SAND2017-1752C

Exploiting Time and Subject Locality for Fast, Efficient, and
Understandable Alert Triage

David Kavaler, Corey Hudson, Michael Bierma
Sandia National Labs™
Livermore, California 94551-0969
{dkavale, cmhudso, mbierma} @ sandia.gov

Abstract

In many organizations, intrusion detection and other re-
lated systems are tuned to generate security alerts, which
are then manually inspected by cyber-security analysts.
These analysts often devote a large portion of time to in-
specting these alerts, most of which are innocuous. Thus,
it would be greatly beneficial to reduce the number of in-
nocuous alerts, allowing analysts to utilize their time and
skills for other aspects of cyber defense. In this work, we
devise several simple, fast, and easily understood models
to cut back this manual inspection workload, while main-
taining high true positive and true negative rates. These
methods can be introduced with nearly no overhead, and
can be fine-tuned to desired true positive, true negative,
and manual inspection workload requirements. In addi-
tion, due to their simplicity, these models’ predictions
can be easily understood and are therefore easier to trust.
We demonstrate their effectiveness on real data, and dis-
cuss their potential utility in application by others.

1 Introduction

Many organizations, especially those that handle sensi-
tive information, have a cyber-security team that is re-
sponsible for monitoring and assessing threats on their
network. These security analysts are highly skilled ex-
perts, trained specifically for this job. However, there are
only a finite number of analysts who can perform this
task adequately, and often their workload is vast. These
individuals must, among other tasks, remain on the fore-
front of new known attacks, develop new methods for de-
tecting yet-unseen threats, and attend to current potential
threats. These teams often face an overwhelming volume

*Sandia National Laboratories is a multi-mission laboratory man-
aged and operated by Sandia Corporation, a wholly owned subsidiary
of Lockheed Martin Corporation, for the U.S. Department of Energys
National Nuclear Security Administration under contract DE-AC04-
94AL85000.

of alerts, most of which are innocuous, but must still be
addressed. Due to this enormous volume, analysts may
experience “alert desensitization” [[1]; due to the num-
ber of false positives encountered, analysts may miss true
positive alerts, which lead to, e.g., compromised internal
systems. In fact, alert desensitization has been used to
describe the failure of Target to recognize an attack that
led to the leak of millions of credit card numbers [2].
Thus, analysts would greatly benefit from a system that
can filter (or friage) innocuous alerts and bring attention
to those which may be real attacks. In addition, organi-
zations would likely prefer their skilled security experts
to use their knowledge to its fullest potential, perform-
ing the most difficult of tasks (e.g., mentioned above, de-
veloping methods for detecting unknown attacks), rather
than spending valuable time and resources attending to
an alert queue.

Prior research has made headway into performing this
alert triage task [3]. However, their methods require
building machine learning models based on prior de-
tected threats, which may take a long time to construct
and use. Security threats rapidly evolve and change,
which necessitates continuous updating of these models.
This can be done, but often with a heavy cost of time and
computing resources. In addition, due to the way these
models are built, the task of classifying a previously un-
seen attack is difficult.

Machine learning models are also notoriously difficult
to infer from i.e., how or why does this model work, and
can its predictions be trusted [4]? Such questions are
vitally important in cyber-security, as the ability to un-
derstand and trust a model’s predictions can be the dif-
ference between a critical failure and a large reduction
in mundane workload and increase in quality-of-life for
your analyst team.

There is a general dearth of research on the alert triage
task in the security community, likely due to the nature
of most alert triage data; it is most often proprietary, and
understandably organizations are reluctant to openly re-

lease such data to the research community.

In this work, we present a number of simple, fast, and
easily understood models to classify alerts and perform
alert triage with high accuracy. These methods require
no explicit prior knowledge of attacks on the system, and
exploit attack time- and subject-locality. They can be
tuned to an organization’s specific needs depending on
the acceptable amount of false positives and negatives,
while reducing the number of alerts that require manual
inspection. We test these models on real cyber-security
data from our organization, and find:

1. The simplest model, which reduces the number of
alerts an analyst must manually inspect by 50%,
yields 97.18% true positive and 99.84% true neg-
ative rates. Minor augmentations can increase the
true positive and true negative rates to 98.38% and
99.90%, respectively, reducing manual inspection
workload by 48.40%.

2. More advanced (but still simple) models provide up
to 99.15% true positive and 99.96% true negative
rates, with a 99.32% workload reduction. Depend-
ing on how much one wishes to reduce manual in-
spection workload, true positive and true negative
rates can be increased. We provide a few trade-off
curves that allow management of true positive and
true negative rates, balanced by manual inspection
workload reduction, that can be tuned to an organi-
zation’s specific needs.

3. Our methods work because our data contains alerts
that are grouped by subject and time (i.e., local-
ity), and the groups generally have homogeneous
labels (i.e., alerts within a group are often labeled
the same). We discuss the applicability of our work
to other data that may be more heterogeneous within
subject- and time-localities.

In addition, we provide our data set in an anonymized
form'|in hopes to increase transparency of our methods
and in hopes that the data can be used for further research
in this field.

The rest of the paper is organized as follows: Sec-
tion [2| covers data and methodological goals; Section
discusses related work; Section E] presents results; Sec-
tion [5] provides a discussion; Section [6] covers threats to
validity and future work; and Section [/| provides a con-
clusion.

2 Data and Methodological Goals

illustrates the alert generation process for our
data. Alert data analyzed by the security team is gen-

The anonymization does not affect the results presented in this
work.

Raw Data
Alert

Raw Data

B|a

Stucturing
Filter

Raw Data

Raw Data

£ 2 F
3
8
5
g g
3

Alert
Raw Data

Figure 1: Alert generation process. Raw data is sent
through structuring filters written by security analysts.
These structuring filters turn the raw data into an easier-
to-read form for later labeling. Alerts generated by the
same filter within the same time-batched run are com-
bined into alert groups.

erated through multiple sensors, which may have differ-
ent data formats. This raw data is then transformed into
a unified format, and structured based on various meta-
attributes to a human-digestible form. Here, our “struc-
turing filters” are written by real analysts to group raw
data by subject. Raw data is collected in time-batches;
the period of the time-batch depends on the subject. Sub-
jects can be thought of as a set of rules defined by the
analyst team to detect and categorize particular threats.
The approach for alert generation in our data is common
in network monitoring.

