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Nanophotonics Activity ) fiee,

Integrated Photonics, Nanoscale lasing, Strong coupling, Full 3D emission control,
Thermal control, Solid State Ilghtlng, Energy conversion
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» Single photon sources
> lllI-nitride Quantum dot fabrication
» Characterization results

» Summary

» Topological Photonics

» Design for pseudo spin based topological
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Single Photon Source: Photon Statistics
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* Quantum communication
* High bit rates than attenuated laser
* Long distance secure comm.
* Quantum repeaters ( with
indistinguishability)
* Quantum metrology

* Measurement of low absorption

* Single molecule level detection ( in
combination with high efficiency SPD)

* Quantum computing

* Qubit operations J
e ‘flying’ qubits
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Quantum

g(2)(t=0) <1

e.g., SPS
Classical
g(2)(t=0)=1

e.g.,Thermal,LED
, Laser




Single Photon Source based on Quantum Dots
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Motivation for InGaN Quantum Dot SPS (),

Goal: Room temperature, electrically-injected, chip-scale single
photon source

IlI- N quantum dots have :

Large exciton binding energy so can enable room temp. operation
* Path to electrical-injection/chip-scale integration
» Deterministic Source: on demand
*Triggered emission within radiative lifetime
» Short emitter lifetime ( ~ 1 ns) - Fast rep. rate

- Isolate emission from a single quantum dot
* Leverage prior expertise/experience

GaN nanowire arrays inGaN photonic crystal LEDs
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InGaN Photoelectrochemical (PEC) Etching

Our approach: Photoelectrochemical etch of MOCVD-grown InGaN QWs

Photoelectrochemical (PEC) Etching:
* Very few wet etches work for lll-nitrides
* KOH (~0.1M) typically used as electrolyte
* Laser or lamp excitation (Xe arc lamp, tunable ps Ti:S)
* Band gap selective (Etch InGaN over GaN)
* Dopant selective, light intensity dependent, etch current can be monitored

@_.|L| PEC etched InGaN/GaN QWS

Pt
Electrode
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Fiber-coupled
light source
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Fabrication of InGaN QDs via PEC etching

{ Quantum Size Control: Use size quantization to control QD size ]

Self-limiting PEC etch process

big QD ! | small QD T T e
| ; | InGaN QW — |
| L:I;ev » mmmmmmmmmmmmmmmmmmmmmmmm
| Pump | 440 nm PEC 7.9 nm ]
E zEsorption i E ;‘ 430 PEC
i PEC etching ; i PEC etching stopped Y TTIIIT N -t s
trrTmmmmmmmmmmmmoosstisssssoooosmmmend o bmmmmmmmmmmmmmmnntnonnnmetoeeed o d h
. ° . -
* For QDs, enery gap depends on size >
- As etch proceeds, = 40F Jaon 4% nm PEC
* QD size gets smaller, band gap goes up wob o . o ., . AMOnmPEC:
* Etch terminated for E; > E ., pump 2 4 6 8 10 12
 Self-terminating etch process QD diameter (nm)
 Band gap selective G. Pellegrini, et al., Journal of Applied Physics

97, 073706 (2005).

*QD size depends on PEC wavelength
* Monodisperse QD distributions ??

Xiao, X. et al. Quantum-Size-Controlled Photoelectrochemical Fabrication of Epitaxial InGaN Quantum Dots. Nano
Lett. 14, 5616-5620, do0i:10.1021/n1502151k (2014). 8



Atomic Force Microscope (AFM) ) .
Measurements

Uncapped InGaN QW

« Samples etched for two hours at 420 nm and 445 nm
- * Laser power density: ~ 3 mW/cm?2
* High dot density: 10"/cm?

* QD size depends on PEC etch wavelength
» Some big dots (10-20 nm) remain: due to dislocations?

Sapphire

PEC etch 2> A =445 nm

200 - /./.“ A = 445 hm
A =420 nm / '\
100 . /J\' / \
O\ \
\ \
N \
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Maximum grain height (nm)



Transmission Electron Microscope (TEM) (@),
Images

Uncapped InGaN QW « High-angle annular dark-field (HAADF) TEM images
- « Samples etched at 420 nm and 445 nm
* Energy dispersive x-ray mapping
Sapphire * QDs on surface are InGaN
* Red = indium, green=gallium

*InGaN QDs are epitaxial to the underlying GaN
* No underlayer, no cap = PL is not very bright

445 nm PEC etch
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Transmission Electron Microscope Images ) .

