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* Peridynamics background
 Damage and fracture

 Geometric nonlinearity

* Rubbery materials
* Thermodynamics and long-range forces
* Eulerian material models

* Fluids and surface tension

e Contact, friction, and wear

* Combining Lagrangian and Eulerian
models

Traditional application of peridynamics:
 Gelatin Elastic-brittle material

e Bird strike simulant




Traditional solid mechanics )
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e The traditional mathematical model for solids and structures uses partial
differential equations (PDEs):
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where o, ... are the stress components and b,, b, are the external loads. Augustin-Louis

Cauchy, 1840

e [s this model up to the job of predicting material failure? Key assumptions:

e Contact forces

e Continuity

NO!

Nanoscale structures
and metamaterials




These issues affect everything we “do” )

* The standard PDEs are incompatible with the essential physical nature of cracks.
* Can’t apply PDEs on a discontinuity.
» Typical FE approaches implement a fracture model after numerical discretization.
* Need supplemental kinetic relations that are understood only in idealized cases.

Complex crack path in a composite
e T AT T B IS g

(b)

Real crack FE |

Figure 11.2!) Pull-out: (a) schematic diagram; (b) fracture surface of ‘Silceram’
glass-ceramic reinforced with SiC fibres. (Courtesy H. S. Kim, P. S. Rogers and R. D.
Rawlings.)




Purpose of peridynamics* &

e To unify the mechanics of continuous and discontinuous media within a single, consistent
set of equations.

Continuous body
with a defect

Discrete particles

Continuous body

e Why do this?
e The standard theory (Cauchy, 1827) doesn’t always meet the needs of technology.
e Model complex fracture patterns.
e Communicate across length scales.

* Peri (near) + dyn (force)




Peridynamics basics: ) B,
Horizon and family

e Any point x interacts directly with other points within a distance ¢ called the “horizon.”

e The material within a distance  of x is called the “family” of x, Hj.

@ B
0 = horizo

Hy = family of x

General references
SS, Journal of the Mechanics and Physics of Solids (2000)
SS and R. Lehoucq, Advances in Applied Mechanics (2010)
Madenci & Oterkus , Peridynamic Theory & Its Applications (2014)




Point of departure: %

Strain energy at a point

Continuum Discrete particles Discrete structures

Family of x : .

Deformation

« Key assumption: the strain energy density at X is determined by the
deformation of its family.
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Equation of motion

Write down the total potential energy in a body under the deformation

.

@zL(W—b-y)dV.

The Euler-Lagrange equation is

0 :f f(q,x) dVq + b(x),

which is the equilibrium equation of peridynamics.

f is the pairwise bond force density, which comes from the material model.

Dynamics:

py(x,t) = / f(q,x,t) dVq + b(x, ).
Hx
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f(q,x)

y(x)

y(q)

f(x,q)




Keeping track of the collective T
deformation of families: States

e A state is a mapping from bonds in a family to some other quantity. We
write

Alx]{x’ — x) = something.
e The deformation state maps each bond to its deformed image:

Y[x|(x' —x) = y(x) — y(x)

where y is the deformation. y(x)

e Dot product of two states: ./" Y[x](x" —x)




Energy density depends on the
deformation state

e Strain energy at x:
W(Y[x]).

e Next figure out the bond forces.

Sandia
National
Laboratories

Deformation
< _ 7 X |

y(x)

y(q)

Y[x]{(q — x)




Bond forces from strain energy: )
Frechet derivatives

e Perturb the deformed point y(q) by a small additional displacement dis-
placement dy.

e The resulting change in strain energy is dW.

e T he Fréchet derivative I’Vi Is the state such that

dW = Wy o dY.

e The bond forces are found from

f(q,x) = Wy[x]{q — x) — Wy[q](x — q).




Material models )

e [he force state T associates a force density vector with each bond.

e For an elastic material, this is the Fréchet derivative of strain energy
density:
Tlx]{x" —x) = Wy(Y[x])(x" —x).

e More generally, a material model is a state-valued function of a state:

T[x| = i(i[x], other things).

e Special case: in a bond-based material, each bond responds independently
of all the other bonds.

T(Y[x]){x - x) = 7(¥(x' —x))

where 7 is a vector-valued function of a vector.




Nanofiber network: =,
Long-range forces dominate response

* Multiple physical interactions with different length
scales can all be included in a peridynamic material
model.

* This makes it a natural way to treat van der Waals and
surface forces.

Nanofiber interactions due
to van der Waals forces

Nanofiber membrane (F. Bobaru, Univ. of Nebraska)




Connection with other theories ) e,
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Connection to the local theory

e Start with the peridynamic equilibrium equation:
/ (T{x' — x) - T/{x — x)) dVi» + b(x) = 0. ()
H

e Assume the deformation is smooth. Take § — 0.

