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Ideal Radial Permanent Magnet Coupling Torque Density Analysis
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This paper derives the closed form 3-D analytical torque equations for an ideal radial Halbach rotor magnetic coupling. The perfor-
mance of the radial Halbach coupling is then compared with an ideal axial Halbach rotor coupling. The closed form equations and
comparison gives insight into the upper torque density limits of Nd-Fe-B based magnetic devices.
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I. INTRODUCTION

PERMANENT magnetic coupling (PMC) creates synchro-

nous torgque transmission without physical contact. The
study of the torque capabilities of magnetic couplings is funda-
mental to ones understand of the upper bound on the torque den-
sities of magnetic devices, such as motors and magnetic gear-
boxes [1]. The axial and radial PMC, as illustrated in Fig. 1,
form the two primary types of PMCs. The external field created
by a PMC can be made close to sinusoidal in form if a Halbach
rotor magnet structure is utilized. An example of an axial and
radial Halbach rotor magnet arrangement is shown in Fig. 2. In
order to compute the PMCs torque the field from each individ-
ual magnet is typically first determined and then the magnet’s
fields are summed up and used to compute the torque. Examples
of authors using this approach are given in [2-5]. Frédéric [5]
for instance, then used such a technique to study the perfor-
mance of different magnetic couplings that utilize rectangular
magnets. Other authors have utilized the finite element analysis
(FEA) technique to determine the optimal geometric design for
aPMC [6, 7].

In this paper the radial PMC torque is derived using a mag-
netic charge sheet approach that enables the torque equation to
be expressed by a single integral without the need for a large
number of summations. The radial PMC torque density charac-
teristics are then compared with the performance capabilities of
an equivalently sized axial PMC [8]. The accuracy of the mag-
netic charge modelling approach is validated by using 3-D
FEA. The use of the analytic based modeling and idealized as-
sumptions enabled fundamental geometric scaling parameter
relationships to be identified.
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Fig. 1. (a) An axial magnetic coupling and (b) a radial magnetic coupling.

1. RADIAL PERMANENT MAGNET COUPLING

Consider the case in which a fictitious magnetic charge dis-
tribution described by a charge density function, pm(8)), is dis-
tributed over the surface of a cylinder, such as sketched in Fig.
3(a). In this case the magnetic scalar potential field emanating

from a charge cylinder ,with radii roI , can be computed from [9]

27 4 /2
4 (r,0,2) = — [ Pul0) 14 4 )
Ay —d,/2 R
where [, = permittivity of free space, dr=axial rotor width and
R(r, 6,6,,2)) =\C(r.1],0-6) +(z-2,)* @)
C(a,b,p) =a’+b*—2abcos(¢) (3)

It can be noted that at the axial center (z = 0) of the radial

Halbach rotor shown in Fig. 2(b), the B; field is zero such that

B(r,6,0) =B, (r,0,0)r + B,(r,6,0)8 + 0z 4)

In [10] it was shown that when (4) is satisfied the 3-D external

field (where r>r,) ) of a Halbach rotor can be accurately mod-
eled by setting the charge density function in (1) to

P (6) = 2By (13 )cos(pd)  (5)
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Fig. 2. (a) An 8-segment 4 pole-pair z-axis directed (z>d./2) axial Halbach ro-
tor and (b) and externally directed (r>r,") radial Halbach rotor
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Fig. 3.(a) 3-D charge sheet model, (r,', 6, z)) is a point located on the outer
cylinder surface and (b) magnetic charge sheet coupling model where the
two Halbach rotors are replaced with two fictious charge sheet cylinders.
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where [11]
p+l _ Iy p+1 I\2p
rP @+ pA— ) 0P = @ )7 ()]
and pr = magnet relative permittivity, B, = magnet residual flux

density, p = pole-pairs and r; = inner radii, as shown in Fig 2(b).
By substituting (5) into (1) and evaluating the z-axis integral
the magnetic scalar potential can be determined to be [12]

§ .00 = Bt )'Tcosm.e.)

274,
<log 2z+d +\/(22+d) +4C(r, o,é’—ﬁl) 40 (1)
22-d, +4/(2z-d,)? +4C(r,1} ,0-6))
Defining
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6, =6-6, (8)
one can then substitute (8) into (7) to obtain

#(r,0,7) = - ()t ITCOS(p'e_p'g")

2714,

><I09[22+d +\/(22 +d,)? +4C(r,r',6,)
22-d, +/(2z-d,)* +4C(r,1, ,6,)

The radial Halbach PMC can be replaced with two equiva-
lent magnetic charge sheets as illustrated in Fig. 3(b). The
charge sheets are located at r =r, and r =r;' . The external field

created by the inner charge sheet is given by (9). The field cre-
ated by the outer charge sheet must be directed inwards (for r<

i''). Therefore, by using the 2-D solution to an inward directed
ideal Halbach rotor field [11]
p-1 Iyp-1 p+1
Brlnlr(r) — 2Bm p(1+/ur)Ero - Z(r ) ](rz) - ( )p—l ( 0)
A= P ) ()P =@+ 44) P10,
the charge function on the outer charge sheet Il will be [10]
P (6,) = 2By, (" )cos[p(8, —6)] (11)
where 6; = angular offset position of charge sheet field and
6,, = angular position on outer charge cylinder surface.

