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This paper derives the closed form 3-D analytical torque equations for an ideal radial Halbach rotor magnetic coupling. The perfor-

mance of the radial Halbach coupling is then compared with an ideal axial Halbach rotor coupling.  The closed form equations and 

comparison gives insight into the upper torque density limits of Nd-Fe-B based magnetic devices.   
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I. INTRODUCTION 

PERMANENT magnetic coupling (PMC) creates synchro-

nous torque transmission without physical contact. The 

study of the torque capabilities of magnetic couplings is funda-

mental to ones understand of the upper bound on the torque den-

sities of magnetic devices, such as motors and magnetic gear-

boxes [1].  The axial and radial PMC, as illustrated in Fig. 1, 

form the two primary types of PMCs. The external field created 

by a PMC can be made close to sinusoidal in form if a Halbach 

rotor magnet structure is utilized. An example of an axial and 

radial Halbach rotor magnet arrangement is shown in Fig. 2. In 

order to compute the PMCs torque the field from each individ-

ual magnet is typically first determined and then the magnet’s 

fields are summed up and used to compute the torque. Examples 

of authors using this approach are given in [2-5].  Frédéric [5] 

for instance, then used such a technique to study the perfor-

mance of different magnetic couplings that utilize rectangular 

magnets. Other authors have utilized the finite element analysis 

(FEA) technique to determine the optimal geometric design for 

a PMC [6, 7].   

In this paper the radial PMC torque is derived using a mag-

netic charge sheet approach that enables the torque equation to 

be expressed by a single integral without the need for a large 

number of summations. The radial PMC torque density charac-

teristics are then compared with the performance capabilities of 

an equivalently sized axial PMC [8]. The accuracy of the mag-

netic charge modelling approach is validated by using 3-D 

FEA. The use of the analytic based modeling and idealized as-

sumptions enabled fundamental geometric scaling parameter 

relationships to be identified.  

        
                            (a)                                                  (b) 

Fig. 1. (a) An axial magnetic coupling and (b) a radial magnetic coupling. 

II. RADIAL PERMANENT MAGNET COUPLING  

Consider the case in which a fictitious magnetic charge dis-

tribution described by a charge density function, ρm(θI), is dis-

tributed over the surface of a cylinder, such as sketched in Fig. 

3(a). In this case the magnetic scalar potential field emanating 

from a charge cylinder ,with radii ,I
or can be computed from [9] 
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where µo = permittivity of free space, dr = axial rotor width and 

 2( , , , ) ( , , ) ( )I

I I o I IR r z C r r z z   = − + −    (2) 

                    
2 2( , , ) 2 cos( )C a b a b ab = + −   (3) 

It can be noted that at the axial center (z = 0) of the radial 

Halbach rotor shown in Fig. 2(b), the Bz field is zero such that  

 ( , ,0) ( , ,0) ( , ,0) 0rr B r B r  = + +B r z            (4) 

In [10] it was shown that when (4) is satisfied the 3-D external 

field (where r> I
or ) of a Halbach rotor can be accurately mod-

eled by setting the charge density function in (1) to 

( ) 2 ( ) cos( )I I
m mr oB r p  =  (5) 

   
                          (a)                                                     (b) 

Fig. 2. (a) An 8-segment 4 pole-pair z-axis directed (z>da/2) axial Halbach ro-

tor and (b) and externally directed (r>ro
I) radial Halbach rotor  

 
 

 
        (a) 

 
         (b) 

Fig. 3.(a) 3-D charge sheet model, (ro
I, θI, zI) is a point located on the outer 

cylinder surface and (b) magnetic charge sheet coupling model where the 
two Halbach rotors are replaced with two fictious charge sheet cylinders.  
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where [11] 
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and µr = magnet relative permittivity, Bm = magnet residual flux 

density, p = pole-pairs and ri = inner radii, as shown in Fig 2(b). 

By substituting (5) into (1) and evaluating the z-axis integral 

the  magnetic scalar potential can be determined to be [12] 
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Defining  

                                  
d I  = −                                            (8) 

one can then substitute (8) into (7) to obtain 
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The radial Halbach PMC can be replaced with two equiva-

lent magnetic charge sheets as illustrated in Fig. 3(b). The 

charge sheets are located at r = I
or and r = II

ir . The external field 

created by the inner charge sheet is given by (9). The field cre-

ated by the outer charge sheet must be directed inwards (for r<
II

ir ).  Therefore, by using the 2-D solution to an inward directed 

ideal Halbach rotor field [11] 
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the charge function on the outer charge sheet II will be [10]   

( ) 2 ( )cos[ ( )]II II II

m II mr i II tB r p   = −             (11) 

where θt = angular offset position of charge sheet field and      

II = angular position on outer charge cylinder surface. 

