
Dependendy Graphs
An approach for moving target defense selection

SAND2016-10734C

MOTIVATION

APPROACH

APPLICATION

why not more moving target defenses?

•••••••••••••••••••••••••••••••
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

.1 MEM MEMENNEMENNEMENNEMEN MEM M

•
.
.

.
entropy is not the problem
i_i i_i i_i i_i 1_1 i_i i_i ii 1_1 1_1 11 L_I 1_1 1_1 1_1 1_1 11 1_1 1_1 i_i i_i 11 i_i i_i 1_1 i_i

NI
I
I
1
•

•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

•••••••••••••••••••••••••••••••

ASLR

linux, windows, iOS, macos
gcc, clang,

etc.

Networks

9

yes!

arp, mitm, metwork sniffing, scanning

do attackers always look like admins?

no!
Shellcode, payloads, calling patterns

find

run

locate

analyze

profile

ret to libc
dependency chain

create

payload

execute

do something profit!

ret to libc
break the chain

thanks ASLR!

1

execute

profit!

run

locate

analyze

profile

ret to libc
break the chain

create

payload

can we use this to dynamically select defenses?

use case: ASLR

weighted graphs reflecting relevant dependencies

adversaries
• time for access
• cost for access
• time for knowledge
• cost for knowledge
• unpredictability
• movement

users
• memory requirements
• CPU requirements
• system stability
• latency
• bandwidth
• stability

d m pm

m d
p

m

c m m H pi
i

costs: not perfect, but seems reasonable

what do these graphs look like, and how does this work?

a0
u0 knowledge of

call subroutine machine
architecture

ul
push return
address onto

stack
0

•
u2

execute subroutine
0

u5
instruction
pointer

is updated
0

u3
ability to write

data to this buffer
0

u4
pop retum
address off
of stack

0

u6
resume program

execution
0

a3
learn reliable
location of

return address
0.22

0.11

al
find process
with fixed

length buffer
with no
bounds
checking

0.22

a2
ability to write

data to this buffer
0.11

a37
knowledge of

machine instruction set
0.11

a38
develop exploit code

0.11

a8
locate or create
dangling pointer

0.33

•
a4 a9

use buffer use buffer
overflow to overflow to

inject code and inject code and
inodify pointer modify pointer
with address with address
of exploit code of exploit code

0.28 0.28

a5
instruction
pointer

is updated
0

a6
execute
alicious
code
0

a 1 0
make pointer
go out of
bounds
0.33

a7
use buffer

overflow to
inject code and
modify pointer
with address
of exploit code

all 0.28

use buffer
overflow to

inject code and
inodify pointer
with address
of exploit code

0.28

2 12,111-1.

