ρ2ℓ we compute the average
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value across QoIs. Afterward, we use these two values to evaluate the corresponding variance reduction
Λ̃ℓ = Λℓ(rℓ, ρ

2
ℓ) as a separate function of correlation and low-fidelity sample increment rℓ. Moreover, the

variance on each level is determined as the aggregation of the variances of each QoI. This assumption would
be correct only in case of independent QoIs, therefore it is only an approximation for the general case of
correlated QoIs. Our experience with different test cases reveals that an alternative choice would consist in
evaluating a weighted average of the correlations of the QoI based on the contribution of each QoI to the
overall variance (per level). However, this refinement of the current approach is the subject of additional
investigations, therefore in this work we adopt the heuristic strategy described above and based on the
(un-weighted) average.

VII.B. Computational constrained budget

In many practical situations the computational budget would allow for only an handful of realizations for the
HF model at the finest resolution. Therefore, it could be challenging to obtain the optimal sample allocation
dictated by NHF

ℓ for an arbitrary tolerance ε. One example of this kind of situation is described later on for
the SCRAMJET problem (Sec. VIII.B).

We propose the following algorithm to determine the optimal allocation per level for the general case
of the multilevel-multifidelity estimator when the maximum number of samples at level ℓ = L for the HF
model is assigned a priori. We first note that the ratio between the optimal number of samples per level for
HF is independent from the target accuracy ε

NHF
ℓ /NHF

ℓ−1 =

√

1− ρ2ℓ
1− ρ2ℓ−1

Var
(

Y HF
ℓ

)

Var
(

Y HF
ℓ−1

)

CHF
ℓ−1

CHF
ℓ

, (30)

therefore it is possible to define the optimal sequence of ratios ω as

ω =

(

ω1 =
NHF

1

NHF
0

, ω2 =
NHF

2

NHF
1

, . . . ωL−1 =
NHF

L−1

NHF
L−2

, ωL =
NHF

L

NHF
L−1

)

.

If the computational budget allows a maximum of NHF
target evaluations, the optimal allocation across levels

would be

N̂HF
ℓ = NHF

target

/

(

L−ℓ−1
∏

q=0

ωL−q

)

. (31)

Eventually, the optimal cost redistribution between model fidelity is obtained on each level as

NLF
ℓ = (1 + rℓ) N̂

HF
ℓ (32)

VII.C. A possible practical implementation

We report here the steps needed for a possible implementation of the multilevel-multifidelity algorithm
whereas the multilevel and multifidelity estimators can be obtained executing only a subset of its operations.

1 Pilot runs for the LF:

– Evaluation of E
[

QLF
ℓ

]

and E
[

QLF
ℓ−1

]

→ E
[

Y LF
ℓ

]

= E
[

QLF
ℓ

]

− E
[

QLF
ℓ−1

]

– Evaluation of Var
(

QLF
ℓ

)

,Var
(

QLF
ℓ−1

)

, and Cov
(

QLF
ℓ , QLF

ℓ−1

)

2 Pilot runs for HF (same LF sample realizations):

– Evaluation of Cov
(

Y HF
ℓ , QLF

ℓ

)

, and Cov
(

Y HF
ℓ , QLF

ℓ−1

)

– Evaluation of Cov
(

Y HF
ℓ , Y LF

ℓ

)

= Cov
(

Y HF
ℓ , QLF

ℓ

)

− Cov
(

Y HF
ℓ , QLF

ℓ−1

)

– Evaluation of rℓ = Cov
(

Y HF
ℓ , Y LF

ℓ

)

/(Var1/2
(

Y HF
ℓ

)

Var1/2
(

Y LF
ℓ

)

)

3 Computations of LF-HF coupling parameters:
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– Optimal ratio γ̂ℓ

– Covariance ratio θℓ

– Variance ratio τℓ

– Enhanced correlation ρ̊2ℓ

4 Optimal multilevel allocation ratios ω

5 Multilevel budget-constrained allocation N̂HF
ℓ

6 Optimal cost repartition between HF and LF NLF
ℓ = (1 + rℓ) N̂

HF
ℓ

VIII. Applications demonstrations

In this section we furnish a brief description of the two applications we use to demonstrate the efficiency
of the multilevel-mulifidelity estimator when compared to MC and multilevel estimators. The first problem
is a thermo-aero-structural analysis of a nozzle device in cruise condition subject to uncertainties in operative
conditions and manufacturing properties. The second example is derived from a SCRAMJET HIFiRE and
it focus on its region of the primary injector. In this manuscript, for the sake of brevity, only the details
needed for the formulation of the UQ forward problem are described and the reader is invited to refer to
Alonso et al.1 for a more detailed description of the nozzle case and to Vane et al.,32 and Huan et al.20 for
a more in depth discussion of the numerical approach and the SCRAMJET configuration.