For example, one of our filters looks for all HTTP re-
quests from a particular IP block, and runs twice a da
If there are 5 instances of this event in the first run, and
3 instances in the second, we will generate two alert
groups: the first comprising of 5 alerts (corresponding to
instances), and the second comprising of 3 alerts. In this
way, we have subject- and time-locality; each alert group
contains only alerts of a given subject (in this example,
HTTP requests from a particular IP block), which are
grouped in time. These alert groups also contain meta-
data; this meta-data is not analyzed in this work.

After these alerts have been generated and grouped,
analysts manually inspect each alert individually and
mark them as “closed” (i.e., innocuous) or “promoted”
(i.e., a potential threat that requires additional attentionﬂ
Our goal is to build a classifier which accurately labels
alerts as “closed” or “promoted” without requiring ex-
tensive manual inspection. Note that we assume all an-
alysts label alerts correctly; in other words, our ground

2The subject of this alert type would then be of the form: “HTTP
requests from external IP block X”

3 Analysts may also leave alerts “open”. We remove these from our
data set as there are a myriad of reasons by which an alert will remain
open.

truth for all classification methods in this work are labels
provided by a real, working analyst team. The assump-
tion that analysts are always correct may not be true in
practice, but is a necessary assumption as we use their
labels as our ground truth. It would be very difficult to
construct a classification model of any type without this
assumption.

In this work, we focus on exploiting only time- and
subject-locality of alerts. As mentioned above, these
alert groups do contain additional meta-data. The nat-
ural question then is: why not use meta-data as well?
A primary point of consideration in this work is to con-
struct understandable models. We could very well ex-
tract every feature we can imagine and use those in ad-
dition to time and subject features. However, we be-
lieve this would severely hamper the ease of understand-
ing our models, and potentially violate the principle of
parsimony [5]], commonly observed in statistical model-
ing [6ﬂ It is critically important that we are able to un-
derstand and trust our models’ predictions. Using a large
number of features can easily make this task unwieldy.
In addition, increasing the number of features also in-
creases the time it takes to build a model. In essence, we
have four main methodological goals for our classifica-
tion models; they must:

1. Have a high true positive rate; secondarily, have a
high true negative rate. Missing an alert that should
have been promoted (i.e., false negatives) can be ex-
tremely costly, and should be avoided with priority.

2. Be fast to build, and fast to apply for prediction.
3. Be simple to understand, and thus easier to trust.

4. Save analysts’ time and resources (i.e., reduce the
number of alerts an analyst must manually inspect).

In addition, we must make sure that there are no prob-
lems of data leakage [7]], e.g., future data being used to
predict data in the past. Our models are explicitly made
and evaluated such that this time ordering must be re-
spected and maintained.

We evaluate our models using true positive rate (sensi-
tivity) and true negative rate (specificity) for a number of
reasons. AUC (area under the receiver operating charac-
teristic curve) — a standard evaluation metric for classifi-
cation models [8]] — does not translate well for the models
presented here. In essence, AUC measures the area un-
der the curve between true positive rate and false positive
rate, for varying probability thresholds of a classifier [9)]].
Our models do not provide a prediction probability; they
output predictions with 100% confidence. Thus, AUC

4ie. , Occam’s razor.

0.5-

0.3-

0.2-

0.1-

0.0-

u

0 250 500 750 1000
Alert group size

Figure 2: Distribution of alert group sizes. Inset de-
picts computed density for group frequencies between 0
to 100.

cannot be directly used for our models. Another poten-
tial evaluation metric is the overall accuracy (number of
correct predictions divided by total number of points).
The issue with overall accuracy is that our data is heavily
unbalanced. In fact, if we build a poor classifier that pre-
dicts all alerts should be closed, we would have a 94.87%
overall accuracy on our data; clearly, this is misleading.
In contrast, for this case the sensitivity would be 0% and
the specificity would be 100%. Thus, sensitivity and
specificity have better discriminatory power than over-
all accuracy. A third possible metric would be balanced
accuracy. However, this is merely the arithmetic mean of
sensitivity and 1—specificity; thus, reporting both sensi-
tivity and specificity provides at least as much informa-
tion as balanced accuracy.

3 Related Work

The application of data analysis to cyber security alert
classification has been well studied. Intrusion detection
systems have been augmented by a variety of techniques
including Bayesian networks [10], PCA [11]] and deci-
sion trees [|12] in order to reduce the manual efforts of hu-
man analysts and improve threat detection. While these
techniques have shown promising results [13]], even for
the detection of previously-unseen malware [[14]], these
techniques are much more computationally expensive
than our approach and the models may need to be re-
built frequently in order to keep up with the changing

threat landscape. Additionally, it is often difficult to in-
terpret and trust the behavior of these models, as is the
case with many machine learning methods [4f]. This is
especially important when quantifying the future effec-
tiveness of the models, and understanding their areas of
weakness.

Although recent work has made improvements in the
interpretability and performance analysis of machine
learning models [4]], they only provide locally inter-
pretable results that must still be processed by an analyst.
Locally interpretable results and model debuggers [[15]]
are useful when building models and analyzing their out-
put, but they will not reduce the number of alerts that
the analyst must process. Our simple models reduce an-
alysts’ workload, are easily understood, and do not need
additional tools to help interpret their behavior.

Temporal locality of security events has been stud-
ied in order to detect network [[16] and host [17] based
anomalies and to differentiate spam from non-spam
email [18]. Although these works show that temporal
locality can be used as a feature to segment benign and
malicious behavior, both the network and host based ap-
proaches require a training period and models signifi-
cantly more complex than ours. The segmentation of
spam from non-spam emails is more closely related to
our work, as the temporal stability of IP addresses was
shown to be a good indicator of spam. The use of two
features (IP address and timestamp) is similar to our use
of alert subject and timestamp.