]d% ©)
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A. Radial Halbach Coupling Torque

The energy contained on the outer charge cylinder is [13]
27 4,12

wW=[ [ ¢'(".6,20©6)r"dzdg,  (12)
0 —d, /2
the torque can then be computed from [13]
W
T= W (13)
60” #' = constant

Substituting (12) into (13) enables the torque created on the
surface of the outer charge cylinder to be evaluated [13]
zf drfz I ap" G)
T.(6) = g (r",6,,2) 2" dzd 6
t S i Il 849” 1
then substituting (9) and (11) into (14) one obtains after rear-
ranging and simplifying
BI (rI)B” (rll)rlrll p . 27 d 2
o 3 e Esin(pa) [ [ cos(p6,)

0 —d, /2

(14)

T.(6)=

log 2z+d,+4C(F" 1, ,0,) +(22+d,)?
22-d,+J4C(r" 1), 6,) +(22-d,)’
Finally, evaluating the z-axis integral term in (15) yields

} dzdg, (15)

7,0 = 20 ) ()0 psm(p&)TCOs( PO, %
(\/C( 1,6,) -Jc@" !, 6,)+d?
+d—r|og[df+‘/c( L O)+d Ddeu (16)
27| —d, +4JC(r" 1), 6,) +d?

If (16) is compared to the torque coupling equations derived
in [2-5] it can be noted that (16) is comparatively simple in
form. Note that the air-gap length, g, is present within (16)

R=1 +g (17)

B. Model Validation

Using the values shown in Table I the torque computed by
(16) was compared with a COMSOL FEA model and a IMAG
FEA model. The torque comparison is shown in Fig. 4. It can
be noted trzwat a close agreement was obtained.
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Fig. 4. Torque comparison between the analytical model and FEA models.

I11. IDEAL AXIAL HALBACH ROTOR COUPLING

The torque created by an ideal axial Halbach PMC rotor
was derived in [8] from the fundamental field component and
can be written as a single double integral equation:

2 27Ty
T.(6,) =sin(pa,) B p[_[Icos(p@d)Rd(r,Qd)rdrde
U

0

05

+ zf I cos(pé, ) cos(8,)log[R, (r,8,)Ir*drdé, J (18)
where |
Rd(r,ed)=JC(r, r,.0,)+9? —|C(r,5,,6,)+g>  (19)
R(re)_ —r cos(6, )+JC(r, 0,49)+g 20)
I, —r cos(6, )+,fC(r, .0, )+g°
Bun = 2B, zk( 24 H)E (e ) ; (21)
(Iur +1) ( r _1)
k=pd, /(r, +n) (22)

The axial length, inner radii and outer radii expressed in
(19)-(22) are defined as shown in Fig. 1(a).

TABLE |
RADIAL COUPLING MATERIAL AND GEOMETRIC PARAMETERS

| value | Unit |

[ Description
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Rotor | Outer radius, I, 40 mm
- inner Inner radius, ri 30 mm
rotor Axial length, dr 10 mm
Pole-pairs, p 4 -
Outer radius, ro 51 mm
Rotor Il Inner radius, r" 41 mm
- outer i
rotor Axial length, dr 10 mm
Pole pairs, p 4 -
Magnetic permeability, i 1.05 -
Remnant flux density, Bur 1.27 T
Magnet material density, p 7,600 | kg/m?®
Air gap, g 1 mm

IV. TORQUE DENSITY

To better understand the fundamental geometric sizing rela-
tionship for the ideal axial and radial PMCs the mass and volu-
metric torque density equations are used. The mass torque den-
sities for both the radial and axial PMCs are given by:

Tan =T/ Lod, (17 = (6" )2 +())* = r*)], [Nmvkg] (23)

Tan = Ta Lp7(17 —17)2d,1, [Nm/kg] (24)

where p = density of magnet material. The volumetric torque
density for the radial and axial PMC is given respectively by

To =T /(d,717), [Nm/m?] (25)
T, =T, /[(2d, + g)#r’], [Nm/m3]. (26)
V. RADIAL COUPLING ANALYSIS
The PMC inner radii and outer radii ratio is defined as
A=rlr, 27)
and the air-gap radii between rotors will be defined as
r,=r, +9/2 (28)

With definition (28) the torque density for the radial PMC
will be dependent on six parameters, namely, outer PMC radii,
ro, inner PMC radii, r;, air-gap radii, ry, pole-pairs, p, axial
length, d;, and air-gap g.