VIII.A. Northrop Grumman X-47B inspired nozzle design

In the context of the DARPA funded project SEQUOIA we are interested in the design under uncertainties
of devices that involve aero-structural-thermal interactions in advanced aerospace vehicles across a broad
spectrum of the speed regime. A problem of interest is a nozzle for advanced vehicles such as the Northrop
Grumman UCAS X-47B showed in figure 2. Geometry data and estimated performances of the X-47B
are reported in table 112. One of the fundamental step of the design under uncertainties is the ability to
efficiently propagate uncertainty through the numerical code.

(a) X47B UCAS (b) Nozzle close-up

Figure 2. Northrop Grumman X-47B UCAS and close up of its nozzle.25

The X47B is powered by a Pratt & Whitney F100-PW-220 turbofan engine without after-burning capa-
bilities. A simplified engine model simulator is adopted12, 13, 14 to generate the inlet condition of the nozzle.
The baseline geometry of the nozzle is reported in figure 3(a). Moreover, during the normal operative con-
ditions the nozzle structure is exposed to both thermal and mechanical loading. Therefore we decided to
model the structure of the device using a two-layer array (see figure 3(b)), namely a thermal and a loading
layer, placed internally and externally, respectively.

For this problem, we present a preliminary UQ analysis of the nozzle device for the cruise condition of
the vehicle. We decided to rely on axisymmetric Euler computations for the internal flow of the nozzle, with
input conditions generated by the engine model of F100-PW-220. The SU29 CFD code is used to solve the
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Parameter Value

Span (m) 18.93

Empty weight (Kg) 6, 350

TOGW (Kg) 20, 215

Payload (Kg) 2, 040

L/D|cruise 12.62-15.58

Cruise Mach 0.45

Top speed high subsonic

Range (nm) 2, 100

Endurance (hr) 6

Service Ceiling (ft) 40, 000

Table 1. Geometry and estimated performances for X-47B.12

(a) Nozzle baseline geometry (in meters) (b) Nozzle thermal-structural model

Figure 3. Baseline nozzle geometry (a) and its thermal-structural layer layout (b). The thermal and load layer are
placed internally and externally, respectively.

13 of 24

American Institute of Aeronautics and Astronautics



internal flow and generate the temperature and pressure profile along the nozzle wall. An array of SU2 flow
realizations in the presence of different nozzle geometries is reported in figure 4 as an example.

Figure 4. Example of Euler computations for different nozzle geometries.

Afterward, the temperature profile is provided to a thermal FEM solver which computes the temperature
distribution over the entire volume, i.e. the nozzle structure. Finally, the pressure distribution at the wall
and the temperature field inside the structure serve as input conditions for a FEM structural solver which
computes the stresses distributions in the structure. An example of the thermal field and mechanical stresses
is reported in figure 5. The procedure described so far represents the high-fidelity model we adopted for our
simulations.

Figure 5. Example of temperature field and von Mises stresses inside the nozzle structure as a result of the FEM
analyses.

For a preliminary analysis, we are interested in the performances of the nozzle in term of generated
thrust and two reliability measures that we identified in the maximum thermal and mechanical stresses. In
order to generate a low-fidelity approximation two different approaches are pursued. Initially a simplified
non ideal one dimensional model has been adopted for the computation of the flow, thermal and mechanical
stress, while the engine model is identical for the LF and HF models. In particular, this low-fidelity model
is obtained performing the following operations13

• Ideal (adiabatic and frictionless) nozzle equations are solved to determine the flow conditions;
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• Quasi-1D (area-averaged) equations are integrated to compute the actual flow solution and temperature
distribution;

• A heat transfer calculation is carried out in the transverse direction by means of thermal resistances.
The model estimates convection and conduction from the nozzle fluid to the nozzle wall, conduction
through the nozzle wall, and sum of convection, conduction and radiation from the exterior nozzle wall
to the environment.

• Stagnation temperature as well as the wall heat flux along the nozzle are determined;

• The coefficient of friction is computed;

• Mach number (dependent on stagnation temperature and friction coefficient) is updated and few iter-
ations are performed until convergence.