1111t2

u0
call subroutine

0.017

ul
push return
address onto

stack
0

u2
execute subroutine

0

u5
instruction
pointer

is updated
0

a0
knowledge of

machine
architecture

0.11

al
fmd process
with fixed

length buffer
with no bounds

checking
0.22

a2
ability to write

data to this buffer
u3 0.22

ability to write
data to this buffer

0

a37
u4 knowledge of

pop return machine instruction set
address off 0.11
of stack
0

a38
develop exploit code

0.11

a3
a8

learn reliable
locate or createlocation of
dangling pointer

return address
0.33

0.5

•
a4

use buffer
overflow to

inject code and
modify pointer
with address
of exploit code

0.28

a5
instruction
pointer

is updated
0

u6
resuine program

execution
0

a6
execute

inalicious
code
0.17

a9
use buffer

overflow to
inject code and
iodify pointer
with address
of exploit code

0.28

a22
fill buffer with
NOP sled and
exploit code
and execute it

0.11

al 0
make pointer
go out of
bounds
0.33

a7
use buffer

overflow to
inject code and
modify pointer
with address
of exploit code

0.28
al 1

use buffer
overflow to

inject code and
modify pointer
with address
of exploit code

0.28

stai
nl

u0
call subroutine

0

ul
push return
address onto

stack
0.001

u2
execute subroutine

0.001

u3
ability to write

data to this buffer
0.001

u4
pop return
address off
of stack
0

u5
instruction
pointer

is updated
0

a0
knowledge of

machine
architecture

0.11

al
find process a41
with fixed find an appropriate

length buffer <equence of chunks of
with no bounds library fimctions

checking 0.33
0.22

go
a2

ability to write
ta to this buffer

0.11

a37
knowledge of

machine instruction set
0.11

a3
learn reliable
location of

return address
0.22

a4
use buffer
overflow to

inject code and
modify pointer
with address
of exploit code

0.28

u6 a6
resume program = execute

execution malicious
0.001 code

a38
develop exploit code

0.11

a8
locate or create
dangling pointer

0.33

a9
use buffer

overflow to
ject code and
odify pointer
with address
of exploit code

0.28

al 0
make pointer
go out of
bounds
0.33

a 1 1
use buffer

overflow to
inject code and
modify pointer
with address
of exploit code

0.28

a5
instruction
pointer

is updated
0

a22
fill buffer with
NOP sled and
exploit code
and execute it

a42
fmd an appropriate
sequence of gadgets

0.33

a40
fmd an appropriate

sequence of
library functions

0.33

a7
use buffer

overflow to
inject code and
modify pointer
with address
of exploit code

0.28

a31
overwrite return
address with

address into chunk
f lib. func. that pops
values onto stack

0.11

a26
ROP is
executed

0

a34 a39
overwrite jump or update instruction

branch with pointer with
address into chunk address of first
of library function gadget

0.11 0.11

a30 a33
execute chunk of execute chunk of
library function library function

a38
execute gadget

0

n 0
(1)

a0
u0 knowledge of

call subroutine machine
1.017 architecture

0.11

ul a17
push return locate module
address onto with no ASLR

stack protection
0.001 0.56

u2
execute subroutine

0.001

u4
pop retum
address off
of stack
0

al
fmd process
with fixed

length buffer
with no bounds

checking
0.22

u3
ability to write

data to this buffer
0.001 a2

ability to write
data to this buffer

0.22

u5
instruction
pointer

is updated
0

al 8
learn reliable
location of

return address
0.44

a19
fmd process
with fixed

length buffer
with no bounds

checking
0.22

a37
knowledge of

machine instruction set
0.11

a3
learn reliable
location of

return address
0.5

a38
develop exploit code

0.11

a8
locate or create
dangling pointer

0.33

a28
find an

appropriate
sequence

of chunks of
library functions

0.33

al0
make pointer
go out of
bounds
0.33

f
a4 a9 al I

use buffer use buffer use buffer
overflow to overflow to overflow to

inject code and inject code and inject code and
modify pointer modify pointer modify pointer
with address with address with address
of exploit code of exploit code of exploit code

0.28 0.28 0.28

........

• •

- : a22
u6 a6 ' fill buffer with

resume program execute i NOP sled and
execution malicious exploit code
0.001 code and execute it

lio 6 6
00 00

a5
instruction
pointer

is updated
0

a31
overwrite return
address with

address into chunk
f lib. fiinc. that pops
values onto stack

0.11

al5
learn relative
addresses not

protected by ASLR
0.56

a36
find an

approprlate
sequence
of gadgets

0.33

a23
find an

appropriate
sequence of

library functions
0.33

a16
find process
with fixed

length buffer
with no bounds

checking
0.22

a7
use buffer

overflow to
inject code and
modify pointer
with address
of exploit code

0.28

a26
ROP is
executed

0

a34 a39
overwrite jump or update instruction

branch with pointer with
ddress into chunk address of first
of library function gadget

0.11 0.11

a30 a33
execute chunk of execute chunk of
library function library function

a38
execute gadget

0

ul
push retum
address onto

stack
0.001

u2
execute

subroutine
0.001

a45
find an

appropriate
sequence of

library
functions

0.56

u0

call subroutine

0.017

a0

knowledge of

machine

architecture

0.11

a17

a43 locate module
Locate or create with no ASLR
dangling pointer protection

0.33

a44
Read memory to fmd
base address of DLL

0.44

a46
find an

appropria4
sequence of
chunks of
library
functions:

0.56

u3
ability to write

data to this buffer
0.001

u4
pop return
address off
of stack
0

u5
instruction
pointer

is updated
0

u6
resume
prograrn
execution
0.001

a23
find an

appropriate
sequence of

library
functions

0.33

a28
find an

appropriate
sequence of
chunks of
library
functions

0.33

a37
knowledge of

machine instruction set
0.11

al0
inake pointer
go out of
bounds
0.33

al 1
use buffer
overflow to

inject code and
modify pointer
with address
of exploit code

0.28

...

a6
execute

malicious
code

.............

al 8
learn reliable
location of

return address
0.44

a36
find an

appropriate
sequence of

gadgets
0.33

a47
find an

appropria
sequence of

gadgets
0.56

a38
develop exploit code

0.11

a7
use buffer

overflow to
inject code and
modify pointer
with address
of exploit code

0.28

a22
fill buffer with
NOP sled and
exploit code
and execute it

a3
learn reliable
location of

return address
0.5

a19
fmd process
with fixed

length buffer
with no
bounds

'., checking
0.22

a2
ability to write

data to this buffer
0.22

a8
locate or create
dangling pointer

0.33

a4 a9
use buffer use buffer

overflow to overflow to
inject code and inject code and
modify pointer modify pointer
with address with address
of exploit code of exploit code