» High-angle annular dark-field (HAADF)
TEM images

« Sample etched at 420 nm

« EDX mapping shows that dots are
InGaN

* InGaN QDs are epitaxial to the
underlying GaN

* 2% InGaN underlayer + GaN cap

» GaN cap provides partial passivation

InGaN QD

Capped InGaN QW

GaN Cap
NGaN OW

ECEL

before PEC etch after PEC etch InGaN QD after PEC etch

Snm

Xiao, X. et al. Quantum-Size-Controlled Photoelectrochemical Fabrication of Epitaxial InGaN Quantum Dots. Nano
Lett. 14, 5616-5620, do0i:10.1021/n1502151k (2014). 11



Photoluminescence from fabricated )

InGaN QDs

Capped InGaN QW

NGaN Of)

Photoluminescence (PL) data:

* 375 nm pump (ps pulsed)

- 10K PL data

* PL wavelength determined by
PEC etch wavelength

* PL linewidth: 24 nm - 6 nm

* Quantum size-controlled PEC
etching works!

Laboratories

As narrow as 6 nm FWHM is consistent with
a narrowing of the QD size distribution

Normalized PL Intensity
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Xiao, X. et al. Quantum-Size-Controlled Photoelectrochemical Fabrication of Epitaxial InGaN Quantum Dots. Nano

Lett. 14, 5616-5620, d0i:10.1021/nl502151k (2014).
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Patterned fabrication of InGaN QDs ) e

» Deterministic placement

EBL Patterning Metal Evaporation + Liftoff

Ni removal + PEC Etch Dry Etch l

13



Emission from single InGaN QDs )

Capped InGaN QW - Posts (150 — 200 nm) patterned with e-beam lithography
_  Fabricate InGaN QDs at deterministic locations

InGaN underlayer . GaN Cap - 10nm
_sapphire * Narrow peaks emerge revealing QD formation

Fabrication of single InGaN QDs

InGaN

PL intensity (arb. units)
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PL from InGaN QDs (thicker GaN cap) ™
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Capped InGaN QW * Posts (150 — 200 nm) patterned with e-beam lithography

_ * Thicker GaN capping layer (~ 30 nm)

InGaN underiayer * Narrow PL emission (<1 nm FWHM) observed
e - Better ratio of single QD mission to background

Sapphire

Fabrication of single InGaN QDs
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Single Photon Measurement: HBT experiment™

* Observation of antibunching : g2 ~ 0.5 for PEC-etched InGaN QDs
* Next steps:

* Thicker GaN cap

* Reduce nanowire radius

* Emission rate enhancement

* Enhanced light extraction

HBT Experimental Set-up Pulsed g2 data
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Nanofabrication Approach

EBL Patterning  Metal Evap. + Liftoff = Dry + Wet Etch PEC Etch

am, .

Spin-coat FOX16 TiO, dep. + EBL  Membrane formation

Potentially all lll-nitride solution is possible but fabrication is more
challenging

17
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Summary

= Motivation for Single Photon Source
= Quantum information

= Quantum size controlled PEC etching
= TEM EDX mapping shows we have InGaN QDs
= Quantum wells are etched to make QDs

= QD size and emission A determined by PEC wavelength.

* Emission from single InGaN QDs in post
samples

= Narrow linewidth emission (<0.3 nm)
= Pulsed g2 measurement showing g2 ~ 0.5

InGaN QD

5nm

Pulsed g2 data

Counts

PL Intensity (arb. units)

400 410 0 0 -20 - 0 20 30 40 50 6
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Motivation: Topological Systems in Electronics () i

Laboratories

Electronic Topological Insulators : Systems exhibiting Quantum Hall Effect > 2DEGs

Time reversal symmetry is broken by applying magnetic (B) field

* Discrete highly degenerate Landau Levels - Needs high B fields
« Conducting edge states within insulator gap » Low temperatures
« Topologically protected “one way” electronic transport

Conducting edges Landau Levels 1) %eB
E =|n+—|—
2) m
= E
2 f eB
GC) :I: a)L - —
L m
Insulating inside T T T B
Density of States
It turns out appropriately designed photonic structures can exhibit
similar topological properties too!  F D. M. Haldane and S. Raghu, Phys. Rev. Lett.
100 (1), 013904 (2008). 19

http://jqi.umd.edu/glossary/quantum-hall-effect-and-topological-insulators



Topological Photonics Research Activities (i) i
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Metamaterial Photonic Topological Insulator
: ' my o o Valley hall Photonic Topological Insulator

Simulation of Oneway edge transport

complete band gap
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A. B. Khanikaev et.al. Nat Mater 12 (3), 233-
239 (2013). ! d)
K.Fang, Z. Yu, S.H.Fan, Nat. Phot. 6, nax
(2012)

Strain induced pseud mag. field

in optical fiber arrays and edge transport L
/ M. Tzuhsuan and S. Gennady, New Journal of

One- way scatter transport at microwave  Physics 18 (2), 025012 (2016).