To evaluate the stresses a simple hoop model is adopted for the mechanical part, while the thermal stress
in a cylinder are computed in each axial section of the nozzle. In summary, this low-fidelity model differs
from the high-fidelity one for the following aspects: the Euler flow solution is replaced by a non-ideal one
dimensional model and the FEM thermal and structural analyses by a thermal resistance model and hoop
stresses, respectively.

The low-fidelity model described above demonstrated to be able to predict accurate values for the thrust,
but it produces low correlated values for the stresses with respect to the HF one (see Sec. IX.A). Therefore,
we completed a full iteration between the UQ and application teams which led to an updated low-fidelity
model. In particular, we replaced the thermal and mechanical computations with a FEM solution, identical
to the HF model. This choice is motivated by the low-correlation of the stresses, but also by the repartition
of the computational cost between the fluid and thermo-structural part. Indeed, since the FEM solutions
represent a negligible cost compared to the Euler computation, adopting the FEM solutions for the LF is
expected to increase the quality of the stresses prediction with a negligible increase of the computational
cost (that we will not consider in this work).

For both the low-fidelity models we will not consider the presence of different resolution levels. Therefore,
the low-fidelity model is paired to the coarsest resolution level of the HF model to obtain a multifidelity CV,
while other two HF resolutions are adopted in order to build the multilevel part of the estimator. Further
details regarding the computational settings are provided in Sec. IX.A.

VIII.B. HIFiRE SCRAMJET engine

Funded by DARPA, within the ScramjetUQ project we are interested in demonstrating advanced UQ algo-
rithms and strategies in multiphysics computations of a supersonic turbulent spray combustion SCRAMJET
engine. A SCRAMJET engine is a device which relies on its high-velocity to compress the incoming air
before combustion, however without reducing the air velocity to subsonic conditions before the combustion
as instead it happens in a RAMJET engine. A cartoon sketching a SCRAMJET during its flight is reported
in figure 6.

This problem is particularly challenging for UQ for its substantial computational cost and its complex
physics nature: compressible gasdynamics, shock waves, multiphase flow, real-gas effects, turbulence and
combustion phenomena are present. The overall goal of our research is to study the HIFiRE SCRAMJET
configuration.6, 21 HIFiRE is a cavity-based hydrocarbon-fueled dual mode SCRAMJET that can control
the transition between the subsonic combustion mode (RAMJET) to the supersonic mode (SCRAMJET)
through timing of the injectors. An experimental setup is available and is reported in figure 7(left). For the
preliminary UQ propagation study reported in this manuscript we consider a unit problem that focuses on
the subdomain of primary injection. The focus is on the interaction between the fuel jet and the supersonic
air cross flow without combustion. The unit problem is reported in figure 7(right).

The computations are carried out using the RAPTOR code28 which is a CFD code designed for solving
large eddy simulations (LES) for combustion problems in complex geometries. An array of realizations for
an increasing levels of resolution is reported in figure 8 as an example. High-fidelity realizations are obtained
by means of three-dimensional LES computations.

For this problem we choose 2D numerical realizations as the low-fidelity model. Unlike the nozzle problem,
we employ the same discretization levels for both the LF and HF, therefore all the HF levels used to build
the multilevel estimator are subject to LF CV. The details of the choice of the resolution levels are furnished
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Figure 6. Cartoon of a SCRAMJET engine during flight conditions.

Figure 7. Experimental full combustor geometry (left) and the unit problem domain (right).

Figure 8. Instantaneous temperature field over resolutions. Numerical resolutions are labeled in term of the number
of cells used to represent the diameter of the injector, namely d/8, d/16, and d/32.
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in Sec. IX.B. We are interested in five different QoIs, namely (transverse direction) mean stagnation pressure
P0,mean, mean stagnation pressure RMS (RMS is over time) P0,rms,mean, mean Mach number Mmean, mean
turbulent kinetic energy TKEmean, and mean scalar dissipation χmean. These QoIs are relevant for the unit
problem and representative for other variables output by the LES. All QoIs are computed along a prescribed
spatial location corresponding to a plane located at distance x/d = 100 from the inlet.

IX. Numerical results

IX.A. Aero-thermo-structural nozzle performances analysis

The aero-thermo-structural UQ analysis for the nozzle problem described in Sec. VIII.A is presented in the
following. We consider three QoIs, namely the thrust generated, the mechanical and thermal maximum
stresses. For this study we consider the propagation of a vector of 15 uniform and independent random pa-
rameters which includes operative conditions, material properties and geometrical parameters. The random
parameters and their ranges are reported in table 2. The geometry of the nozzle is parametrized by using
four base splines (B-spline) coefficients for the internal and external part of the nozzle structure (which is
axisymmetric, see figure 3). The multilevel estimators are built using three meshes for the Euler solution
which are reported as reference in figure 9.