4 Results

In this section, we review our exploratory analysis (Sec-
tion@, introduce a naive baseline for comparison (Sec-
tion 4.2, describe our strategies and their results on our
data (Sections and [4.4), and present a comparison of
our methods to a “standard” machine learning approach

(Section[d-3).

4.1 Exploratory Analysis

In constructing any sort of classification model, ex-
ploratory analysis is an important initial step. In addi-
tion to other benefits, exploratory analysis allows us to
understand our data more in-depth, discovering potential
points of focus which may help improve model perfor-
mance.

We analyze 579,408 closed alerts and 31,349 pro-
moted alerts, for a total of 610,757 alerts. Thus, our data
is very skewed; there are many more closed alerts than
promoted alerts, as is expected with this type of data.
Figure 2| shows the distribution of alert group sizes. As
shown, the distribution is long-tailed, with most of the
density lying below an alert group size of 25.

Subject 1 Subject 2 Subject 3
20- ¢ 3- § 259 T 2,0-

Subject 4

4 [5- 05-

0.0 _ 0- L 0- @00 of loo 00-0 om com @
Subject 5 Subject 6 Subject 7 Subject 8
° 8- 4-
0 10 10 6- 3-
§ 4- 2-
T 5 5-
i - L
‘g 0- 0- can eomeam o of 0- = 0
g Subject 9 Subject 10 Subject 11 Subject 12
we 5= 7 8- 2.0-
] 30-
= 4-
g 6- 15-
£ 3- 4 10 20~
=7 2-
z 10-
1- 2- 05
0- 0 - cee————— (.0 - -me o o 0-® commmes’ 000 %
Subject 13 Subject 14 Subject 15 Subject 16
? 9 150 - ® 8-
100- 6]
4-
1 50~ o s 3
el bt]

Jlul Alng Slep Jlu\ Ailg Slep J;.M Aiig Slep

Alert group creation time

Jul Aug Sep

Figure 3: Number of promotions over time. Large bursts
often correspond to most or all alerts within an alert
group being promoted.

Initially, we set out to discover which attributes of
alerts may be most predictive of their final classifications.
Generally speaking, as threats evolve and change in time,
we sought to discover whether or not there is clear time-
based behavior in alert classifications. In addition, as
skilled analysts are the ones who create the subject filters,
we thought it best to examine alerts stratified by subject.

shows the number of promoted alerts for 16
subjects over a period of 3 consecutive months. We see
that oftentimes alerts are not promoted. However, when
alerts are promoted, they are commonly done so in large
“bursts”. For example, for Subject 3, there exists a very
large burst of 23 promotions all at once. Recall that alerts
are generated in groups at certain times, corresponding to
alert groups. It turns out that this burst of promotions in
Subject 3 is a single alert group that is all promoteﬂ We
call this phenomenon one of time- and subject-locality;
an alert group is built for a particular subject, at a partic-
ular point in time (corresponding to when the raw data
was first encountered and processed). This discovery
provides motivation. As promotions are relatively rare
compared to closed alerts, if we can somehow leverage
these large bursts in time, we will capture a large amount
(in fact, majority) of the promoted alerts.

5This is a common occurrence and will be utilized in some of our
models.

Table 1: Naive model confusion matrix

Table 3: Alternating model (augmented) confusion ma-

Table 2: Alternating model confusion matrix

Observed
Predicted Closed Promoted
Closed 578459 883
Promoted 949 30466
Specificity: 0.9984 | Sensitivity: 0.9718

Observed trix
Predicted Closed Promoted Observed
Closed 576907 1795 Predicted Closed Promoted
Promoted 2501 29554 Closed 578856 509
Specificity: 0.9957 | Sensitivity: 0.9427 Promoted 552 30840
Specificity: 0.9990 | Sensitivity: 0.9838

Correct Labeling, Observed

<" Carried Label

. Incorrect Labeling, Observed

4.2 Constructing a Naive Baseline

When developing or applying a new method to existing
data, it’s important to establish a naive baseline to serve
as a basis of comparison, or a goal to strive for. In our
data, as mentioned above, we see clear evidence of burst
behavior. Thus, an extremely naive approach would be
to always use the previously observed label in time as a
prediction for the next label, per subject. This method
is very fast and simple; it can be done trivially in near-
constant time. The confusion matrix for our naive base-
line model can be seen in[Table 1} As shown, this naive
model performs surprisingly well; we see a true negative
rate (specificity) of 99.57% and a true positive rate (sen-
sitivity) of 94.27%. However, this method has one ma-
jor flaw which violates one of our aforementioned goals:
it does not reduce analysts’ workload. For a past label
to exist, an analyst must provide one. Thus, to imple-
ment this model in practice would still require an ana-
lyst to label every point, as every future point’s predic-
tion relies on the immediate prior label. If the prior label
never changes (as would be the case here without an an-
alyst to provide a label), we have no chance of predicting
points correctly. The authors wish to emphasize that this
naive model is impractical to implement in practice; it
is presented merely as a motivation for the ideas behind
the following, practical methods, as they build on top of
this naive approach. The fact that this exploratory model
works so well illustrates that time- and subject-locality is
important, and exploiting this fact may prove fruitful in
practical, developed models.

4.3 Alternating Analyst Labels

We see that our naive model performs well in terms of
our measures of accuracy. However, it does not reduce
analysts’ workload, as an analyst is still required to la-
bel every prior point. A small augmentation can be made

Time. >

Figure 4: The process of alternating labeling. Low cir-
cles are closed labels; high circles are promoted labels.
Solid circles indicate observed labels. Every other la-
bel is manually provided by an analyst and automatically
carried over to the next alert in time for each subject.

which results in a sizable workload reduction: have an-
alysts manually label every-other point in time, for each
subject. [Figure 4] depicts this process. Analysts manually
label alerts in the analyst label state. These labels are
then carried over for the next alert in subject-time (car-
ried label state) as an automatic alert label (i.e., a predic-
tion). It can be easily seen that this reduces the number of
manually labeled points by 50%, as analysts only man-
ually inspect every-other alerﬂ The results of this pro-
cess applied on our data can be seen in These
results are initially surprising; one would think that this
model should be less accurate than our naive baseline,
as analysts perform less manual labeling. However, this
phenomenon can be simply explained.

