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What is Machine Learning?

• Data-driven algorithms to discern patterns and make predictions on big, 
high-dimensional data

• Linear regression, support vector machines, neural networks
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Neural Networks and Deep Learning

3Ling et al.



Turbulence Simulations
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Hokusai (c 1830) http://www.windturbinesyndrome.com/2011/wind-
turbine-turbulence-what-are-the-micro-climate-effects/

https://brilliant.org/wiki/rocket-physics/

• Many physical processes are inherently multi-scale and require constitutive models 
• Growing interest in applying machine learning to constitutive modeling
• Leverage the massive data sets from high fidelity simulations and high-res experiments
• We present a method for using deep neural networks to learn a turbulence model
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• In Reynolds Averaged Navier Stokes (RANS), 
use simplifying assumptions to get 
computational efficiency

o Need model for unknown term: the 
Reynolds stress anisotropy tensor A

• Default model: Linear Eddy Viscosity Model

o Based on theory + sparse experimental 
data

• Our approach: Deep neural network

• Inputs: Mean strain rate tensor S,  mean 
rotation rate tensor R

• Outputs: Reynolds stress anisotropy A

(1973)
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• Inputs: Tensors S, R
• Output: Tensor A

• Would like to enforce Galilean invariance
• Invariance to inertial coordinate frame transformations

• Borrow some ideas from group theory, representation theory
• All Galilean invariant tensors that are a function of S and R lie on a 

tensor basis: the integrity basis of S and R for the orthogonal group

Known Tensor BasisUnknown 
coefficients



Embedding Galilean Invariance
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Multi-Layer Perceptron (MLP) Tensor Basis Neural Network (TBNN)



Model Development
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Conclusions

o Developed network architecture to embed known tensor 
invariance property

o Demonstrated significant improvement over conventional 
eddy viscosity models, at orders of magnitude lower 
computational cost than DNS

o First application of deep learning to RANS turbulence 
modeling
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Machine Learning on Physics Systems

Directly embedding scientific domain knowledge into machine learning 
models can give improved performance, especially in data-limited 
scenarios
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