Parameter Range

Inlet stagnation temperature [K] 897.75-992.25

Atmospheric Temperature [K] 248.9-275.1

Inlet stagnation pressure [Pa] 216,000-264,000

Atmospheric Pressure [Pa] 57,000-63,000

Thermal conductivity [W/m K] 8.064-9.856

Elastic modulus [Pa] 7.38e10-9.02e10

Thermal expansion coefficient [1/K] 1.8e-6-2.2e-6

lower Bspline 1 [-] 0.005-0.03

lower Bspline 2 [-] 0.005-0.03

lower Bspline 3 [-] 0.005-0.03

lower Bspline 4 [-] 0.005-0.03

upper Bspline 1 [-] 0.005 -0.03

upper Bspline 2 [-] 0.005-0.03

upper Bspline 3 [-] 0.005-0.03

upper Bspline 4 [-] 0.005-0.03

Table 2. Uncertain parameters for the nozzle problem.

Moreover, the number of triangles of each mesh is reported in table 3 as reference. The solution on each
mesh lead to a computational cost which is reported in table 4. The computational cost is normalized with
respect to the HF fine solution. The ratio w between the computational cost of the HF and LF coarse is
equal to 3.31.

Triangles

Coarse 6,119

Medium 29,025

Fine 142,124

Table 3. Number of triangles for each mesh used to compute the Euler solution for the nozzle problem.

We generate a set of 20 pilot samples across all resolution levels and fidelities, where both the low-fidelity
model are paired with the coarsest level of HF. In table 5 the results for the correlation of the two low-
fidelity models are reported. It appears evident that the low-fidelity model based on the simplified thermal
and mechanical stresses computation is unable to achieve a significant correlation for the stresses, whereas
the updated model reaches a very high correlation for all the QoIs.
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Figure 9. Close up of the meshes used to define the multilevel discretizations for the nozzle problem in SU2.

LF HF

Coarse 0.016 0.053

Medium N/A 0.253

Fine N/A 1.0

Table 4. Computational cost for the LF and HF models. The two low-fidelity models have a negligible computational
cost difference, therefore they are assumed to have the same cost.

The lack of correlation of the simplified low-fidelity model produces a non-optimal allocation of samples
between fidelities that can be seen in table 6. In table 6, for different values of the normalized accuracy ε
(where ε0 is the accuracy attained by a multilevel estimator built using only the pilot samples), we report
the sample allocations for all the discretization levels and fidelities. It is evident, for instance comparing the
sample allocation for ε2/ε20 = 0.001, that the low correlation of the stresses forces the algorithm to a number
of HF simulations at coarse level which is one order of magnitude higher than the correspondent value for
the MLMF estimator based on the updated low-fidelity model.

For the value of accuracy ε2/ε20 = 0.001 we report in table 7 the values of correlations attained and the
corresponding variance reduction for each QoI.

The results in term of total computational cost for different values of ε/ε0 are reported in figure 10. For
comparison, the results corresponding to the equivalent MC and MLMC estimators are also shown. For
the simplified LF model the MLMC outperforms the MLMF estimator. The reason can be identified in the
uneven behavior of the correlation across the QoIs. A low correlation is associated to the stresses, but a much
higher correlation (0.99) is associated to the thrust. Therefore, the equivalent correlation we use to drive
the algorithm, which is the average of all the correlations, is still high enough to allow for LF computations
even if the overall variance reduction can be obtained only for the thrust. If the metric of interest is the
aggregation of the variance, then the contribution of the thrust is less significant than the variances of the
stresses. The order of magnitude for the standard deviation of the thrust is of O(103), while is of O(107)
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1D flow + simplified stress analysis 1D flow + FEM

Thrust 9.98e-01 9.98e-01

Mechanical Stress 2.23e-02 9.66e-01

Thermal Stress 3.96e-01 9.93e-01

Table 5. Correlation for the two low-fidelity models for the nozzle problem. The first low-fidelity model is obtained
by coupling a 1D non-ideal solver for the fluid part and a thermal resistances and hoop model for the mechanical and
thermal stresses, respectively. The updated LF model is obtained replacing the stress simplified computations with the
FEM analyses. This correlation values correspond to the accuracy ε2/ε2

0
= 0.01.