0.28 0.28

a5
instruction
pointer

is updated
0

• a33
execute chunk of
library function

al 5
learn relative
addresses not
protected

ASLR

al
fmd process
leuithiirwgthithfbrneduffer

no
bounds
checking
0.22

a16
/ fmd process

••• with fixed
length buffer

with no
bounds
checking
0.22

a26
ROP is
executed

0

a34
overwrite jump or

branch with
address into

chunk
of libraiy
function
0.11

a31
overwrite return
address with
address into
chunk of lib.

func. that pops
values onto

stack
0.11

a30
execute chunk of
library function

a39
update instruction

pointer with
address of first

gadget
0.11

a38
execute gadget

0

stai
nl

u0
call subroutine

ul
push return
address onto

stack
0

•
u2

execute subroutine
0

u5
instruction
pointer

is updated
0

u3
ability to write

data to this buffer
0

u4
pop retum
address off
of stack

0

u6
resume program

execution
0

a3
learn reliable
location of

return address
0.22

a0
knowledge of

machine
architecture

0.11

al
find process
with fixed

length buffer
with no
bounds
checking

0.22

a2
ability to write

data to this buffer
0.11

a37
knowledge of

machine instruction set
0.11

a38
develop exploit code

0.11

a8
locate or create
dangling pointer

0.33

•
a4 a9

use buffer use buffer
overflow to overflow to

inject code and inject code and
modify pointer modify pointer
with address with address
of exploit code of exploit code

0.28 0.28

a5
instruction
pointer

is updated
0

a6
execute
alicious
code
0

all
use buffer

overflow to
inject code and
modify pointer
with address
of exploit code

0.28

a 1 0
make pointer
go out of
bounds
0.33

a7
use buffer

overflow to
inject code and
modify pointer
with address
of exploit code

0.28

u0
call subroutine

0.017

ul
push return
address onto

stack
0

u2
execute subroutine

0

u5
instruction
pointer

is updated
0

u3
ability to write

data to this buffer
0

u4
pop return
address off
of stack
0

a0
knowledge of

machine
architecture

0.11

al
fmd process
with fixed

length buffer
with no bounds

checking
0.22

a2
ability to write

data to this buffer
0.22

a37
knowledge of

machine instruction set
0.11

a38
develop exploit code

0.11

a3
a8

learn reliable
locate or createlocation of
dangling pointer

return address
0.33

0.5

•
a4

use buffer
overflow to

inject code and
modify pointer
with address
of exploit code

0.28

a5
instruction
pointer

is updated
0

u6
resume program

execution
0

a6
execute

inalicious
code
0.17

a9
use buffer

overflow to
inject code and
aodify pointer
with address
of exploit code

0.28

a22
fill buffer with
NOP sled and
exploit code
and execute it

0.11

al 0
make pointer
go out of
bounds
0.33

a7
use buffer

overflow to
inject code and
modify pointer
with address
of exploit code

0.28
al 1

use buffer
overflow to

inject code and
modify pointer
with address
of exploit code

0.28

u0
call subroutine

0

ul
push return
address onto

stack
0.001

u2
execute subroutine

0.001

u3
ability to write

data to this buffer
0.001

u4
pop return
address off
of stack
0

u5
instruction
pointer

is updated
0

a0
knowledge of

machine
architecture

0.11

al
find process
with fixed

length buffer
with no bounds

checking
0.22

go

a41
find an appropriate
equence of chunks of

library fimctions
0.33

a2
ability to write
ta to this buffer

0.11

a37
knowledge of

machine instruction set
0.11

a3
learn reliable
location of

return address
0.22

a4
use buffer
overflow to

inject code and
modify pointer
with address
of exploit code

0.28

u6
resume program

execution
0.001

a6
execute

malicious
code

a38
develop exploit code

0.11

a8
locate or create
dangling pointer

0.33

a9
use buffer

overflow to
ject code and
odify pointer
with address
of exploit code

0.28

al 0
make pointer
go out of
bounds
0.33

a 1 1
use buffer

overflow to
inject code and
modify pointer
with address
of exploit code

0.28

a5
instruction
pointer

is updated
0

a22
fill buffer with
NOP sled and
exploit code
and execute it

a42
fmd an appropriate
sequence of gadgets

0.33

a40
fmd an appropriate

sequence of
library functions

0.33

a7
use buffer

overflow to
inject code and
modify pointer
with address
of exploit code

0.28

a31
overwrite return
address with

address into chunk
f lib. func. that pops
values onto stack

0.11

a30
execute chunk of
library function

0

n 0
(1)

a26
ROP is
executed

0

a34 a39
overwrite jump or update instruction

branch with pointer with
address into chunk address of first
of library function gadget

