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Motivation for Concurrent Multiscale h) e,
Coupling

= [Large scale structural failure frequently
originates from small scale phenomena such
as defects, microcracks, inhomogeneities and
more, which grow quickly in unstable manner.

= Failure occurs due to tightly coupled
interaction between small scale (stress
concentrations, material instabilities, cracks, Roof failure of Boeing 737 aircraft due to
etc.) and large scale (vibration, impact, high fatigue cracks. From imechanica.org

loads and other perturbations).

Concurrent multiscale methods are
essential for understanding and prediction
of behavior of engineering systems when a .

. ) Surface flaw in pressure

SmCI” SCaIefCIllure determ|nes the vessel: interacts with

performance of the entire system. microstructure, which may
or may not lead to failure.
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Abstract We generalize the multiscale overlapped domain
framework to couple multiple rate-independent standard dis-
sipative material models in the finite deformation regime
across different length scales. We show that a fully cou-
pled multiscale incremental boundary-value problem can be
recast as the stationary point that optimizes the partitioned
incremental work of a three-field energy functional. We also
establish inf-sup tests to examine the numerical stability
issues that arise from enforcing weak compatibility in the
three-field formulation. We also devise a new block solver
for the domain coupling problem and demonstrate the per-
formance of the formulation with one-dimensional numerical
examples. These simulations indicate that it is sufficient to
introduce a localization limiter in a confined region of inter-
est to regularize the partial differential equation if loss of
ellipticity occurs.

strain localization may lead to the eventual failure of materi-
als, this phenomenon is of significant importance to modern
engineering applications.

The objective of this work is to introduce concurrent cou-
pling between sub-scale and macro-scale simulations for
inelastic materials that are prone to strain localization. Since
it is not feasible to conduct sub-scale simulations on macro-
scopic problems, we use the domain coupling method such
that computational resources can be efficiently allocated to
regions of interest [ 14,23,24,30]. To the best of our knowl-
edge, this is the first work focusing on utilizing the domain
coupling method to model strain localization in inelastic
materials undergoing large deformation.

Nevertheless, modeling strain localization with the con-
ventional finite element method may lead to spurious mesh-
dependent results due to the loss of ellipticity at the onset
of strain localization [31]. To circumvent the loss of mate-
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Three-field multiscale
coupling formulation
with compatibility
enforced weakly using
Lagrange multipliers.
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framework to couple multiple rate-independent standard dis-
sipative material models in the finite deformation regime
across different length scales. We show that a fully cou-
pled multiscale incremental boundary-value problem can be
recast as the stationary point that optimizes the partitioned
incremental work of a three-field energy functional. We also
establish inf-sup tests to examine the numerical stability
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three-field formulation. We also devise a new block solver
for the domain coupling problem and demonstrate the per-
formance of the formulation with one-dimensional numerical
examples. These simulations indicate that it is sufficient to
introduce a localization limiter in a confined region of inter-
est to regularize the partial differential equation if loss of
ellipticity occurs.

strain localization may lead to the eventual failure of materi-
als, this phenomenon is of significant importance to modern
engineering applications.

The objective of this work is to introduce concurrent cou-
pling between sub-scale and macro-scale simulations for
inelastic materials that are prone to strain localization. Since
it is not feasible to conduct sub-scale simulations on macro-
scopic problems, we use the domain coupling method such
that computational resources can be efficiently allocated to
regions of interest [ 14,23,24,30]. To the best of our knowl-
edge, this is the first work focusing on utilizing the domain
coupling method to model strain localization in inelastic
materials undergoing large deformation.

Nevertheless, modeling strain localization with the con-
ventional finite element method may lead to spurious mesh-
dependent results due to the loss of ellipticity at the onset
of strain localization [31]. To circumvent the loss of mate-

Method works well, but is
difficult to implement into
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Schwarz Alternating Method for Domain ()&
Decomposition

Proposed in 1870 by H. Schwarz for solving Laplace PDE on irregular domains.

Simple idea: if the solution is known in regularly shaped domains, use those
as pieces to iteratively build a solution for the more complex domain.

H. Schwarz (1843 — 1921)

Schwarz Alternating Method
Initialize:

= Solve PDE by any method on (2, w/ initial guess for Dirichlet BCs on /7.

Iterate until convergence:

= Solve PDE by any method (can be different than for €2) on 2, w/
Dirichlet BCs on 7 that are the values just obtained for (2,.

o = Solve PDE by any method (can be different than for €2,) on ©, w/
- Dirichlet BCs on /7 that are the values just obtained for (2,.




Schwarz Alternating Method for Domain ()&,
Decomposition (

Proposed in 1870 by H. Schwarz for solving Laplace PDE on irregular domains. < W

Simple idea: if the solution is known in regularly shaped domains, use those
as pieces to iteratively build a solution for the more complex domain.
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Schwarz Alternating Method
Initialize:

= Solve PDE by any method on (2, w/ initial guess for Dirichlet BCs on /7.
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0 = Solve PDE by any method (can be different than for €2,) on ©, w/
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= Schwarz alternating method most commonly used as a preconditioner for Krylov
iterative methods to solve linear algebraic equations.
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Using the Schwarz alternating as a discretization method for
PDEs is fairly recent idea, but with sound theoretical foundation.
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energy functionals.
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= S.L.Sobolev (1936): posed Schwarz method for linear
elasticity in variational form and proved method’s
convergence by proposing a convergent sequence of
energy functionals.

= S. G. Mikhlin (1951): proved convergence of Schwarz
method for general linear elliptic PDEs.