Accuracy (ε2/ε20)
LF HF LF (updated) MF

Coarse Coarse Medium Fine Coarse Coarse Medium Fine

0.1 N/A N/A N/A N/A 404 20 20 20

0.01 21,143 1,757 20 20 3,091 177 31 20

0.003 69,580 5,775 36 20 N/A N/A N/A N/A

0.001 212,828 17,715 109 34 32,433 1,773 314 20

Table 6. MLMF sample profile for the two LF models and HF as function of the normalized accuracy ε2/ε2
0
.

LF LF (updated)

correlation Variance reduction [%] correlation Variance reduction [%]

Thrust 0.997 91.42 0.996 94.2

Mechanical Stress 2.23e-2 2.12e-3 0.944 89.2

Thermal Stress 0.396 12.81 0.987 93.4

Table 7. Correlations and variance reduction for the nozzle problem for ε2/ε2
0

= 0.001. The data are relative to the
coarse level which is the only one in which the multifidelity CV is employed for this problem.

for both the thermal and mechanical stresses. A partial solution to this imbalance would consist in the
evaluation of a weighted average of the correlation (as anticipated in Sec. VII.A) with respect to the overall
variance. In this latter case the MLMF would be able to recognize that the LF is not correlated enough
with the HF model to bring a benefit in term of aggregate variance reduction and therefore the MLMF
estimator would coincide with MLMC, i.e. no LF evaluations are required. For the updated LF model the
correlation is almost evenly distributed across QoIs, therefore the MLMF is achieving a better performance
than both MC and MLMC without any particular treatment to compute the equivalent correlation across
multiple QoIs.

In figure 10 it is also possible to note that the number of pilot runs (20) performed on each level for
the two models resulted to be too high with respect to the final accuracy required. Indeed, the optimal
allocation is always obtained without requiring additional evaluations at the finest HF level.

IX.B. Scramjet

For the scramjet problem described in Sec. VIII.B we selected five QoIs for which we target the aggregated
variance for the optimal sample allocation. We perform the propagation of 24 uncertain variables which are
reported along with their ranges in table 8.

Two discretization levels are used for the HF model, namely with 8 (d/8) or 16 (d/16) cells to discretize
the injector diameter. The low fidelity model is constituted by 2D LES simulations and the computational
cost normalized in term of a HF 3D run is reported in table 9.

For this application the computational cost for the finest HF level is extremely high with respect to all
the other levels and fidelity. The ratios wℓ are 204 for ℓ = 0, and 77 for ℓ = 1. Therefore we had to constrain
the number of HF runs as described in Sec. VII.B. In particular we initialized the algorithm requiring 46
and 12 realizations on d/8 and d/16, respectively for each model. Among them some runs failed to converge,
therefore the effective number of pilot runs was 39 and 9. Afterward, we constrained the algorithm to
target the most efficient sample allocation without requiring additional 3D d/16 realizations. The optimal
allocation led to the results reported in table 10 which corresponds to ε2/ε20 = 0.045.
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Parameter Symbol Range

Inflow boundary conditions

Inlet

Stagnation pressure p0,i 1.48 MPa ± 5%

Stagnation temperature T0,i 1550 K ± 5%

Mach number Mi 2.51 ± 10%

Turbulence intensity Ii = u
′

i/Ui [0.0 − 0.05]

Turbulence intensity ratio Ir = v
′

i/u
′

i 1.0

Turbulence length scale Li [0.0 − 8.0]mm

Boundary layer thickness δi [2.0 − 6.0]mm

Fuel injection (36%CH4, 64%C2H4)

Mass flux ṁf 7.37× 10−3 kg/s ± 10%

Static Temperature Tf 300.0 K ± 5%

Mach Number Mf 1.0 ± 5%

Turbulence intensity If = u
′

f/Uf [0.025 − 0.075]

Turbulence length scale Lf [0.02 − 1.0] mm

Wall boundary conditions

Wall Temperature Tw Profile from KLE

Expansion (10 params)

Turbulence model parameters

Static Smagorinsky

Modified Smagorinsky constant CR [0.01− 0.016]

Turbulent Prandtl number Prt [0.5− 1.7]

Turbulent Schmidt number Sct [0.5− 1.7]

Table 8. Summary of the uncertain parameters for the SCRAMJET problem.

2D 3D

d/8 5E-4 0.11

d/16 0.014 1

Table 9. Computational cost for the LF and HF models as function of resolution (normalized w.r.t. a single 3D fine
run).

