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The energy positions of the valence and conduction electronic states with respect to the vacuum level are 
essential parameters to evaluate how the band gaps of semiconductors or Fermi-levels of metals line up 
with respect to each other. Such electronic structures of materials can be determined using 
photoemission spectroscopy (PES) [1]. PES measurements, however, remain challenging for 
inhomogeneous samples or materials with nano- to micrometer lateral dimensions due to its mesoscopic 
probing area, typically no less than several microns. Photoemission electron microscopy (PEEM) is a 
cathode lens electron microscopy technique that combines photoemission imaging with spectroscopic
modes of operation to provide photoemission spectra from areas less than one micron in size [2]. Here, 
we present PEEM studies of the electronic structure of two inhomogeneous semiconductors, transition 
metal dichalcogenides (TMDs) supported on oxidized silicon wafers and polycrystalline cadmium 
telluride (CdTe) thin films.  

The advent of atomically thin TMDs has led to the concept of designer heterostructures [3], where the 
lack of chemical bonding between the layers alleviates problems with lattice mismatch and chemical 
compatibility.  Defined as an energy separation between the vacuum level and the highest occupied 
electronic states, the ionization energy is of particular importance in predicting the performance of TMD
heterostructures in devices that are useful in high performance electronics and opto-electronics. 
Ionization energies have been investigated based on theoretical calculations, but to the best of our 
knowledge, no systematic experimental confirmation has been reported for the wide range of 2D crystals 
despite their importance. Using PEEM, we successfully determined the ionization energies for three 
prototypical TMD monolayers – MoSe2, WS2, and MoS2 – on silicon oxide (SiO2) [4]. The ionization 
energy changes between MoS2, WS2, and MoSe2 in agreement with predictions of density functional 
theory calculations [5],[6],[7],[8]. 

Similarly using PEEM, we conducted vacuum-level mapping on mechanically polished polycrystalline
CdTe thin films [12]. Polycrystalline CdTe thin films are a serious alternative to silicon photovoltaics
with efficiencies reaching 21.5% [8]. A key manufacturing step is the activation of the CdTe absorber 
layer using cadmium chloride, which drastically improves the power conversion efficiency [9].  Past 
studies showed that this Cl treatment changes the microstructure of the CdTe layer through 
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recrystallization and grain growth [10], and the electronic properties of the CdTe grains and the grain 
boundaries [11].  However, to date, the notion of electronic property changes are mostly based on 
indirect inferences from microscopic measurements made after Cl treatment.  We conducted a series of 
PEEM studies comparing Cl treated and air exposed samples to elucidate distinct impacts of the Cl 
treatment before and after air exposure.  Our work illustrates the following scenarios: regrown grains 
with different carrier potentials help to separate the photoexcited electron-hole pairs; air exposure bends 
the electronic bands electrostatically at the absorber layer-electrode interface, which facilitates electron 
collection. The separate but coincident roles of these two processing factors have not been highlighted in 
the previous reports, and could point to an additional processing parameter to improve photovoltaic 
efficiency. 

In these two case studies, PEEM measurements were conducted using lab-based deep ultraviolet (DUV) 
light sources.  The results presented here strongly support the idea of lab-based PEEM as an emerging 
analytical capability to explore the electronic properties of spatially inhomogeneous materials for 
electronic and optoelectronic applications. 
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