S. G. Mikhlin (1908 — 1990)




Using the Schwarz alternating as a discretization method for
PDEs is fairly recent idea, but with sound theoretical foundation.

= S.L.Sobolev (1936): posed Schwarz method for linear
elasticity in variational form and proved method’s
convergence by proposing a convergent sequence of
energy functionals.

= S. G. Mikhlin (1951): proved convergence of Schwarz
method for general linear elliptic PDEs.

= A. Mota, |. Tezaur, C. Alleman (2015)*: derived a proof of
convergence of the alternating Schwarz method for the
finite deformation quasi-static nonlinear PDEs (with
energy functional @[] defined below), and determined a
geometric convergence rate for the finite deformation
guasi-static problem.

Olp]= [, W(F,Z,T)av — [, B-(pdV—faTBT_'-fpdS
V-P+B=0

A. Mota, |. Tezaur, C. Alleman

*A. Mota, I. Tezaur, C. Alleman. "The Schwarz Alternating Method in Solid Mechanics", CMAME (under review).
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Schwarz Alternating Method for Multiscal & &:.
Coupling in Quasistatics

1: o+ idx in Q > initialize to zero displacement or a better guess in {25
2:n<+1

3: repeat > Schwarz loop
4: @™ « x on 0 0y > Dirichlet BC for €2;
5 (") Po, 1, [go('”'_l)] on [ > Schwarz BC for ;
6: @™ «— arg IIélg ®,[¢p] in §2; > solve in §2;
7 n+<n-+1 e

Requirement for convergence: (0,1 Q, # 0

8: until converged

Advantages:

= Conceptually very simple.
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Four Variants of the Schwarz Alternating

Method

1 zg) — Xg) inQy, x (1) — x(X(l)) on dp, m(l) X(l) onI'y
2: wg) — Xg) in Qg, @ ( ) — x(X(2)) on 9, T ( ) — X(z) onTIg
3: repeat

4 y® ez

5 wg) « Pzl + Qual? + G12:cg2)

6 repeat

7 s e KD @W;a;e0NRD @D o2l

g 2D 2 | pzd

o uti (150D /12D < et

10: Y@z
11: mgz) — Pglwg) + lemgl) + G21mf31)

D initialize for 1

D initialize for Qo

> Schwarz loop

> for convergence check

> project from Q2 to I'y
> Newton loop for Q1
> linear system

> tight tolerance
> for convergence check
> project from Q2 to 'y

Sandia
m National

Laboratories

1: z: X(l) inQq,x ( ex(Xél))an‘FQl,zgl) <—X§l) onT;
2: zB < Xg) in Qg, ,(J — X(Xlgz)) on 92, zgz) — ng) onTs
3: repeat

4 2/(51) — Pmmg) + lea:,(f) + G12222)

s e e KO D20 20N ED @ o 2l))

6 mg) «— wg) + Awg)

7 2 lezg) + Q21€B,(,1) + Gzlwg)

b aad o KO e o?)\RY@P;a;a?)

9 zg) — 1(2) + Aw(z)

’ 911/2
10: until [(I\Aw(”ll/\lm“)l\) (||Aw<”\|/||z<2)||)] < Cmacine

b initialize for
D> initialize for Qg
> Newton-Schwarz loop
> project from 22 to I'y

> linear system

> project from 24 to I'y

> linear system

D> tight tolerance

22D « ~KD@D; 2 ONRD @D; 20; 2()
M o | pzd

D> linear system

12: repeat > Newton loop for 2o
13: Azg) — —Kfj);(a:g); (2))\R(2)(:1:(2) ,(,2);w§,2)) > linear system
14: (2) — m(2) + Am(z)
15: until HAz(Q)ll/llz@)H < €machine > tight tolerance
) 1) 2 @ @2
16: until [(ny“) =P 1/1=P0)" + (1@ - =P 11/11=31) } < Cmchine b tight tolerance
Full Schwarz

12« X3 in 01,2l x(X{) ondp, 2 X onTy b initialize for 1
2 wg) — Xf;) in Qg, w,(,z) — x(x,ﬁ”) on dp s, w;f) — Xff) onTly > initialize for 22
3: repeat > Schwarz loop
4: y(l) ) > for convergence check
5: wg” — Plgm(‘f) + anl(’z) + Glgwfaz) > project from Qg to I'y
6: repeat > Newton loop for 21
7

8:

9:

until HAw“)II/IIw“)H <e
10: y® =z

11: mé) — Pglm(l) + Qi + G21mfgl)

12 repeat
13 ra — ~K @S2 aPN\RY @82 2
14: 2P 2P+ ral

15: unﬁ1||Az(2)||/||z(2)||<e

2 P) 1/2
16 wnet [ (5 - 2 1/1121)” + (Il - 2 1/1571)°]

> loose tolerance, e.g. € € [1074,1071]
> for convergence check

> project from Q1 to 'y
> Newton loop for 2o
> solve linear system

> loose tolerance, e.g. € € [1074,107!]