() > V-o0+b=0.

Connection to Kunin's nonlocal theory

e Set 0 = oo. Assume small displacements. Don't allow damage or other
nonlinearity. Linearize.

(%) — fB C(x, x)(u(x') — u(x)) dVy + b(x) = 0

where C is a tensor. This equation appears in Kunin's theory (1983).




Damage due to bond breakage

Recall: each bond carries a force.
Damage is implemented at the bond level.

Bonds break irreversibly according to some criterion.
Broken bonds carry no force.

Examples of criteria:

Critical bond strain (brittle).
Hashin failure criterion (composites).
Gurson (ductile metals).

Bond force density 1
Bond breakage

/ Bond stra'in

Critical bond strain damage model
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Autonomous crack growth ) i,

* Bond breakage leads to fracture.
* Cracks do what they want (grow, arrest, branch, curve, oscillate, ...)
e Brittle material model: Bond breaks when its strain reaches some critical value.

::::ooooooooooooooooooooooooo:::
Cececccececseccscsscsssecsacaans
0000000000000 0000000000000000000 Broken bond
Al et brs i U Matad i Crack path
e0 000 ooooooooooooooo
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0000000000000 0000000000000000000
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Brittle dynamic fracture

* The method reproduces many features of fracture in glass.

Crack branching

Agwai, Guven, & Madenci, Predicting
crack propagation with peridynamics: a
comparative study, Int.J. Fract. IntJ Fract
(2011) 171:65-78
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Mirror-mist-hackle transition

Optical fiber
(Castilone, Glaesemann & Hanson, Proc. SPIE (2002))




Particle discretization: Emu

h

= Integral is replaced by a finite sum: resulting method is meshless and Lagrangian.

py(x,t) = / f(x',x,t) dVy + b(x, 1)
H

oyl = f(xp, X, ) AVj + b
keH

e This discretization has a special affinity with the
underlying mechanics.

e Convergence properties have been studied
* Tian & Du, SIAM J. Numerical Analysis (2014).

* Discontinuous Galerkin is also viable (LS-DYNA).
* Chen & Gunzburger, CMAME (2011).
Aksoy & and Senocak, JNME (2011).
* Azdoud, Han, & Lubineau, Comp. Mech. (2014).
* Ren, Wu, & Askari, Int. J. Impact Eng. (2016).
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Simulation of impact damage ) e,

Hail against composite

Image taken from
Maekawa, 1991.

Particle impact on damage in glass (Guven)

Impact on reinforced concrete
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Soft materials: Geometrical QR
nonlinearity comes “for free”

* Bond forces rotate with the bonds as the body deforms.
* Material models must be objective (invariant with respect to rotations).
* Material models must be nonpolar (balanced angular momentum).

Undeformed bonds Deformed bonds
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Example: Buckling and folding ) i,

VIDEOS
Axial compression of a beam

Linear peridynamic Microplastic
solid (LPS)
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Example: Buckling and folding ) e

Compression of an elastic strip
State-based material model:
Linear peridynamic solid (LPS)
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Method reproduces some subtleties in
the fracture and debonding of membranes
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Unstable crack path in a polyethylene membrane VIDEOS

(Silling & Bobaru, Int. J. Nonlin. Mech. 2005)

Peeling of tape

23



Method reproduces some subtleties in
the fracture and debonding of membranes

Unstable crack path in a polyethylene membrane
(Silling & Bobaru, Int. J. Nonlin. Mech. 2005)

Peeling of tape
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Nonlinearity in bond response can induce )i

anisotropy: Rubber fracture

___________
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Crack turning in rubber ) g,

e Due to anisotropy, crack growth in mode Il (parallel to loading) is competitive with mode |
(straight ahead).
e But the fields seen by a crack tip change as it grows.
e Result: Cracks change direction and branches appear (then stop).

Stretch A

0 R

Specimen edge

/ Crack path

’L Slit

< 100mm —>

vYv v vy

Arrested mode 11
cracks

Experiment
(After Hamed et al. ,1996)




Nonlocal thermodynamics: =
Internal energy and stress power*
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e First law statement: n
e=TeY +h+r

where e=internal energy density, r=energy source rate, h=energy trans-
port rate.

¢ Compare this with the statement in the standard theory:

é=c-F+h+r
® The stress power term sums up the work done on individual bonds:

TeY = [ ) - Y (£) dV.

o If the material is elastic, all of this work goes into the strain energy density:

Witi:ﬁ”.

* Joint work with Rich Lehoucq. See SS & Lehoucq, Adv. Appl. Mech. (2010)




Heat transport in bonds rh) pim

¢ A bond-based nonlocal heat transport law:

Fiat ) = /H K (q,%)(8(q, 1) — 6(x,1)) dV,,

where £ is temperature, i is the bond conductivity.