A.  Radial Halbach Coupling Torque 

The energy contained on the outer charge cylinder is [13] 

 

/22

0 /2

( , , ) ( )
r

r

d

I II II II

i II m II i II

d

W r z r dzd



    
−

=     (12) 

the torque can then be computed from [13] 
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Substituting (12) into (13) enables the torque created on the 

surface of the outer charge cylinder to be evaluated [13] 
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then substituting (9) and (11) into (14) one obtains after rear-

ranging and simplifying 
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Finally, evaluating the z-axis integral term in (15) yields 
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If (16) is compared to the torque coupling equations derived 

in [2-5] it can be noted that (16) is comparatively simple in 

form.  Note that the air-gap length, g, is present within (16)  

                                   II I

i or r g= +  (17) 

B. Model Validation 

Using the values shown in Table I the torque computed by 

(16) was compared with a COMSOL FEA model and a JMAG 

FEA model. The torque comparison is shown in Fig. 4. It can 

be noted that a close agreement was obtained.  

 
Fig. 4. Torque comparison between the analytical model and FEA models. 

III. IDEAL AXIAL HALBACH ROTOR COUPLING  

 The torque created by an ideal axial Halbach PMC rotor 

was derived in [8] from the fundamental field component and 

can be written as a single double integral equation: 
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where 
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The axial length, inner radii and outer radii expressed in 

(19)-(22) are defined as shown in Fig. 1(a).  

 
TABLE I 

RADIAL COUPLING MATERIAL AND GEOMETRIC PARAMETERS  

Description Value Unit 
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Rotor I 
 - inner  

    rotor 

Outer radius,
I

or  40 mm 

Inner radius, ri  30 mm 

Axial length, dr 10 mm 

Pole-pairs, p 4 - 

Rotor II 

 - outer 

     rotor 

Outer radius, ro 51 mm 

Inner radius, 
II

ir  41 mm 

Axial length, dr 10 mm 

Pole pairs, p 4 - 

Magnetic permeability, µr 1.05 - 

Remnant flux density, Bmr 1.27 T 

Magnet material density, ρ 7,600 kg/m3 

Air gap, g 1 mm 

IV. TORQUE DENSITY 

To better understand the fundamental geometric sizing rela-

tionship for the ideal axial and radial PMCs the mass and volu-

metric torque density equations are used. The mass torque den-

sities for both the radial and axial PMCs are given by:  

          
2 2 2 2/ [ ( ( ) ( ) )]II I

Rm r r o i o iT T d r r r r= − + − ,  [Nm/kg] (23) 

 
2 2/ [ ( )2 ]Am a o i aT T r r d= − ,  [Nm/kg] (24) 

where ρ = density of magnet material. The volumetric torque 

density for the radial and axial PMC is given respectively by  

 
2/ ( )Rv r r oT T d r= ,  [Nm/m3] (25) 

 
2/ [(2 ) ]Av a a oT T d g r= + , [Nm/m3]. (26) 

V. RADIAL COUPLING ANALYSIS 

The PMC inner radii and outer radii ratio is defined as  

 /i or r =   (27) 

and the air-gap radii between rotors will be defined as  

 / 2I

g or r g= +   (28) 

With definition (28) the torque density for the radial PMC 

will be dependent on six parameters, namely, outer PMC radii, 

ro, inner PMC radii, ri, air-gap radii, rg, pole-pairs, p, axial 

length, dr, and air-gap g.  

The influence of air-gap length on torque is self-evident and 

will be kept at g = 1mm.  This is a very small air-gap for a prac-

tical PMC. However, the primary purpose of this paper is to 

determine the upper torque density bound for a magnetic device 

and therefore a 1mm air-gap is not small for many other types 

of rotary magnetic devices.  

The increase in the axial length dr will result in an increasing 

torque density, this effect is illustrated in Fig. 5.  Fig. 5 also 

shows that for a given ro a further increase in da will have a 

diminishing return. For instance, when dr > ro the mass torque 

density will increase further by only 1% per-mm. Based on this 

analysis the axial length of the PMC will be scaled with PMC 

outer radii by keeping dr = ro. 