< €machine > tight tolerance

Modified Schwarz

15 wg) — Xg) in Qq, z(l) +— x(X(l)) on 9,

2 wg) & Xg) in Qg, @, ( L )((X(“‘7> ) on 2,

3: repeat

" {Aw%} (Kf:‘)g +K§)Hy K)Hy, ) \{_R;‘l)}
Az K H, K+ KQH»n) | -RY

54 531) — zg) + Azg)

6: wg) — m(2) o Aw(z)
1/2
7: until [(IIAw‘”H/Hw“)H) (\Aw(”u/nwﬁ:’uﬂ it

D> initialize for €
> initialize for Q2
> Newton-Schwarz loop

> linear system

> tight tolerance

Inexact Schwarz

Monolithic Schwarz




Full Schwarz Method rh) i

Classical algorithm originally proposed by Schwarz with outer Schwarz loop
and inner Newton loop, each converged to a tight tolerance (€,,4chine)-

1: mg) — Xg) in Qq, wgl) “— x(Xél)) on 9, wg) “— X!(Bl) onI'; > initialize for €2,
2: :r,g) — Xg) in Qo, :x:gz) — x(Xéz)) on 9,2, :x:g) — X!(Bz) onT'g B> initialize for (2o
3: repeat > Schwarz loop
4. y(l) — mg) > for convergence check
5: mgl) — Plga:g) + lezcl(f) + Glzmg) > project from Q2 to I'y
6: repeat > Newton loop for €21
7. Amg) < —K&lg(mg); mgl);mg))\Rg)(mg); wgl); wgl)) > linear system
8: mg) - mg) + Amg)

9: until ||A:c§91)|| / ||:c§91)|| < €machine B> tight tolerance
10: y(2) — :c(g) > for convergence check
11: :Bfgz) — Pglwg) -+ lewgl) -+ Gglwg) > project from £2; to I'2
12: repeat > Newton loop for €22
13: Amg) — —Kffg (mg); wgz) . mg))\Rff) (mg); mgz) . mg)) > linear system
14: mg) — mg) + A:cg)

15: until ||A:c(§) |/ ||:cg)|| < €machine > tight tolerance
W1 1112 @1 me@ ]
16: until {(Hy(l) —x3’|l/||les ||) + (||y(2) —x5’||/||leg ||) ] < €machine B> tight tolerance




Inexact Schwarz Method rh) i

Classical algorithm originally proposed by Schwarz with outer Schwarz loop
and inner Newton loop, with Newton step converged to a loose tolerance.

1: mg) — X}(Bl) in 21, :cgl) — x(Xél)) on O 21, :cfal) — Xél) onI'y > initialize for 21
2: mg) Y Xg) in Qo, mgz) — x(Xéz)) on Oy, :cg) — Xéz) on I’ > initialize for Qo
3: repeat > Schwarz loop
4: y(l) — mg) > for convergence check
5 :cfgl) +— P1233(,3) + Q12m§,2) + Glzwg) > project from §25 to I';
6: repeat > Newton loop for 21
7: Amg) — —K‘(Alg(a:g); mgl);mgl))\Rg)(mg); :cgl); zcgl)) > linear system
8 mg) — mg) + /_\.mg)

9 until ||Amg)||/||mg)|| <e > loose tolerance, e.g. € € [1074,107}]
10: y(2) — :cg) > for convergence check
11: :Bgz) — Pglwg') e lewél) R Gglw‘(gl) > project from €2 to I'g
12: repeat > Newton loop for 22
13: /_\.mg) — —nga (mg); mgz); mfgz))\Rf)(mg); mgz); mgz)) > solve linear system
14: :cg) — :c(,f) + Amg)

15:  until ||Awg)||/||wg) || <e b loose tolerance, e.g. € € [1074,107}]
D1/101) @ 1521\ 2]"
16: until [(ny(l) —2PN/MeR1) "+ (Ily® -2 1/12$)) } < Camachine > tight tolerance




Monolithic Schwarz Method rh) i

Combines Schwarz and Newton loop into since Newton-Schwarz loop, with
elimination of Schwarz boundary DOFs, and tight convergence tolerance.

1 mg) “— X](Bl) in Q1, wl()l) < x(XlEl)) on 9§21, > initialize for 21

2 mg) — X1(532) in Qo, ml()z) - x(XlEz)) on (2, > initialize for Qo

3: repeat > Newton-Schwarz loop
AzD KO + KVH), KU H;, ~RW .

4: 5) < AB (2) AB (2) Ap (2) \ é) > linear SyStem
AwB KABHzl KAB+KABH22 _RA

3 wg) +— wg) + Awg)

6: mg) — azg) + Amg)

7: until [(quS;)n/nwg’u) + (l2e@11/1= 1)) ] < Comatine > tight tolerance

Advantages:

* By-passes Schwarz loop.

Disadvantages:
* Off-diagonal coupling terms — block linear solver is needed.



Modified Schwarz Method rh) b

Combines Schwarz and Newton loop into since Newton-Schwarz loop, with
Schwarz boundaries at Dirichlet boundaries and tight convergence tolerance.

1: :cg) < XS) in 4, :cgl) - x(XE()l)) on 921, wfgl) — Xél) on Iy > initialize for 27
2: mg) - Xg) in Qg, mgz) - x(XE(f)) on Oy €2, mg) — Xéz) on I’y b initialize for (2o
3: repeat > Newton-Schwarz loop
4: mg) — Plga:g) + Q12m§,2) + Glzwg) > project from 9 to I'y
5: Amg) < —KEL); (:cg); :cgl); :cg))\RS)(mg); mgl); :cg)) > linear system
6: mg) < mg) ot /_\:r,g)

7. 03;2) — lewg) -+ lewgl) -+ Gle,(Bl) > project from €21 to I'p
8: Amg) < —ngg (:cg); :cgz); :cg))\REf)(mg); mgz); :cg)) > linear system
9: wg) < wg) + /_\wg)
10: until [(HAQ:S)H/H&E;)H) + (||A:cg)||/||mg)||) } < €machine > tight tolerance