Recall that promotions often occur in bursts (Figure 3).

In this corresponds to a long “chain” of pro-
moted points. In the fourth label state, we see that the

first promotion in the chain is misclassified — it should
be predicted as promoted, but is predicted closed. In
the ninth label state, we see a one-off i.e., a promotion
that does not occur as part of a chain. The naive model
would never predict this point correctly, as the prior la-
bel (eighth label state) is closed, and the naive method
would carry the closed label, resulting in an incorrect

OThis only holds if there are no subjects with only one alert. This is
true for the vast majority (> 99%) of our data.

prediction; however, the alternating label method classi-
fies this alert correctly. In fact, this situation is analogous
to the fourth label state; the naive model would never
predict this label correctly, as the prior label is closed.
In addition, the naive model would never correctly pre-
dict the label in state seven, as its prior label is different.
In summary, the naive model will never properly predict
one-offs, the first label in a promotion chain, or the la-
bel immediately after the end of a promotion chain. The
method presented in this section has a chance to properly
predict both of these labels.

To see this, consider the following. Our method la-
bels only 50% of the points manually, using predictions
to fill in the rest. If we assume that promotion chains and
the number of labels between consecutive chains are in-
dependent, we have a 50% probability of landing on the
first label (or after-last label) in a promotion sequence
during a manual label state. This leads to an expected
value of 50% of these labels being correctly classified
by this modeﬂ Compare this to the naive model, which
never guesses these two label types correctly. Thus, in-
terestingly, by introducing a level of uncertainty (i.e.,
only manually labeling half of the alerts), we gain in-
creased accuracy and reduced workload — two of our pri-
mary goals. In addition, this method is still very sim-
ple and thus easy to understand, and can also be imple-
mented with trivial overhead.

4.3.1 A Small Augmentation

Though one-offs are a special case of the first promo-
tion in a chain as described above, they are interesting in
their own right. Why do these points exist, when chains
are empirically more common? Recall that alerts are put
into alert groups based on subject and time. Our data
shows that one-offs in their own alert group (992) are
more common than one-offs within a larger alert group
(160) (i.e., alert groups with both promoted and closed
alerts). If we enforce by process that all alert groups of
size 1 be manually inspected, we increase our true posi-
tive and true negative rates with a small loss in workload
reduction (50% to 48.40%). The results of this augmen-
tation on our data can be found in This small
augmentation to the above process meets all our afore-
mentioned goals, and is likely worthwhile as a small loss
in workload reduction is negligible compared to the gain
in true positive rate.

4.4 Alert Group Fractional Sampling

Recall that alerts are grouped into alert groups based on
subject and the time at which the raw data was scanned.

7One-offs can be seen as a special case of identifying the first label
in a promotion sequence, and are thus covered by this analysis.

Fill

Sampled Alert
AlertGroup 1 [Subset ‘Analyst Label Step Alert Group 1
SN
Sampled Alert Fil
Alert Group 1 [Subset Analyst Label Step Alert Group 1
S
o
E
E
Sampled Alert Fil
Alert Group 1 [Subset Step
SN
Sampled Alert Bl
Alert Group 1 [Subset Analyst Label Step Alert Group 1
A S

Figure 5: Process diagram for the fractional sampling
model. For each alert group, a fractional subset of alerts
are randomly sampled and manually labeled by an ana-
lyst. The manual labeling is then used to fill the rest of
the group through one of our described strategies.

In the models presented so far, we consider time as con-
tinuous and ignore the structure imposed by alert groups
themselves i.e., the fact that all alerts within an alert
group are considered as occurring at the exact same time.
In the following models, we utilize this fact.

In all models that follow, we perform a sampling of a
fraction of alerts within each alert group, manually label-
ing only the sample. Based on a particular fill strategy,
we label the rest of the alerts in the alert group automat-
ically, using the manually determined label as a guide.
This process is depicted in

The theory behind this method is based on a few ob-
servations. As noted briefly above (Section @ most
alert groups contain alerts which all have the same label,
e.g., if one alert is promoted, it is likely all others are
promoted. In other words, the conditional probability of
some alert within an alert group being promoted, given
another alert in the group is promoted, is very high. As
we sample more alerts within an alert group, the sam-
pling distribution of alert labels will approach the true
distribution. Given our knowledge of the nature of our
data, we believe this sampling distribution will approach
the true distribution rapidly. This means that we can po-
tentially sample and manually inspect a very small num-
ber of alerts from an alert group and have a good guess
as to how the rest of the alerts should be labeled.

4.4.1 Fill Strategy: Random Within Sample

The simplest fill strategy is to take a random alert from
our sampled fraction of alerts, and apply this label to all
other currently unlabeled alerts within the group. For ex-
ample, if an alert group has 10 alerts, and our fractional
sample is set to 50%, we will manually label 5 of these
alerts. We then randomly select one label from these 5
alerts and apply its label automatically to the remain-

1.000-

0.995-

L]
A
/

0.990 -

0.985-

0.980 -

1.00-
0.75-
0.50-
0.25-
0.00-

2000- Q\’—’\'\o———O—o—.—.—a

1000 -

.
0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 090 0.99
Fraction of alerts automatically labeled

*® Mean Specificity ® Mean Sensitivity ® Workload Reduction Per False Positive

® Mean Specificity + Sensitivity ® Workload Reduction

(a) Random within sample

1.000-

1.000 -

0.995 -

0.990 -

0.985 -

0.980 -

1.00-
0.75-
0.50 -
0.25-
0.00 -

1000 -
500-
. f .
0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.99
Fraction of alerts automatically labeled

® Mean Specificity ® Mean Sensitivity @ Workload Reduction Per False Positive

® Mean Specificity + Sensitivity @ Workload Reduction

(b) Any promoted

0.995 -

0.990 -

0.985 -

0.980 -

1.00-
0.75-
0.50 -
0.25-
0.00-
25000 -
20000 -

15000 -
10000 -

010 020 030 040

060 070 080 090 099

Fraction of alerts automatically labeled

© Mean Specificity © Mean Sensitivity © Workload Reduction Per False Positive

® Mean Specificity + Sensitivity ® Workload Reduction

(c) Heterogeneous group detection

Figure 6: Specificity, specificity + sensitivity, and sensitivity, workload reduction, and workload reduction per intro-
duced false positive for each fraction of automatically labeled alerts, by label fill strategy. Each strategy was performed
1000 times, and plotted by mean. Vertical bars depict standard deviations. Note differing y-axes between and within
subfigures. For Subfigure c), bottom row, y-values go to infinity as specificity becomes 1.

