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why not more moving target defenses?
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ASLR

linux, windows, iOS, macos
gcc, clang,

etc.

Networks

9



yes!

arp, mitm, metwork sniffing, scanning

do attackers always look like admins?

no!
Shellcode, payloads, calling patterns



find

run

locate

analyze

profile

ret to libc
dependency chain

create

payload

execute

do something profit!



ret to libc
break the chain

thanks ASLR!

1

execute

profit!



run

locate

analyze

profile

ret to libc
break the chain

create

payload



can we use this to dynamically select defenses?



use case: ASLR

weighted graphs reflecting relevant dependencies

adversaries
• time for access
• cost for access
• time for knowledge
• cost for knowledge
• unpredictability
• movement

users
• memory requirements
• CPU requirements
• system stability
• latency
• bandwidth
• stability
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costs: not perfect, but seems reasonable



what do these graphs look like, and how does this work?
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what can we do with these graphs?



centrality



communities



cut finding



efficiency



automating defense discovery

betweenness centrality   (a2, a37, a38)

efficiency   (a38)

communities   (a2, a5, a37, 38)

ability to write to buffer, updating instruction pointer,
knowledge of instruction set, exploit code development



instruction set randomization?

knowledge of instruction set