Advantages:

* By-passes Schwarz loop.
* No diagonal coupling (conventional linear

solver can be used in each subdomain).
I ———————-——



Modified Schwarz Method rh) b
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1: :cg) < Xg) in 1, :cgl) - x(XE()l)) on 921, a:fgl) — Xél) on Iy > initialize for 27
2: :cg) - Xg) in O, mgz) - x(XE(f)) on Oy €2, wg) — Xéz) on I’y b initialize for (2o
3: repeat > Newton-Schwarz loop
4: mg) — Plga:g) + lemf) + Glzwg) > project from 9 to I'y
5: Amg) < —KEL)? (:cg); :cgl); :cg))\RS)(a:g); wgl); :cg)) > linear system
6: mg) < mg) ot Amg)

7. SBE;Z) — lewg) -+ lewgl) -+ G21mf31) > project from €21 to I'p
8: /_\.mg) < _Kf}?? (:cg); :cgz); :cg))\REf)(a:g); mgz); 33532)) > linear system
9: wg) < wg) + Awg)

10: until [(HAQ:S)H/Ha:g)H) + (||A:cg)||/||mg)||) ] < €machine > tight tolerance

Advantages: ) . .
& Least-intrusive variant: by-passes Schwarz

* By-passes Schwarz loop. iteration, no need for block solver.
* No diagonal coupling (conventional linear

solver can be used in each subdomain).
I ———————-——
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Implementations

All four variants implemented in MATLAB code.

1:
2:
3:
4
5:
6.
7
8
9.

1

o

10:

11:
12:

13:
14:
15:

2 2 1/2
: until [(uy“) =3 11/11=311) +(|\y<2>—w">||/uw<2’||)} < Cmahine

: z(l) — X(l) in Qp, z(l) — x(Xél)) on dp, m/(sl) — Xl(,l) onI'y

z ) X(2) in Q, @ ( ) — x(X,S”) on 9, z(;) — X[(f) onTlg

repeat

y@ RO

wfgl) « Poa® + lewf) + G1zwg)

repeat
Azg) — —Kgé(wg) wgl)
wg) — wg) + Awg)
wntil (|22 ||/[1251] < ensctine
y@ @

MR e

)

wfgz) “— lewg) +Q21w,(,1) + Gzﬂig)

repeat
Azg) —
2) — z(z) + Azm
until uAm‘”u/nz‘”u < Cmactine

-KQ@Di2 ePNRY @3 2752

MATLAB

b initialize for €1

D initialize for Qg

> Schwarz loop

> for convergence check

> project from Q2 to I'y
> Newton loop for Q1
> linear system

D> tight tolerance
> for convergence check

> project from € to I'y
> Newton loop for Q22

> linear system

D> tight tolerance

> tight tolerance

Sandia
National
Laboratories

1: m( «—X(l)mﬂl :1:( ex(X(l))ona‘PQI, g)eX‘gl) onI'y

2: m% — Xg) in Qg, ,(,2) — x(XIE )) on 2, @ 532) — X‘(,f) onIy
3: repeat

4:

© © v

—

<1) «— P12:B 2) + Q12m( ) + G12w£q
Am(l) P K(l) (m(l) (1))\R(1)(m(1)
g> — zg) + A:z:g)
zgz) — szg) + Qnmgl) + Gglz(ﬂl)
2 K @®:2® a?)\RD @2;2?;a?)
wg) — 2(2) + Az(z)

'(,1);:”;1))

271/2
0: until [(I\Aw(”ll/\lm“)l\) (||Aw(2>l|/||m<”||)] < Cmacine

MATLAB

> initialize for Q2
D> initialize for Q2
> Newton-Schwarz loop
> project from 23 to I'y

> linear system

> project from 21 to I'y

> linear system

D tight tolerance

Full Schwarz

0 N kWY 2

14:
15:

271/2
16: until [(Hy<1>—z‘”u/uw‘”u) (||y<2)—m(”u/||m(”||)] < mchine

wg) — XI(;) in Q1, w( — x(X(l)) on 1, m
w(‘f) — X}(;) in Qo, £2) — x(Xéz)) on 9pQla, @ 592)

repeat

y(l) - w(l)

1 1 1
“ fKE;é(w‘B’:wé );
wg) — wg) + Awg)
until || Az (||/||25)| < €

y@

e N\RY @525 2))

X(l) onT'
Xf,f) onTy

MATLAB

> initialize for 1

> initialize for Qo

> Schwarz loop

> for convergence check

> project from Q5 to I'y
> Newton loop for 21

> linear system

> loose tolerance, e.g. € € [10~4,1071]

"152,2) — P21E551) + Q211‘§,1) + G21"Bg)

repeat
Am(.f) — —Kl(fj)?(mg);zm
z(z) ~ 2(2) + Az(z)

i |52 /10 < <

eN\RY @) 2?2 )

> for convergence check

> project from Q1 to I'y
> Newton loop for 2o
> solve linear system

> loose tolerance, e.g. € € [1074,1071]

D> tight tolerance

Modified Schwarz

1 wg) «— X};) inQy, :z:l(,l) — x(XéU) on €,

2: zg) «— X(Bz) in Qg, :céz) +— X(Xéz)) on 0,
3: repeat
o[22 K$) + K{) Hy K()Hi,
’ Azg) K(Q)Hﬂ K@ + Kﬁngn
LH g) — zg) + Azg)
6: w(z) — m(2) + A:z:(z)

271/2
7: until [(IIAm("H/Hm“)H) (HAw@u/nmg’u)] it

_RW

_r®

}

> initialize for €1
> initialize for Qg
> Newton-Schwarz loop

> linear system

MATLAB

> tight tolerance

Inexact Schwarz

Monolithic Schwarz
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Implementations

e All four variants implemented in MATLAB code.