ing unlabeled alerts within the group. This second ran-
dom selection step may seem superfluous, but is neces-
sary to deal with heterogeneous groups i.e., alert groups
that contain both promoted and closed alerts. If an alert
group is heterogeneous, then randomly selecting one la-
bel from our initial fractional sample should capture this
heterogeneity on average. The results of this strategy are
shown in Figure [6a]

4.4.2 Fill Strategy: Any Promoted

Another simple fill strategy is to look at our manually la-
beled sample and see if any alerts are promoted. If so,
we automatically say the rest of the alerts in the group
should be promoted. This strategy heavily biases our
predictions towards increasing true positives — one of
our primary goals. In addition, this somewhat follows
the cognitive bias that may exist when performing label-
ing. If one alert within a group is promoted, it is not
far-fetched to believe that extra attention should be paid
to the rest of the alerts in the group. This method, how-
ever, will inevitably increase false positives. The results
of this strategy are shown in Figure [6b]

4.4.3 Fill Strategy: Heterogeneous Group Detection

The final fill strategy presented is one of heterogeneous
group detection. As explained above, a heterogeneous
alert group is one in which some alerts are promoted and
some are closed. In this strategy, if we see heterogeneous
labels in our manual labeling of the fractional sample,
we manually label the rest of the alerts in the group. The
theory behind this method is: if most groups are homo-
geneous, this strategy works just as well as random sam-
pling in terms of workload reduction; we do not waste
time manually labeling alerts that have the same label as
others in the group. However, for groups that are hetero-
geneous, we gain the benefits of increased true positives
similarly to the “any promoted” strategy, as we manually
label the entire group. The results of this strategy are
shown in Figure

Figure [6] shows the results of the fractional sampling
approach. The x-axis is the number of alerts that are au-
tomatically labeled (i.e., 1 —fractional sample size). The
first row of each plot shows specificity, mean sensitivity,
and their average. Vertical bars are standard deviations
over 1000 run The second row depicts workload re-
duction. Note that the slope of this line for each plot is
not exactly 1; there are many alert groups of size 1, and
since we cannot sample a fraction of an alert, these alerts
are always manually labeled regardless of fractional sam-
ple size. In addition, we take the ceiling of the fractional
sample size, e.g., if the alert group is size 101 and our

8 As this method is probabilistic, we plot the average across all runs.

fractional sample size is 1%, we will manually label 2
alerts. The bottom row shows workload reduction per
false positive, which is meant to illustrate a trade-off be-
tween increased false positives and decreased workload.
A further description of this trade-off plot follows.

Our primary goal is to maximize true positive rate.
When reducing the number of manually inspected alerts,
this becomes difficult and generally comes at a cost of
increased false positives. False positives increase over-
all effort required, as alerts that are marked as promoted
(whether or not they truly should be) must be reviewed,
discussed, and handled beyond the initial effort of per-
forming the labeling. Thus, if we introduce too many
false positives, we may completely nullify the workload
reduction we gain in terms of manual inspection time.
For example, in an extreme case, say we mark everything
automatically as promoted. This yields a workload re-
duction in initial manual inspection (as is discussed here)
of 100%; however, this is practically meaningless as all
these alerts now incur an additional overhead in analyst
time and resources spent, as they must be handled more
in-depth than if they were manually labeled as closed.
Thus, we wish to strike a balance between the increase
in false positives and labeling workload reduction.

The bottom row of each subplot in Figure[6] then, can
be interpreted as: for each false positive we introduce due
to decreasing labeling workload, we incur some addi-
tional overhead. In the case of Figure [6c|at an automatic
labeling level of 99%, if this overhead time is > 4354
times the amount of time it takes to initially label an alert
on average, then the initial labeling workload reduction
is completely nullified by the increase in overhead due to
false positives.

Another trade-off analysis can be seen in |Figure 7
Here, we see workload reduction (x-axis) and sensitivity
and specificity. The idea is that there comes some point
at which we rapidly decrease sensitivity and specificity
with a small decrease in workload (i.e., diminishing re-
turns). Using these plots, we can determine this point for
each fill strategy. For the any promoted (green) and het-
erogeneous group detection (red) strategies, we generally
see sudden rapid loss with respect to sensitivity at 70%
workload reduction. We see something similar for speci-
ficity for heterogeneous group detection, but a rapid gain
for any promoted. Interestingly, we don’t see this sudden
rapid loss for the random within sample method; the loss
is linear across workload reduction levels, but also con-
sistently lower than the heterogeneous group detection
method.

1.0000-

0.9995 -

0.9990 -

%0.9985-

%

[}

& 0.9980-

c

[

[}

= 0.9975-
0.9970-
0.9965-
0.9960-
1.000- [o0.1
0.995-

2

=

k]

c

[}

2

©

(7}

S 0.990-
0.985-

Ojl 012 0‘3 014 0‘5 0?6 Ol7 OTS 019

Workload Reduction

Heterogeneous group detection -®— Any Promoted Random within sample

Figure 7: Trade-off between workload reduction and
specificity and sensitivity, by label fill strategy. Square
labels show fraction of automatically labeled alerts. Note
differing y-scales.

4.5 Comparison to a “Standard” Machine
Learning Approach

The classification methods outlined above can be thought
of as primitive machine learning approaches. In fact, the
authors’ initial reasoning behind attempting these sim-
ple methods were guided by first implementing a clas-
sifier on the same data, plus meta-data, using standard
machine learning methods. One such method is classifi-
cation by random forests [19]]. Using the Python pack-
age scikit-learn [20], we built a random forest classifier
with the number of trees determined by out-of-bag er-
ror rates [21ﬂ evaluated using a method of time-series
cross-validation sometimes called forward chaining [22]]
with 4 folds. We use only 4 folds due to the rarity of pro-
moted alerts; using more total folds causes some folds to
contain no promoted alerts. The use of time-series cross-

‘http://scikit-learn.org/stable/auto_examples/
ensemble/plot_ensemble_oob.html

validation, as opposed to a canonical cross-validation is
crucially important for data with an explicit time compo-
nent as discussed in Sectionm To accurately evaluate
the usefulness of such models, we must be careful to only
train using data that occurs temporally before the test set.