2D 3D

d/8 4,191 263

d/16 68 9

Table 10. Number of LES simulations required by the MLMF algorithm for ε2/ε2
0

equal to 0.045 (with a target of 9
runs at 3D d/16).
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Figure 10. Nozzle problem: Standard deviation for the estimators ε normalized w.r.t. its value obtained by only pilot
samples ε0 as function of the overall computational cost in terms of equivalent number of HF fine runs.

The correlation properties on each level within the variance reduction for each separate QoI are reported
in table 11. The variance reduction for the ith QoI is computed as

100 (1− Λℓ,i) = 100
rℓ

1 + rℓ
ρ2ℓ,i, (33)

where rℓ is constant across QoIs since it controls the number of additional LF simulations to evaluate.

correlation Variance reduction [%]

Coarse Fine Coarse Fine

P0,mean 0.997 0.761 93 50

P0,rms,mean 0.875 0.593 72 30

Mmean 0.975 0.649 89 36

TKEmean 0.824 0.454 64 17

χmean 0.450 0.714 19 44

Table 11. Correlations between 2D and 3D LES simulations and variance reduction for the five relevant QoIs in the
SCRAMJET unit problem.

In figure 11 we report the performance of the MLMF estimator compared to equivalent MC and MLMC
estimators in terms of aggregate variance reduction. The data are normalized in terms of the estimator accu-
racy obtained evaluating only the pilot samples. Moreover, the MLMC and MLMF estimators corresponding
to the pilot samples are identical because during the pilot runs the low-fidelity realizations are not used for
the variance but only to evaluate the correlation properties between the 2D and 3D simulations. The final
normalized MSE achieved is 0.048 which corresponds to a computational cost of 49 3D LES realizations on
the fine mesh for the MLMF, 151 for MLMC and 1024 for MC. The dashed lines are added in figure 11 as
reference to show the expected rate of decaying of the error ε/ε0.

21 of 24

American Institute of Aeronautics and Astronautics



 0.01

 0.1

 1

 10  100  1000  10000  100000  1e+06

ε/
ε 0

Equivalent HF runs

MC
MLMC
MLMF

Figure 11. SCRAMJET problem: Standard deviation for the estimators ε normalized w.r.t. its value obtained by only
pilot samples ε0 as function of the overall computational cost in terms of equivalent number of HF fine runs.

X. Concluding remarks

In this work we present some recent developments in the area of multilevel estimators for forward UQ
propagation analysis. In particular, the main contribution of the work is the introduction of the multifidelity
control variate technique to build more efficient multilevel MC estimators. In many engineering applica-
tions the simulation of complex multiphysics problems can rely on hierarchies of model representations and
numerical discretizations. The pivotal idea introduced in this manuscript is to exploit low-fidelity low com-
putationally expensive models to reduce the statistical variance associated to estimators based on sampling
methods. Moreover, numerical discretization hierarchies are also exploited to define multilevel estimators.
Therefore, the method is designed to use a limited budget of HF simulations to decrease the deterministic
bias of the estimator to a threshold value prescribed a priori ; the variance properties of this estimator are
improved by means of low-fidelity realizations. We focus on two applications. The first problem is an aero-
thermo-structural analysis of the nozzle part of a F100-PW-220 turbofan engine which powers the Northrop
Grumman X-47B unmanned combat vehicle. We use this example to derive realistic operative conditions
for the engine and the nozzle. For this applications we propagated 15 uncertain parameters which comes
from operative conditions, material properties and geometrical manufacturing tolerances. We demonstrated
that, across a range of prescribed tolerances, the MLMF estimators are more reliable than MC and MLMC.
Also we discussed the role of the correlation between the LF and HF model in order to obtain efficiently the
statistics. In order to accomplish this task we also compared two different low-fidelity models with drastically
different correlation behaviors. The second application is a unit problem inspired by the supersonic SCRAM-
JET engine HIFiRE. In this preliminary study we propagate 24 uncertain parameters related to inflow and
wall boundary conditions, fuel injection, and turbulence properties. This example aims to demonstrate how
the multifidelity-multilevel estimators can be employed to maximize the reliability of the statistics while
matching very stringent computational cost constraints. For instance, we were able to demonstrate that
with a constrained small number of high-fidelity and high-resolution 3D LES realizations, we were able to
achieve a cost reduction of more than one order of magnitude with respect to a standard MC estimator.
Current research directions are leaned towards the formal extension of the algorithm to multiple QoIs for
which, in this manuscript, we employed an heuristic approach based on the variance aggregation across QoIs.
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