* Modified & monolithic Schwarz variants implemented in parallel C++ Albany code.

15 until \|Aa:(2)||/||m(2)\| < €machine

2 2 1/2
16: until [(ny“) P2 PN) + (@ - = ’||/uw‘2>||)} < Cmahine

D> tight tolerance

> tight tolerance

1 z(l) XD i, &) « x(XM) on dp0, zf;) . Xl(,l) onTy > initialize for Q1

2: z ) X(z) in Q, @ ( ) — x(X,§2)) on 9, m?) — X[(f) onTlg > initialize for Qg

3: repeat > Schwarz loop ) . ) ) 20 ) T

4 y@ zg) > for convergence check Ly’ « Xp'inQy, ey’ + x(X, ') ondpQ, @ 5 < X‘9 onI'y > initialize for Q2
5. wl(sl) - Plzmg) + lewf) + G121:E,2) > project from Q2 to I'y 2: m%) — Xg) in Qg, ,(,2) — x(Xé )) on 2, @ @ Xéz) onIy D> initialize for Q2
6 repeat > Newton loop for £1 3: "ePe"‘(tl) @ @ @ > Newton-Schwarz loop
7 2zl —KQ @2V, E,”)\RX)(::S); 2(V; Efc;l)) MATLAR > linear system 4 — Ppaly’ + Q12:1: + Glgwﬂ > project from Q3 to 'y
8 wg) - wg) + Awg) EGraEs e 5: Awg) — KS)( (1) (1))\R(1)(m(1) ,El);mg)) MATLAB > linear system
9 until [|[A20)1/1125]] < emachine > tight tolerance 6: mg> — a:(Bl) + Awg) e ——

10: y@ m(z) > for convergence check 7 z(ﬂz) “— lezg) + lemgl) + Gzlzg) > project from Q; to I'y
1z P21w§;> +Qual) + Gy > project from Q21 to T’y 8 82 « ~K2@P;a;a?\RP @2 2(?;2?) > linear system
12: repeat > Newton loop for Q22 9 @) @ 4 Ag®

13: 222 « K@D 2? 2P N\RD @82 2f)) > linear system ¢ @p @y +Axp e

4 2@ 2@ 4 Az 10: until [(I\Aw(”ll/\lm“)l\) + (a1 ] < Cnaine > tight olerance

Full Schwarz

Modified Schwarz

Inexact Schwarz

1: wg) — XI(;) in Qq, z( — x(X(l)) on 8, m X(l) onT' b initialize for €1
2: w(‘f) — Xg) in Qa, £2) < x(Xéz)) on 9pQla, @ ff) Xf,f) on Ty > initialize for Qg
3: repeat > Schwarz loop
4: Yy w(l) > for convergence check i @) (1) ; (1) (1) initiali
5: 2z« P, z(z) +Q z? + Gzl > project from Q3 to I' " a:(%) < Xf?z) i ml(’z) “ X(lez)) g apiding
5 re[;)eat 2 12, 125 l;ﬁ‘ewmn loopzfor Qi 2wy « X3 in Qo 2y  x(X,7) on 802, > initialize for Qo

: TATT A ) 3: repeat > Newton-Schwarz loop
7: Azg) — —Kf:)s(mg);wgl);zg))\Rg)(zg);zEU;mg)) ,I\’E_ﬂ\lLL\B > linear system Az(l) K(l) K(I)H K(l)ng (1)
8: 20 2D 4 Az 4: B+ @ @) A8 @) &) > linear system

. B (l)B o B Axg K H21 KAB+KA5H22 -Ry
9:  until [|Azy’||/|leg’|| <€ > loose tolerance, e.g. € € [1074,1071] W W W

(2) (2) L4 xp’ Ty +Axy
10: Yy —zxy o for convergence check 6 @ @, Ag®
11 zg) « Pnzl) + Qual) + szg) > project from €5 to I'y © %R T A% 271/2
12 repeat o o o @ o > Newton loop for §22 7: until [(||Am“’|\/um“)n) (la=@1/1=$1) ] < Cmachine b tight tolerance
13: Am%) — —Kl(“)g(mgg);mg ) m/(s ))\R(A)(m%);zg );m(ﬂ )) > solve linear system
14: z(z) — 2(2) + Az(z)
15: until ||Am(2)||/||m(2)|| <e > loose tolerance, e.g. € € [1074,1071]
211/2

16: until [(Hy‘” —eD1/e@1)” + (@ -2 21/1221) ] < mchine > tight tolerance

Monolithic Schwarz




Schwarz Alternating Method in Albany Code

Modified & monolithic Schwarz versions have been
implemented within the LCM project in Sandia’s open-source
parallel, C++ multi-physics, finite element code, Albany.

= Component-based design for rapid development https://github.com/gahansen/Albany
of capabilities.

= Extensive use of libraries from the open-source
Trilinos project.

= Use of the Phalanx package to decompose
complex problem into simpler problems with
managed dependencies.

= Use of the Sacado package for automatic
differentiation.

= Use of Teko package for block preconditioning.

= Parallel implementation of Schwarz alternating
method uses the Data Transfer Kit (DTK).