frequency ~ 4GHz in 2DPCs

) L.D.T , et. al. Nat Photon 8 (9), 701-
A htsman et.al. Nat. Phot. 7 (2013) Z. Wang et. al. Nat. 461 ( 2009) -0 (ch;Jla:)g et. al. Nat Photon 8 (9)
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Topological Photonics Spin Hall in Dielectric PC (dh) i

week ending

PRL 114, 223901 (2015) PHYSICAL REVIEW LETTERS 5 JUNE 2015

Scheme for Achieving a Topological Photonic Crystal by Using Dielectric Material

Long-Hua Wu and Xiao Hu
International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science,
Tsukuba 305-0044, Japan
Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8571, Japan
(Received 10 February 2015; published 3 June 2015)
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Photonic Bandstructures for Modified Honeycomb Lattices

1 Holes in dielectric design can be useful for optical frequency photonics applications
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Band structure for Topological/Trivial Zig-zag Interfac&l) B,
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Band structure for Trivial Lattice (a/R =3.2) varying r/a@ s

R/ia=3.2,rla=0.15121
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Band structure for Topological Lattice (a/R < 2.9) varying r/a)

a/R = 2.9032, rfa = 0.16667
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Field Distribution

Trivial (a/R = 3.2)
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Fabrication on Silicon on Insulator (SOI) - Membrane ()5,

Coat with e-beam resist Ebeam Lithography Pattern

Reactive ion etching Wet etch SiO,
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Fabrication on Silicon on Insulator (SOI) - Membrane ()5,

Trivial/Compressed Structure

a/R=3.18
(XR2220f0i( )
a=700nm
a/R=2.9
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Fabrication on Silicon on Insulator (SOI) - Membrane )&z,
Topological/Trivial Interface structure

oo soiise

Trival

Alternate design ...
arXiv:1605.08822v1
Shrunken

Two-Dimensionally Confined Topological Edge
States in Photonic Crystals

Sabyasachi Barik!'?, Hirokazu Miyake’, Wade DeGottardi’, Edo
Waks??, Mohammad Hafezi?**

Nrabrication could be challenging ...

National Nuclear Security Administration
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Topological structure in active material systems ) feima

PhC nanrod array have shown excellent light emission behavior

Demonstration of Lasing from PhC Array Photonic, Crystal Laser Pixels

Fabricated by using a top
down approach from a
planar GaN with InGaN
Multiple quantum wells

J. B. Wright et,al., Sci. Rep. 3, 2982
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Fabrication procedure in GaN

Ni evaporation and lift-off

EBL patternin »
PMMA

H‘So‘based Ni removal Cl2 based dry etch ‘

31



Topological edge state in honeycomb lattice structure in
I1I-Nitride

Modeling

Band Structure

Spin-down state
a/A=0.618

7
Y K

Spin-up state
a/A = 0.60




Topological/Trivial lattice interface structure in IlI-Nitride

Ongoing ...

 Main challenges
 Deeper etching
1 Source polarization

33
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Summary and Future directions

= Hole array honey comb lattice structure for

photonic pseudo spin
= Fabrication in lll-nitride

= Fabrication in Silicon/SOl

; h
Trival

Next...
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Thank you for your attention!
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Extras
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Removal of Indium Hard Mask rh
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In islands remain after dry Cl etch - degrade optical performance

/ In islands (~ 80 nm) Remove In (12 H2804, DI H20)

BT ™
«. R =
k| ‘%

Why H,SO,?

Sulfuric acid can selectively etch Ni and avoid GaN

Ni removed relatively quickly (~ three minutes)

- A

37
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Timestesolved PL data from InGaN QDs

InGaN underlayer

Sapphire
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TRPL data:

405 nm pump (~ 2 ps, pulsed)
Resonant pumping into InGaN
Room temperature TRPL data
Hamamatsu streak camera data
17X change in PL lifetime

Lifetime is expected to be much
shorter for QDs

Shows that we have
fundamentally changed the
InGaN material

QW - QDs
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Motivation for InGaN Quantum Dot Emitters

* Long wavelength visible emitters:

* Nanostructure (NWs, QDs) can incorporate more indium

* High efficiency yellow, orange, and red emission

 RGB and RYGB emitters require high efficiency yellow to red emitters
* Visible QD diode lasers:

 Lasers for lighting is gaining momentum

* Low threshold, high efficiency, better temperature performance
« Monodisperse QDs

Monodisperse QD Distributions

Impact on device performance |
InGaN QD laser:
« University of Michigan :,f;c:;'l“m?f'zfm“"th a
* Electrically injected A MOCVD distribution \
° 630 nm S grown
8 —————————— or MBE QDs have
*T,= 236K 7 a very large size Gain or PL
% : distribution \ / Spectrum\
eg 4
3 4
Frost et al., IEEE JQE, % ,f ek ]
49, 923 (2013). it CWBias ] »
% 2 4 6 8 1 w2
Current Density (kA/cm®)
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= Advantages to this approach
= |nGaN QDs can operate at high temperatures
= Si detectors work well in the blue/green
= Free space data links: Reduce the size of optical telescopes
= Plastic optical fiber at blue/green wavelengths
= Deterministic placement of InGaN QDs
= Leverage expertise in llI-nitrides and photonic crystals
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