Forward chaining works as follows. If we are evalu-
ating using 4 folds, we split the data into 5 time-ordered
parts of equal size. We then train using all prior consecu-
tive segments and test using the next fold on the horizon.
In other words, the procedure is:

Fold 1: Train [Segment 1]; Test [Segment 2]

Fold 2: Train [Segments 1,2]; Test [Segment 3]

Fold 3: Train [Segments 1,2,3]; Test [Segment 4]
Fold 4: Train [Segments 1,2,3,4]; Test [Segment 5]
The evaluation metric is then averaged across folds; here,
we use AUC. Over many runs of the modeling process
(i.e., many random forests built), this method yields and
average AUC of 65.35%. In addition, this method never
identifies any true positives; over all random forests built
and evaluated, none correctly identified a promoted alert.
This could be due to the rarity of such alerts. However,
even when reducing the number of folds to 2, we ob-
tain a similar average AUC across runs (65.53%). In ad-
dition, we tried bagged decision tree ensembles without
the random subspace method [23]], which yielded similar

resultd"1]

It is interesting to note that the models built through
machine learning had worse AUC (along with worse sen-
sitivity and specificity), while having access to more fea-
tures. In general, having more features does not nec-
essarily lead to a better model. However, in the case
of random forests, having more features increases the
chance that an optimal subset of these features will be
found that result in high predictive power (when using
random subspaces). In addition, we also built random
forests with only the features used for our developed ap-
proaches above in order to combat potential dilution of
the feature space; such dilution could lead to poor per-
formanc These forests had similar performance to
other random forests tried.

The poor performance of these standard machine
learning approaches provides a comparison for our sim-
ple methods outlined above. To be fair, random forests
and other standard approaches attempt to automatically
classify every point in the test set, potentially providing
comparatively more automation. In contrast, our meth-
ods require an analyst to be present throughout time.
However, we believe that the drawbacks of our meth-
ods are outweighed by their benefits when compared to
a standard approach as outlined here. For example, it is

10Specifically the discussion on data leakage.

"'The “standard” random forest implementation in scikit-learn uses
bagged decision trees with the random subspace method.

12} . the curse of dimensionality

http://scikit-learn.org/stable/auto_examples/ensemble/plot_ensemble_oob.html
http://scikit-learn.org/stable/auto_examples/ensemble/plot_ensemble_oob.html

generally difficult to tell how even a random forest con-
structs its decisions. A standard method of examining
feature importance in a random forest is to see how much
each feature decreases the impurity in a tree, and average
over all trees [19]. However, this is affected by imbal-
ance in data set label. In addition, we believe that this in-
terpretation of feature importance is harder to understand
than the methods presented in this work; our methods
work because they take advantage of natural phenomena
in this type of data: time- and subject-locality.

5 Discussion

All models discussed achieve high specificity and sensi-
tivity. This fact may be surprising given their simplicity.
Below, we discuss our reasoning as to why these models
work as well as they do.

The primary reason the fractional sampling models
(Section work is that alert groups are generally la-
beled homogeneously; only 0.0319% of our alert groups
have heterogeneous labels. Thus, even when we sam-
ple only 1% of alerts in a group, we obtain high sen-
sitivity and specificity. The reason behind the alternat-
ing label state models’ (Section[4.3) performance is sim-
ilar. It turns out that promotion chains and one-offs pre-
dominately correspond to singular alert groups. The root
cause of these models’ performance, then, is the reason
behind the prevalence of label homogeneity.

The process that generates homogeneous alert group
labels is difficult to grasp, and could be due to a number
of factors. It could be that our data is the result of ana-
lysts who write structuring filters favoring homogeneity,
i.e., they write filters such that when a potential attack
is detected, the associated alert group is fully promoted
or closed. This does not necessarily have to be active;
analysts could be doing this without realizing. Testing
whether or not this is true is difficult, as we would re-
quire alert data from multiple sources and multiple ana-
lysts who are trained in different ways. Another, possibly
more likely, explanation adheres to the principle of “at-
tack surges” [[11L/16}/17]; malicious actors generally per-
form their attacks in time-local surges. Thus, a system
which prioritizes sorting data by subject-time (as ours
does) would likely contain homogeneous alert groups.

Another point of discussion is the comparison of the
heterogeneous group detection fill method to others in
Section Specifically, why does this method work so
much better than the others? As noted in Section
if most groups are homogeneous, this strategy works
as well as the random within sample method in terms
of workload reduction; additionally, we have a compa-
rable specificity. However, for groups that are hetero-
geneous, we essentially perform a slightly smarter ver-
sion of the any promoted method, adopting its sensitiv-

10

ity and increasing specificity. Thus, the heterogeneous
group detection method has an average sensitivity that
is better than the any promoted method, with an average
specificity that is better than the random within sample
method.

We note that the heterogeneous group detection model
seems to “take the cake” across all categories of accuracy
and workload reduction for our data. We present the pre-
ceding models as they may be more applicable for other
forms of alert data. The heterogeneous detection model
works in large part due to the prevalence of homogeneity
in labels, while other models may work better for other
organizations’ data. As the models are simple to under-
stand, testing whether or not they should be implemented
should not be a laborious task.

5.1 Adversarial Evasion

We note that all the approaches we developed in this
work could be vulnerable to an adversary that injects
many heterogeneous groups. As noted, our performance
on heterogeneous groups is what drives our metrics of
accuracy down. However, to effectively inject heteroge-
neous groups into the alert system, the adversary would
likely need to know the filters that are in place. In ad-
dition, if the adversary already knows the exact filters
in the system that generate alerts, they would be able to
avoid them completely. Thus, the adversary would need
to solve a much more difficult problem in order to exploit
the primary weakness of our approaches.