= All software available on GitHub. https://github.com/ORNL-
CEES/DataTransferKit
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Sandia

Example #1: Foulk’s Singular Bar 5.

o 1D proof of concept problem:

e 1D bar with area proportional to square root of length.

« Strong singularity on left end of bar.

o Simple hyperelestic material model with no damage.
« MATLAB implementation.

MATLAB

1 2w echens] Corvpray

u(0) = 0 A(X) = Ap\/X/L w(L) = A
7

L
o Problem goals:

o Explore viability of 4 variants of the Schwarz alternating method.
o Test convergence and compare with literature (Evans, 1986).
o Expect faster convergence in fewer iterations with increased overlap.




Singular Bar and Schwarz Variants ) i,

~— Domain Q i 108 . - - :
~— Subdomain £, ‘ ~— 64 elements
08H Subdomain Q| e .......... ~— 128 elements
== 256 elements
E ~— 512 elements
- E 102} = 1024 elements ||
% 06 o TN 1 g © 2048 elements
g = ~—— 4096 elements
__% : : B ~—— 8192 elements
N B B~
Eoal L D R TCEPOES S g
(] : : = 100
u(zj = (9(2) = X ZS
ool WX
u(O) = ‘P(D) _ X=0 100 i ; i I
o 1 0 20 40 60 80 100
0-% 0 05 0 06 08 10 Size of Overlap Region [%)]
Position
10° : ' : ' ' : ' 103 - . ! ;
& Full Schwarz : : i ~— Full Schwarz :
5 Fri .
10~2}| — Modified Schwarz i e /. NI AJ_ L I‘k }3 ~—— Modified Schwarz
~—— Inexact Schwarz The Largpazge wal fuchmind Durpring 102}| = Inexact Schwarz : 3
1074} Monolithic Schwarz Monolithic Schwarz
= 1078 101 F ]
o "m
& o
= = 100 ]
K 10710
i
1071t i
10-14}
1016 i i ‘ i . i I 10_2 ) ;3 ‘4 i = i6 -
10716 1071 1072 107 107® 107 107* 1072 10° 10 10 10 10 10 10
Error ¢ Number of Elements per Subdomain




Example #2: Cuboid Problem

Coupling of two cuboids with square base (above).
Neohookean-type material model.

Combined Newton-Schwarz Iteration

Sandia
National
Laboratories




Sandia

: la%nllnlgtmies
uboid Problem: Convergence wit )t
p s—a (hy,hy) =(1,1)
ol & i ()= (L))
o—o (hi,ho)=(1,7)
Below: Convergence of the cuboid o (k)= (1}
. . Y aa (h,ho) =31
problem for different mesh sizes e (b=l
and fixed overlap volume fraction. ™ et el
The Schwarz alternating method Jos o (ml) =G}
. S oo (h2)=(1,3)
converges linearly.
10° | Overlap \-"uh'luuv Fraction
101k —a (h].hg) = (1.1)
ol bbb B ] e Bk = (LD
oo (M,h2)= (111)
=" oo (1) =(1,})
T Wb e i Above: Convergence factor as a
2 0 By .
S 1 | oo Efj;-i; function of overlap volume and
g 1078 Losonedinnibonusiimaslmess S o—o 11,N2) = (35,3 . .
2 —e (k)= (L1 different mesh. There is faster
e R E:;;:E; linear convergence with increasing
= o—o (,N2) =(5:3 .
ol | | 5 ‘ overlap volume fraction.
10!

10-12 d ! I I ] I TR S ! I I
1071072 10-"1 107 10~ 10~* 10~ 10-% 10~ 10~* 10~ 10~ 10" 10°
Increment Norm ||Ay™)||
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Cuboid Problem: Schwarz Error

Subdomain ws relative error o33 relative error

o 1.24 x 10714 2.31 x 10713
Qs 7.30 x 1071 3.06 x 10713




Example #3: Notched Cylinder

128

=777 [\
32 N i
Qo
16
NS T ......... 358
I's (85 8, |
I's \}6
. |8
16
Qo
32

(a) Schematic
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(b) Entire Domain §?2 (c) Fine Region 2 (d) Coarse Region (22

Notched cylinder that is stretched along its axial direction.
Domain decomposed into two subdomains.
Neohookean-type material model.




Notched Cylinder: Conformal HEX-HEX Coupling

(b) 22

(@)
us relative error
Absolute residual tolerance 9 Qo
1.0 x 10~* 7.60 x 1072 3.20x 1073
1.0 x 1078 3.10 x 107° 1.71 x 107°
1.0 x 10712 1.34 x 1072 5.10 x 1071°
1.0 x 10~ 14 1.23 x 10711 4.69 x 1012
2.5 x 10716 1.14 x 10~ 8.37 x 10~ 4

6.400e-03
0.006

[

T

o
o
)
o

0.003

(R RRRRRARRRRRRARR

0.002

0.000e+00
(©) Sher




Notched Cylinder: Nonconformal HEX-HEX () i,
Coupling

(a) €21 and Q9 (b) Qr mesh (¢) 2er solution

u3
6.400e-03
E0.00é

-

—0.005

=0.003

Eo.ooz
0.000e+00




Notched Cylinder: Nonconformal HEX-HEX () i,
Coupling -

1.446e-05
1.2e-5
i xui r . —Eoe-é
; Hﬁj' ; =
il Zte-6
4 3e-6
0.000e+00
(a) 1
ug relative error
Absolute residual tolerance 04 Qs
1.0 x 1078 1.31 x 1073 4.45x 1074
1.0 x 10712 1.30 x 1072 4.43 x 107*
1.0 x 10~ 1.30 x 1073 4.43 x 10~
2.5 x 10716 1.30 x 1072 4.43 x 1074




Notched Cylinder: TET-HEX Coupling )

Laboratories

= The Schwarz alternating method is capable of coupling different mesh topologies.