If the p and ro are now set to (p, ro) = (4, 30mm) a torque 

density plot when ri and rg are varied can be created. The result-

ant plot is shown in  Fig. 6. From this plot it can be noted that 

the peak volumetric and mass torque density occurs when 

(ri ,rg) = (0, 21.5) mm and (ri, rg) = (15,23.5) mm respectively. 

These locations are marked in Fig. 6 by a black dot.  
 

 
Axial length, dr [mm] 

Fig. 5.  The increase in mass torque density when the axial length dr is in-

creased while holding the other values in Table I constant.  
 

 
                                        (a)                                                                   (b) 

Fig. 6.(a) Volumetric and (b) mass torque density when rg and ri are both var-
ied and p = 4, g = 1 mm, ro = 30 mm, d = ro. 

 

The value of (ri, rg) that gives the peak mass torque density 

for each different ro and p value was then calculated, the result-

ing peak mass and volumetric torque density plots are shown in 

Fig. 7(a) and (b) while Fig. 7(c) show the corresponding rg used 

to achieve the peak values.  

By studying Fig. 7(c) it was determined that the peak mass 

torque density always occurs when 

                                   ( ) / 2g i or r r= +                         (29) 

 
     (a)                                                  (b) 

 
(c) 

 
(d) 

 
(e) 

Fig. 7. (a) Volumetric and (b) mass torque density for different pole-pairs and 
outer radii also shown is (c) corresponding rg value, (d) corresponding magnet 

radial thickness, tm and (e) inner-to-outer PMC ratio, Λ for the peak mass 

torque density condition.  
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with (29) satisfied the magnet radial thickness must then be 

                                   ( ) / 2m o it r r g= − −                        (30) 

The corresponding magnet thickness value at each peak 

torque condition is shown in Fig. 7(d). It can be noted from Fig. 

7(d) that as p increases the optimal magnet thickness, tm de-

creases and this leads to a higher torque density, while Fig. 7(e) 

shows that the Λ-ratio is a constant with the same value of pole-

pairs, p. The optimal Λ calculated for different numbers of pole-

pairs is shown in Fig. 8. The Λ-ratio can be curved fitted and is 

related to the number of pole-pairs by 

                                0.91 10 / (3 5 )p = − +                          (31) 

By examining Fig. 7, and noting that the magnetic shear 

stress is independent of p, it was determined that at peak mass 

torque density the following condition is always satisfied  

                        / 4o m mr t pt − =                         (32) 

The condition given by (32) can be confirmed by 

considering the plot shown in Fig 9. in which ro and tm were both 

varied whilst hold p=4. The line at which (32) is satisfied is also 

shown in Fig. 9, the line clearly traverses the peak. 

 

 
Fig. 8. The radial coupling ideal inner-to-outer radii ratio, Λ, that gives the 

peak mass torque density for different numbers of pole-pairs. 

 
Fig. 9. Variation of mass torque density when ro and tm are varied and p=4, 

dr=ro, g=1 mm. The line that satisfies (32) is superimposed on the plot. 

VI. AXIAL AND RADIAL COUPLING COMPARISON 

Keeping ro and ri fixed at the optimal value calculated for 

the radial PMC the axial PMC mass and volumetric torque den-

sity was then computed by using (18). The da and p values were 

selected to achieve the peak mass torque density [14]. The re-

sultant plot is shown in Fig. 10.   

 
      (a)                                                 (b) 

Fig. 10. (a) Volumetric and (b) mass torque density for the axial PMC for dif-
ferent pole-pairs and outer radii when ri is the same as used by the radial PMC 

and  g = 1 mm. The axial length da was selected so as to meet the peak mass 

torque density condition for an ideal axial PMC [14]. 
 

Comparing Fig. 10 with Fig. 7(a)-(b) it can be noted that the 

radial PMC can operate at a higher volumetric torque density 

whilst the AMC can achieve a higher mass torque density. 

VII. CONCLUSION 

An ideal radial PMC torque equation was derived for the 

condition in which the source field was assumed to be created 

by an ideal Halbach rotor (a single fundamental field compo-

nent). The derived torque equation is relatively easy to evaluate 

as only a single integral needs to be evaluated. The fundamental 

interrelationship between outer radii, magnet thickness and 

pole-pairs was determined that yields the peak mass torque den-

sity condition. A comparative analysis with an ideal axial PMC 

showed that the radial PMC had a higher volumetric torque den-

sity while the axial PMC attained a higher mass torque density. 
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