6 Threats to Validity and Future Work

We acknowledge that our models work in large part due
to homogeneity in labels within alert groups. For other
sources of alert data, heterogeneity may be more com-
mon, and our models may not work as well. However, if
one uses the heterogeneous group detection model and
the heterogeneous groups are heavily skewed towards
one label type, then the number of correctly classified
instances for that label type will still be high. Thus, if
heterogeneous groups are skewed towards the promoted
class, then true positives will still be high, and the pri-
mary goal will be met.

Note that a “classical” machine learning approach (e.g.
decision trees) would generally attempt to automatically
classify all points. Our models can never classify every
point automatically; we require a certain percentage of
manual labels per alert group, always at least 1. Thus,
we provide an alert triage solution to a problem that is
“easier” than the problem a classical approach attempts
to solve. However, we do not believe that this is a severe
limitation of our work, as we can attain a high workload
reduction (92.322%) with high specificity (99.958%) and

sensitivity (99.145%) (Section f.4.3). In addition, this
approach is very similar in spirit to active learning, where
a learning algorithm can query an information source for
a label when, e.g., it is unsure about a prediction [24].
Here, we analogously ask the analyst to perform a man-
ual labeling for each alert group, and extend that labeling
automatically.

We acknowledge that the use of human analysts labels
of “closed” or “promoted” can be an issue, as their clas-
sifications may not always be correct. However, as noted
prior, it would be very difficult to create an automated
classifier without these labels. In addition, there’s no
real way of knowing whether or not their labels are cor-
rect without explicit future knowledge of their mistakes.
For labels in the past, we know that misclassification is
rare. In addition, these misclassified alerts are unlikely to
show up in our data as misclassified, as analysts will go
back and revise labels if they have knowledge the labels
were wrong. The analysts are trained experts, so we trust
their decisions as the ground truth.

We acknowledge the threats behind our operational-
ization of workload reduction. In our approach, we as-
sume that all alerts take the same amount of time to pro-
cess to get our percentage of workload reduction. We
know that this is likely not to be entirely true. However,
we attempt to assuage this concern by presenting trade-
off plots which can be used to help determine whether
or not our presented methods are useful for a given orga-
nization. In addition, if the distribution of time it takes
for an analyst to label an alert is not severely skewed,
the workload reduction percentage is accurate on aver-
age. Finally, even if we are overestimating the workload
reduction achieved by our approaches, we still decrease
analysts’ workload, which we believe is significant. In
the future, we do hope to fit various distributions of time
taken to classify an alert and incorporate that into our
workload reduction calculation.

Even without the argument of workload reduction, we
believe this work has merit if merely as an observational
study. We present explanations and descriptions of the
underlying alert generation process. An analyst that does
not know about the time- and subject- locality of alerts
would still likely spend large amounts of time labeling
each alert. This work as an observational study shows
that one can front-load their effort for each alert group
and achieve high performance.

In the future, we hope to obtain alert data from differ-
ent sources to test the applicability of our methods here.
In addition, we hope to perform some type of sensitivity
analysis with respect to heterogeneity of alert groups —
this would be accomplished if we can obtain other data
sources with varying levels of heterogeneity.

We also hope to increase our specificity and, more
importantly, our sensitivity. Although we can obtain a

11

relatively high sensitivity in terms of percentage, every
missed promotion incurs a potential cost; it’s possible
that we will misclassify “the alert”. However, if the av-
erage cost of a missed promotion is negatively related to
the amount of heterogeneity in an alert group, the pro-
motions our models miss will likely not be too costly.
In other words, if the cost of a missed promotion is less
with more heterogeneity, our models’ misses will be less
costly.

Finally, we hope to improve our models by adding
a likelihood component. Though heterogeneous groups
are rare, they are the only source of error in our models.
If we had more data, we could fit an estimator (e.g., us-
ing maximum likelihood) to the proportion of promoted
alerts in heterogeneous groups, and use that to provide
an estimate on how many alerts should be sampled from
an alert group before we reach a predefined level of cer-
tainty that we will not obtain false negatives. We at-
tempted to do this in this work (not shown), but the re-
sults were inconclusive due to the rarity of heterogeneous
groups, i.e., we did not have an acceptable standard de-
viation of the maximum likelihood estimate to provide a
reasonable level of certainty. Having more data would
alleviate this issue.

7 Conclusion

The models presented in this work (barring the naive
model, provided as a baseline and motivator) all meet our
mentioned goals; they have high true positive and true
negative rates; they are fast to build and fast to apply for
prediction; they are easy to understand; and they all save
analysts time and resources. We show that, on real data,
our best performing model (heterogeneous group detec-
tion) can attain 99.958% specificity and 99.145% sensi-
tivity, while automatically labeling 99% of alerts within
an alert group, translating to a 92.322% reduction in ini-
tial labeling workload. To offset the overhead incurred
by introducing false positives in this case, it must take
> 4354 times as long to further act on a promoted alert,
on average, than to perform the initial labeling. Even
higher sensitivity and specificity can be attained by de-
creasing the amount of automatic labeling (increasing
the amount of manual labeling). We provide multiple
trade-off curves with respect to sensitivity, specificity,
and workload reduction, allowing potential implemen-
tors of our models to weigh these trade-offs and align
with their specific goals. Our models are simple to un-
derstand and implement, which facilitates trust in their
predictions. As our models primarily work due to the
nature of attacks themselves (i.e., attacks come in surges
and thus generate homogeneous alert groups), we believe
that our models will be applicable outside of our data.
We believe that alert triage is very important practically,

but is under-researched in the academic community. We
hope that this work will act as a catalyst to drive this do-
main of research forward.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

J. Goldfarb, “7 tips to improve ’signal-to-noise’
in the soc,” April 2014. [Online]. Avail-
able: http://www.darkreading.com/analyt-ics/
7-tips-to-improve-signal-to-noise-in-the-soc/d/
d-1d/1204605

M. Riley, B. Elgin, D. Lawrence, and
C. Matlack, “Missed alarms and 40 million
stolen credit card numbers: How target blew
it,” March 2014. [Online]. Available: |http:
/[www.bloomberg.com/news/articles/2014-03-13/

(11]

(12]

(13]

[14]

target-missed- warnings-in-epic-hack-of-credit-card-data

J. E. Doak, J. Ingram, J. Shelburg, J. Johnson, and
B. R. Rohrer, “Active learning for alert triage,”
in Machine Learning and Applications (ICMLA),
2013 12th International Conference on, vol. 2.
IEEE, 2013, pp. 34-39.