= The notched region, where stress concentrations are expected, is finely meshed with
tetrahedral elements.

= The top and bottom regions, presumably of less interest, are meshed with coarser
hexahedral elements.




Notched Cylinder: TET-HEX Coupling () i,




Notched Cylinder: Conformal TET-HEX )
Coupling

Laboratories

u3 error
5.820e-05

4e-5

w
0]
n

le-5

mullllllhlllllllm

0.000e+00

(a) €21

us relative error
Absolute residual tolerance 93 Qs

1.0x 10~ ™ 9.27 x 1072 3.70 x 1073




Notched Cylinder: Coupling Different Materials

The Schwarz method is capable of coupling regions with different material models.

= Notched cylinder subjected to tensile load with an elastic and J2 elasto-plastic regions.
= Coarse region is elastic and fine region is elasto-plastic.

= The overlap region in the first mesh is nearer the notch, where plastic behavior is

expected.
Overlap far from notch. Overlap near notch.
”.’”.'.'HHH(
%z’ O
Coupled regions
Coarse, elastic region
AR
[ EE R R RN NRREAN
T

Fine, elasto-plastic region




Notched Cylinder: Coupling Different Materials

Need to be careful to do domain decomposition so that
material models are consistent in overlap region.

=  When the overlap region is far from the notch, no plastic deformation exists in it: the
coarse and fine regions predict the same behavior.

= When the overlap region is near the notch, plastic deformation spills onto it and the two
models predict different behavior, affecting convergence adversely.

Overlap far from notch. Overlap near notch.




Example #4: Laser Weld with 3 Subdomainsh .

Laser weld specimen Single domain discretization

Cauchy_Stress_05
4.000e-

I +0
30

mg Coupled Schwarz discretization

(50% reduction in model size)

* Problem of practical scale (~20K dofs).

* Isotropic elasticity and J2 plasticity
with linear isotropic hardening. %
* Identical parameters for weld and base

materials for proof of concept, to
become independent models.




Sandia

Laser Weld: Strong Scalability of Parallel .
Schwarz with DTK

(@)}
g

W
\)
T

—
(@}
T

Wall Time [hr]

o
T

Isotropic elasticity, J2 plasticity, ~200,000 DOFs T e Y Ny N

Number of Processors

Data Transfer Kit (DTK)
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Summary

= We have proposed the Schwarz alternating method as a means of concurrent
multiscale coupling in finite deformation quasistatic solid mechanics.

= We have developed four variants of the Schwarz alternating method (Full Schwarz,
Modified Schwarz, Inexact Schwarz, Monolithic Schwarz).

= We have proven that the Full Schwarz variant converges geometrically for the solid
mechanics problem.

=  We have demonstrated numerically that the convergence of the Schwarz method in its
four variants is linear.

= We have demonstrated coupling of conformal and non-conformal meshes, meshes with
different levels of refinement, meshes with different element topologies, and > two
subdomains via the proposed method.

= We have demonstrated that the error in the coupling can be decreased up to numerical
precision provided that no other sources of error exist.

=  We have developed a parallel implementation of the Modified Schwarz method in the
Albany code and demonstrated that the strong scalability of our implementation is
close to ideal.
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Future Work

= Extension of the methods presented herein to transient dynamics (hyperbolic)
problems with the ability to use different time steps and time integrators for each
subdomain.

= Development of a multi-physics coupling framework based on variational
formulations and the Schwarz alternating method.

= Analysis of the convergence for the other Schwarz variants introduced herein,
namely Modified Schwarz, Inexact Schwarz, and Monolithic Schwarz.

= Using the Schwarz alternating method with different solvers in different domains.

= Develop a hybrid FOM-ROM (full-order-model — reduced-order-model) framework
using the Schwarz alternating method.

= [ntroduction of pervasive multi-threading into our Albany implementation of the
Schwarz alternating method using the Kokkos framework.

= Multiscale coupling using the proposed Schwarz alternating method in other
applications.



. Sandia
Outline rh) et

1. Motivation
History of Schwarz Alternating Method

Schwarz Alternating Method for Concurrent
Multiscale Coupling in Quasistatics

* Four Variants: Full Schwarz, Inexact
Schwarz, Modified Schwarz, Monolithic £
Schwarz

* Implementations: MATLAB, Albany 2

4. Numerical Examples
5. Summary

6. Future Work

7. References

8.

Appendix P




References ) s,

Laboratories

[1] M.A. Heroux et al. “An overview of the Trilinos project.” ACM Trans. Math. Softw. 31(3) (2005).

[2] A. Salinger, et al. "Albany: Using Agile Components to Develop a Flexible, Generic Multiphysics
Analysis Code", Int. J. Multiscale Comput. Engng. 14(4) (2016) 415-438.

[3] H. Schwarz. “Uber einen Grenziibergang durch alternierendes Verfahren”. In: Vierteljahrsschriftder
Naturforschenden Gesellschaft in Zurich 15 (1870), pp. 272-286.

[4] S.L. Sobolev. “Schwarz’s Algorithm in Elasticity Theory”. In: Selected Works of S.L Sobolev. Volume I:
equations of mathematical physics, computational mathematics and cubature formulats. Ed. By G.V.
Demidenko and V.L. Vaskevich. New York: Springer, 2006.