K(x,q) = K(q,x)
ensures conservation of Energy.

¢ Second law
) = L ¥

where 77 is the entropy.

o Can show that the 2nd law implies / > 0 always.




Cracks and other singularities in heat ) e,
transport

Heat conduction near a crack:
* Some heat goes around the corners where PDE heat equation blows up.

* Some heat jumps across the crack.

* F. Bobaru, & M. Duangpanya. "A peridynamic formulation
T T T T for transient heat conduction in bodies with evolving
%/ ) discontinuities." Journal of Computational Physics (2012).
( —~\ \
* S. Oterkus, E. Madenci, and A. Agwai. "Peridynamic thermal
T T T T diffusion." Journal of Computational Physics (2014).

“Rewetting problem”

Water

Hot nuclear fuel rod




Fluids: ) i,
Effectively Eulerian material models

e A Lagrangian material model involves both the undeformed and deformed
bond vectors. Example:

\ This term makes the model Lagrangian

)
T(€) = ({6 ~ €D i

e An Eulerian material model has bond forces that depend only on the deformed
bond vectors. Example:

n > 0.




Using an equation of state to find the
bond forces
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e Define a nonlocal density by

p= po/Bw(IX(QI) dVe

where pg Is the reference density and w is a weighting function such that
f w = 1. Integration is in the reference configuration.

C )

e Compute the pressure from

Deformed bond length/

where 1 is the free energy density. \

e The force state is found from the Frechet derivative of i to be

Op O dp pu'(€) Y(£)

T(§) =

Y 0pdY  p* |[X(&)|




Surface tension is implemented through = = .
nonlocal forces

Laboratories

e Surface tension arises from nonlocal forces between molecules.

e Peridynamic Eulerian model:
I _ Ieos 4+ lsurf

where

X
Isurf _ 7:
Y|

and -y is a constant.

e Each pair of material particles within each other’s family attracts.
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Surface tension examples () i,

 Two droplets collide.
e Mie-Gruneisen EOS is used.

VIDEOS

THE BLOB (v=10) REVENGE OF THE BLOB (v=100)




Surface tension examples ) i,

 Two droplets collide.
* Mie-Gruneisen EOS is used.

THE BLOB (v=10)
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Contact and friction forces as
Eulerian material response
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e Short-range contact and friction forces can be included within an Eulerian
material model:

IE L= leos + lcontact + Ifriction
where

—o(re— [YODM H#[Y(E) <re, 3y XIE)

contact _
I &) = { 0 otherwise. ; 1Y (&)
where 7. is a cut-off distance for contact forces.

e T he friction force state is

- d
TR e) = —Fagn ( S IY(O1) ) rrcuon

ke Sliding

where F is the friction coefficient. interface

Contact

® force o

=



Combining Lagrangian and Eulerian
response in a single material model
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o We'd like to model both fluid-like and solid-like response in the same
material model.

¢ Combine the two as a linear combination of force states:

= B(p)T¥ + (1 — B(p))T"

where T¥ and T% are the Eulerian (fluid-like) and Lagrangian (solid-like)
contributions respectively.

e 3(p) is a pressure-dependent interpolation parameter, 0 < 5 < 1.

e Example: EOS & bond-based:

+(1=BENCOIYE ~ €D ) For

T() =

(ﬁ (P)E;-'-”(E)




Example of Eulerian + Lagrangian material @)
models: Wear

* Solid response and damage: Lagrangian
e Contact and friction: Eulerian

VIDEOS

Material deformation Damage




Friction forces appear in 15t law =)
expression leading to heating

Laboratories

Material deformation Temperature
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Bird strike* =
Peridynamics compared with SPH
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* Bird simulant (gelatin) vs. heavy plate
e The peridynamic model helps reduce the “spray” that is sometimes seen with SPH.

Peridynamics

Olivares, NIS Document 09-039 (2010)

*Joint work with Boeing Research & Technology




Bird strike simulant (gelatin) )

e Who cares?

* The splash pattern helps determine loading on
the structure, especially when the structure is
itself highly deformable.

Typical test Meshless PD Meshless PD
(credit: Arthur Core) with bond damage




Bird strike simulant (gelatin) ) S
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Summary

h
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* Some techniques within peridynamics for studying large deformation and fracture in soft

materials have been developed:
e Eulerian material models.

» Surface forces, contact, and friction as part of an Eulerian material model.

 Combining Lagrangian & Eulerian material response.

The same theory encompasses a wide spectrum of phenomena,

Kalthoff-Winkler test Soap bubbles

depending only on the choice of an appropriate material model.
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