The influence of air-gap length on torque is self-evident and
will be kept at g = 1mm. This is a very small air-gap for a prac-
tical PMC. However, the primary purpose of this paper is to
determine the upper torque density bound for a magnetic device
and therefore a 1mm air-gap is not small for many other types
of rotary magnetic devices.

The increase in the axial length dr will result in an increasing
torque density, this effect is illustrated in Fig. 5. Fig. 5 also
shows that for a given r, a further increase in da will have a
diminishing return. For instance, when d; > r, the mass torque
density will increase further by only 1% per-mm. Based on this
analysis the axial length of the PMC will be scaled with PMC
outer radii by keeping dr = ro.

If the p and r, are now set to (p, ro) = (4, 30mm) a torque
density plot when ri and rg are varied can be created. The result-
ant plot is shown in Fig. 6. From this plot it can be noted that
the peak volumetric and mass torque density occurs when
(ri,rg) = (0, 21.5) mm and (ri, rg) = (15,23.5) mm respectively.
These locations are marked in Fig. 6 by a black dot.
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Fig. 5. The increase in mass torque density when the axial length d; is in-
creased while holding the other values in Table I constant.
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Fig. 6.(a) Volumetric and (b) mass torque density when rgy and r; are both var-
iedandp=4,g=1mm, r,=30 mm,d =r,.

The value of (ri, ry) that gives the peak mass torque density
for each different r, and p value was then calculated, the result-
ing peak mass and volumetric torque density plots are shown in
Fig. 7(a) and (b) while Fig. 7(c) show the corresponding rq used
to achieve the peak values.

By studying Fig. 7(c) it was determined that the peak mass
torque density always occurs when

r,=(+r)/2

T10 7
6 13

(29)
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Fig. 7. (a) Volumetric and (b) mass torque density for different pole-pairs and
outer radii also shown is (c) corresponding rgy value, (d) corresponding magnet
radial thickness, t, and (e) inner-to-outer PMC ratio, A for the peak mass
torque density condition.
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with (29) satisfied the magnet radial thickness must then be
tm:(ro_ri_g)/2 (30)
The corresponding magnet thickness value at each peak
torque condition is shown in Fig. 7(d). It can be noted from Fig.
7(d) that as p increases the optimal magnet thickness, tn de-
creases and this leads to a higher torque density, while Fig. 7(e)
shows that the A-ratio is a constant with the same value of pole-
pairs, p. The optimal A calculated for different numbers of pole-
pairs is shown in Fig. 8. The A-ratio can be curved fitted and is
related to the number of pole-pairs by
A=1-10/(3+5p%) (31)
By examining Fig. 7, and noting that the magnetic shear
stress is independent of p, it was determined that at peak mass
torque density the following condition is always satisfied
r—t,=ptz/4 (32)
The condition given by (32) can be confirmed by
considering the plot shown in Fig 9. in which r,and t, were both
varied whilst hold p=4. The line at which (32) is satisfied is also
shown in Fig. 9, the line clearly traverses the peak.
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Fig. 8. The radial coupling ideal inner-to-outer radii ratio, A, that gives the
peak mass torque density for different numbers of pole-pairs.
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Fig. 9. Variation of mass torque density when r, and t,, are varied and p=4,
dr=r,, g=1 mm. The line that satisfies (32) is superimposed on the plot.
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VI. AXIAL AND RADIAL COUPLING COMPARISON

Keeping r, and r; fixed at the optimal value calculated for
the radial PMC the axial PMC mass and volumetric torque den-
sity was then computed by using (18). The da and p values were
selected to achieve the peak mass torque density [14]. The re-
sultant plot is shown in Fig. 10.
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Fig. 10. (a) Volumetric and (b) mass torque density for the axial PMC for dif-
ferent pole-pairs and outer radii when r; is the same as used by the radial PMC
and g =1 mm. The axial length d, was selected so as to meet the peak mass

torque density condition for an ideal axial PMC [14].

Comparing Fig. 10 with Fig. 7(a)-(b) it can be noted that the
radial PMC can operate at a higher volumetric torque density
whilst the AMC can achieve a higher mass torque density.

VII. CONCLUSION

An ideal radial PMC torque equation was derived for the
condition in which the source field was assumed to be created
by an ideal Halbach rotor (a single fundamental field compo-
nent). The derived torque equation is relatively easy to evaluate
as only a single integral needs to be evaluated. The fundamental
interrelationship between outer radii, magnet thickness and
pole-pairs was determined that yields the peak mass torque den-
sity condition. A comparative analysis with an ideal axial PMC
showed that the radial PMC had a higher volumetric torque den-
sity while the axial PMC attained a higher mass torque density.
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