[5] W. Sun and A. Mota. “A multiscale overlapped coupling formulation for large-deformation strain
localization”. English. In: Computational Mechanics 54.3 (Sept. 2014), 803—820. ISSN : 0178-7675.

[6] S. Mikhlin. “On the Schwarz algorithm”. In: Proceedings of the USSR Academy of Sciences (in
Russian) 77 (1951), pp. 569-571.

[7] D.J. Evans et al. “The convergence rate of the Schwarz alternating procedure (Il): For two-
dimensional problems”. In: International Journal for Computer Mathematics 20.3-4 (1986), pp. 325—
339.

[8] P.L. Lions. “On the Schwarz alternating method I.” In: 1988, First International Symposium on Domain
Decomposition methods for Partial Differential Equations, SIAM, Philadelphia.

[9] A. Mota, I. Tezaur, C. Alleman. "The Schwarz Alternating Method in Solid Mechanics", submitted to
Comput. Meth. Appl. Mech. Engng.




. Sandia
Outline rh) et

1. Motivation
History of Schwarz Alternating Method

Schwarz Alternating Method for Concurrent
Multiscale Coupling in Quasistatics

* Four Variants: Full Schwarz, Inexact
Schwarz, Modified Schwarz, Monolithic £
Schwarz

* Implementations: MATLAB, Albany 2

4. Numerical Examples
5. Summary

6. Future Work

7. References

8.

Appendix L




Appendix: Multiscale Modeling of 7
Localization

Laboratories

Region of localization (fracture)

Region of
localization
(necking) |

— '

Strain localization can cause localized necking (left)
and ultimately fracture (above).

Goals:

* Connect physical length scales to engineering scale
models.

* Investigate importance of microstructural detail.

» Develop bridging technologies for spatial multiscale/
multiphysics.
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Appendix. Parallelization via DTK: Weak @)=
Scaling on Cubes Problem

10*
©
e
= 103"
e
@]
|_
2
10 ‘
10° 10t 102

Number of Processors

1 Processor,
2.5*%103 DOF / proc

8 Processors,
2.1*103 DOF / proc

64 Processors,
1.9*103 DOF / proc
I ———————-——
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la DTK: Strong @
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Appendix. Parallelizat

Scaling on Cubes Problem
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Appendix. Rubiks Cube Problem rh) b

Work by J. Foulk, D. Littlewood,
C. Battaile, H. Lim

. _ Two distinct bodies, the component
anisotropic

~ .. | scale and the microstructural scale,
crystal elasticity . . .
are coupled iteratively with

isotropic alternating Schwarz
elasticity

distinct
models

overlap

component

concurrent
scale

coupling

plotting axial

stress microstructural

scale
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Appendix. Tensile Bar

Cauchy Stress 11
125.0

l 92.5

60.0

50 A

Embed microstructure in
ASTM tensile geometry




Appendix. Tensile Bar: Meso-Macroscale) s

Laboratories

Coupling
Mesoscale

SPARKS-generated
microstructure (F. Abdeljawad)

Macroscale

4+

cubic elastic constant : C';; = 204.6 GPa
cubic elastic constant : C1o = 137.7 GPa
cubic elastic constant : Cyy = 126.2 GPa

® | oad microstructural ensembles in uniaxial stress
" Fit flow curves with a macroscale J, plasticity model

reference shear rate : 99 = 1.0 1/s 350
rate sensitivity factor : m = 20 T X X Y Y XY
hardening rate parameter : go = 2.0 x 10* 1/s 300}

initial hardness : go = 90 MPa Young’s modulus : £ = 195.0 GPa

saturation hardness : g5 = 202 MPa °§ 250} Poission’s ratio : v = 0.3 -
saturation exponent : w = 0.01 g yield stress : o9 = 144 MPa

Fix microstructure, investigate ensembles Z 200} hardening modulus : H = 300 MPa |
= saturation modulus : S = 170 MPa

151 axial vectors
from 3 of the 10
ensembles of
random rotations
(blue, green, red)

150 saturation exponent : a = 190 |

e e 10 CPensembles
— J2fit

100 ‘ ‘ ‘ ‘ ‘ ‘ ‘
(()).000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040
equivalent plastic strain(mm/mm)

oy =00+ He, +5(1 —e “?)




Appendix. Tensile Bar: Results rh) tases

Reduction in cross-sectional
area over time
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Appendix. Schwarz Alternating Method @i
for Dynamics

= |n the literature the Schwarz method is applied to dynamics by using space-time
discretizations.

= This was deemed unfeasible given the design of our current codes and size of

simulations. .
Time

Pop . %%

Y

® @ 9
T2

*—0—0—05—0—0—5 & > Space
-~

hl h2

Overlapping non-matching meshes and time steps in dynamics.
I —————
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Appendix. A Schwarz-like Time Integrator @ &=
=  We developed an extension of Schwarz coupling to dynamics using a governing time
stepping algorithm that controls time integrators within each domain.
= Can use different integrators with different time steps within each domain.

= 1D results show smooth coupling without numerical artifacts such as spurious wave
reflections at boundaries of coupled domains.

Controller time stepper
[ I |
Time integrator for (2,

Time integrator for (2,




Appendix. Dynamic Singular Bar

= |nelasticity masks problems by introducing energy dissipation.

= Schwarz does not introduce numerical artifacts.

Sandia
National
Laboratories

= Can couple domains with different time integration schemes (Explicit-Implicit below).
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