M. T. Ribeiro, S. Singh, and C. Guestrin, “Why
should i trust you?: Explaining the predictions of
any classifier,” arXiv preprint arXiv:1602.04938,
2016.

E. Sober, “The principle of parsimony,” The British
Journal for the Philosophy of Science, vol. 32,
no. 2, pp. 145-156, 1981.

J. Vandekerckhove, D. Matzke, and E.-J. Wagen-
makers, “Model comparison and the principle of
parsimony,” 2014.

S. Kaufman, S. Rosset, C. Perlich, and O. Stitel-
man, “Leakage in data mining: formulation, detec-
tion, and avoidance,” ACM Transactions on Knowl-
edge Discovery from Data (TKDD), vol. 6, no. 4,
p- 15, 2012.

E. Alpaydin, Introduction to machine learning.
MIT press, 2014.

J. A. Hanley and B. J. McNeil, “The meaning and
use of the area under a receiver operating charac-
teristic (roc) curve.” Radiology, vol. 143, no. 1, pp.
29-36, 1982.

C. Kruegel, D. Mutz, W. Robertson, and F. Valeur,
“Bayesian event classification for intrusion detec-
tion,” in Computer Security Applications Confer-
ence, 2003. Proceedings. 19th Annual. 1EEE,
2003, pp. 14-23.

12

[15]

(16]

(17]

(18]

(19]

(20]

(21]

Y. Xie, A spatiotemporal event correlation ap-
proach to computer security. ProQuest, 2005.

G. Stein, B. Chen, A. S. Wu, and K. A. Hua, “Deci-
sion tree classifier for network intrusion detection
with ga-based feature selection,” in Proceedings

of the 43rd annual Southeast regional conference-
Volume 2. ACM, 2005, pp. 136-141.

C. Livadas, R. Walsh, D. Lapsley, and W. T. Strayer,
“Using machine learning technliques to identify
botnet traffic,” in Proceedings. 2006 31st IEEE
Conference on Local Computer Networks. 1EEE,
2006, pp. 967-974.

Y. Elovici, A. Shabtai, R. Moskovitch, G. Tahan,
and C. Glezer, “Applying machine learning tech-
niques for detection of malicious code in network
traffic,” in Annual Conference on Artificial Intelli-
gence. Springer, 2007, pp. 44-50.

S. Amershi, M. Chickering, S. M. Drucker, B. Lee,
P. Simard, and J. Suh, “Modeltracker: Redesign-
ing performance analysis tools for machine learn-
ing,” in Proceedings of the 33rd Annual ACM Con-
ference on Human Factors in Computing Systems.
ACM, 2015, pp. 337-346.

Y. Xie, S. Tang, Y. Xiang, and J. Hu, “Resisting
web proxy-based http attacks by temporal and spa-
tial locality behavior,” IEEE transactions on paral-
lel and distributed systems, vol. 24, no. 7, pp. 1401-
1410, 2013.

K. Sequeira and M. Zaki, “Admit: anomaly-based
data mining for intrusions,” in Proceedings of the
eighth ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM,
2002, pp. 386-395.

S. Venkataraman, Traffic Analysis for Network Se-
curity Using Learning Theory and Streaming Algo-
rithms. ProQuest / UMI, 2011.

L. Breiman, “Random forests,” Machine learning,
vol. 45, no. 1, pp. 5-32, 2001.

F. Pedregosa, G. Varoquaux, A. Gramfort,
V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Van-
derplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay, “Scikit-learn: Ma-
chine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825-2830, 2011.

R. E. Banfield, L. O. Hall, K. W. Bowyer, and W. P.
Kegelmeyer, “A comparison of decision tree en-
semble creation techniques,” IEEE transactions on

http://www.darkreading.com/analyt-ics/7-tips-to-improve-signal-to-noise-in-the-soc/d/d-id/1204605
http://www.darkreading.com/analyt-ics/7-tips-to-improve-signal-to-noise-in-the-soc/d/d-id/1204605
http://www.darkreading.com/analyt-ics/7-tips-to-improve-signal-to-noise-in-the-soc/d/d-id/1204605
http://www.bloomberg.com/news/articles/2014-03-13/target-missed-warnings-in-epic-hack-of-credit-card-data
http://www.bloomberg.com/news/articles/2014-03-13/target-missed-warnings-in-epic-hack-of-credit-card-data
http://www.bloomberg.com/news/articles/2014-03-13/target-missed-warnings-in-epic-hack-of-credit-card-data

[22]

[23]

[24]

pattern analysis and machine intelligence, vol. 29,
no. 1, 2007.

C. Bergmeir and J. M. Benitez, “On the use of
cross-validation for time series predictor evalua-
tion,” Information Sciences, vol. 191, pp. 192-213,
2012.

T. K. Ho, “The random subspace method for con-
structing decision forests,” IEEE transactions on
pattern analysis and machine intelligence, vol. 20,
no. 8, pp. 832844, 1998.

N. Rubens, D. Kaplan, and M. Sugiyama, “Ac-
tive learning in recommender systems,” in Recom-
mender systems handbook. Springer, 2011, pp.
735-767.

13

	Introduction
	Data and Methodological Goals
	Related Work
	Results
	Exploratory Analysis
	Constructing a Naive Baseline
	Alternating Analyst Labels
	A Small Augmentation

	Alert Group Fractional Sampling
	Fill Strategy: Random Within Sample
	Fill Strategy: Any Promoted
	Fill Strategy: Heterogeneous Group Detection

	Comparison to a ``Standard'' Machine Learning Approach

	Discussion
	Adversarial Evasion

	Threats to Validity and Future Work
	Conclusion