0.11 0.11

a33
execute chunk of
library function

a38
execute gadget

0

u0
call subroutine

1.017

ul
push return
address onto

stack
0.001

u2
execute subroutine

0.001

u4
pop retum
address off
of stack
0

u6
resume program

execution
0.001

al
find process
with fixed

length buffer
with no bounds

checking
0.22

u3
ability to write

data to this buffer
0.001 a2

ability to write
data to this buffer

0.22

u5
instruction
pointer

is updated
0

a37
knowledge of

machine instruction set
0.11

a3
learn reliable
location of

return address
0.5

a38
develop exploit code

0.11

a8
locate or create
dangling pointer

0.33

al0
make pointer
go out of
bounds
0.33

f
a4 a9 all

use buffer use buffer use buffer
overflow to overflow to overflow to

inject code and inject code and inject code and
modify pointer modify pointer modify pointer
with address with address with address
of exploit code of exploit code of exploit code

0.28 0.28 0.28

.......

• •

a22
a6 fill buffer with

execute i NOP sled and
malicious exploit code

code and execute it00
ii

a5
instruction
pointer

is updated
0

a31
overwrite return
address with

address into chunk
f lib. fime. that pops
values onto stack

0.11

a30
execute chunk of
library function

a0
knowledge of

machine
architecture

0.11

a17
locate module
with no ASLR

protection
0.56

al 8
learn reliable
location of

return address
0.44

a19
find process a16
with fixed find process

length buffer with fixed
with no bounds length buffer

checking with no bounds
0.22 checking

0.22

a28
find an

appropriate
sequence

of chunks of
library functions

0.33

al 5
learn relative
addresses not

protected by ASLR
0.56

a36
find an

appropriate
sequence
of gadgets

0.33

a23
find an

appropriate
sequence of

library functions
0.33

a7
use buffer

overflow to
inject code and
modify pointer
with address
of exploit code

0.28

a34
overwrite jump or

branch with
ddress into chunk
of library function

0.11

a33
execute chunk of
library function

a26
ROP is
executed

0

a39
update instruction

pointer with
address of first

gadget
0.11

a38
execute gadget

0

ul
push retum
address onto

stack
0.001

u2
execute

subroutine
0.001

a45
find an

appropriate
sequence of

library
functions

0.56

uO

call subroutine

0.017

a0

knowledge of

machine

architecture

0.11

a17

a43 locate module
Locate or create with no ASLR
dangling pointer protection

0.33

a44
Read memory to fmd
base address of DLL

0.44

a46
find an

appropria4
sequence of
chunks of
library
fimetions:

0.56

u3
ability to write

data to this buffer
0.001

u4
pop return
address off
of stack
0

u5
instrnction
pointer

is updated
0

a23
find an

appropriate
sequence of

library
functions

0.33

a28
find an

appropriate
sequence of
chunks of
library
functions

0.33

a37
knowledge of

machine instruction set
0.11

al0
make pointer
go out of
bounds
0.33

al 1
use buffer
overflow to

inject code and
modify pointer
with address
of exploit code

0.28

u6
resume
program
execution
0.001

a6
execute

malicious
code

.............

al 8
leam reliable
location of

retum address
0.44

a36
find an

appropriate
sequence of

gadgets
0.33

a47
find an

appropria
sequence of

gadgets
0.56

a38
develop exploit code

0.11

a7
use buffer

overflow to
inject code and
modify pointer
with address
of exploit code

0.28

a22
fill buffer with
NOP sled and
exploit code
and execute it

a3
learn reliable
location of

retum address
0.5

a19
fmd process
with fixed

length buffer
with no
bounds

'., checking
0.22

a2
ability to write

data to this buffer
0.22

a8
locate or create
dangling pointer

0.33

a4 a9
use buffer use buffer

overflow to overflow to
inject code and inject code and
modify pointer modify pointer
with address with address
of exploit code of exploit code

0.28 0.28

a5
instruction
pointer

is updated
0

• a33
execute chunk of
library function

al 5
learn relative
addresses not
protected

ASLR

al
fmd process
with fixed

length buffer
with no
bounds
checking
0.22

a16
/ fmd process

with fixed
length buffer

with no
bounds
checking
0.22

a26
ROP is
executed

0

a34
overwrite jump or

branch with
address into

chunk
of library
function
0.11

a31
overwrite retum
addresa with
address into
chunk of lib.

func. that pops
values onto

stack
0.11

a30
execute chunk of
library function

a39
update instruction

pointer with
address of first

gadget
0.11

a38
execute gadget

00 0

what can we do with these graphs?

centrality

communities

cut finding

efficiency

automating defense discovery

betweenness centrality (a2, a37, a38)

efficiency (a38)

communities (a2, a5, a37, 38)

ability to write to buffer, updating instruction pointer,
knowledge of instruction set, exploit code development

instruction set randomization?

knowledge of instruction set

