

SAND2018-3139C

Machine Learning for Industrial Material Classification Applications with Color CT Datasets

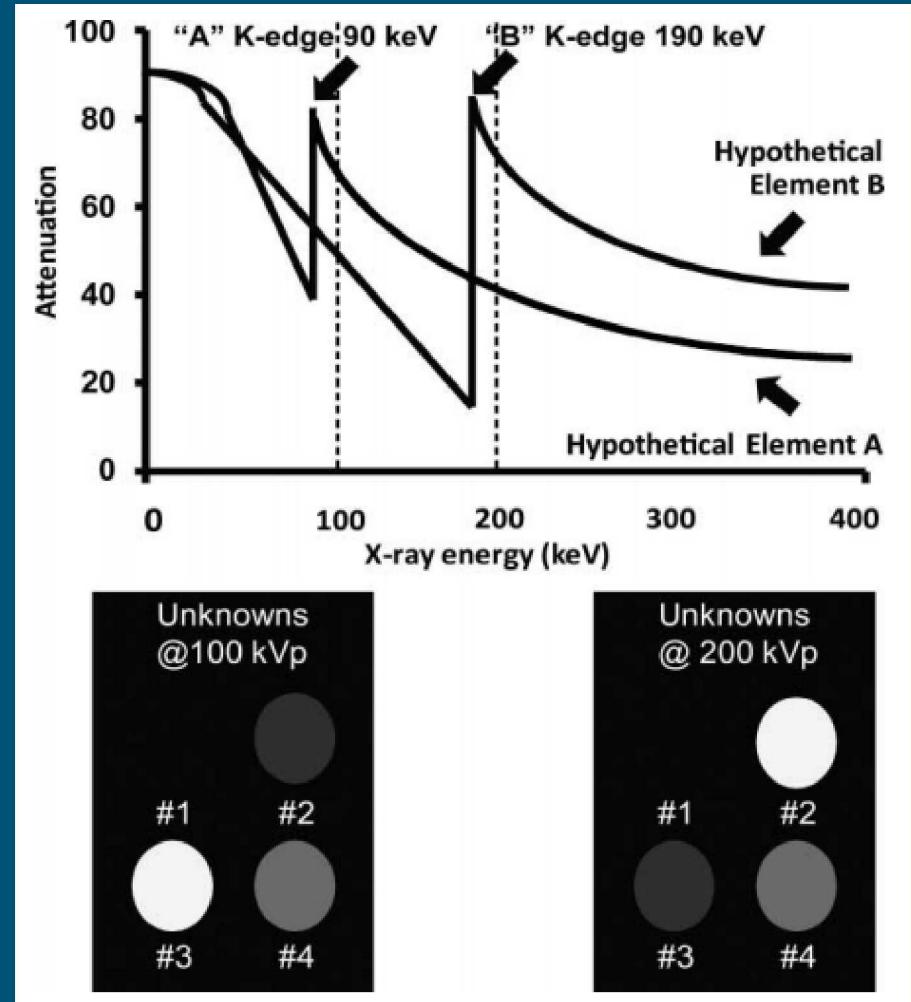
PRESENTED BY

Srivathsan P. Koundinyan, April Suknot, Kyle R. Thompson,
and Edward S. Jimenez

Sandia National Laboratories is a
multimission laboratory managed and
operated by National Technology and
Engineering Solutions of Sandia LLC, a wholly
owned subsidiary of Honeywell International
Inc. for the U.S. Department of Energy's
National Nuclear Security Administration
under contract DE-NA0003525.

Introduction and Background

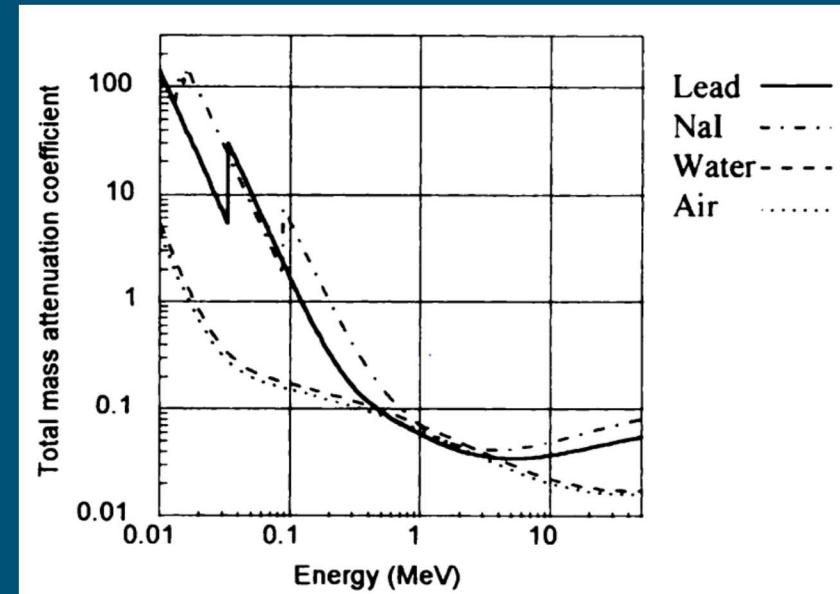
- Computed Tomography (CT) has a wide variety of applications:
 - Industrial
 - Verification and validation
 - Quality Assurance
 - Failure Analysis
 - Security
 - Checkpoint Screening
 - Materials Identification
 - Anomaly Detection
- Dual energy CT most commonly applied in these settings
 - Energy ranges from 100 keV to 160 keV
 - Typically requires two separate acquisitions



Spectral Computed Tomography

- Industrial and security applications benefit tremendously from spectral CT data

Dual energy
CT samples
two points on
these curves
→ two
images

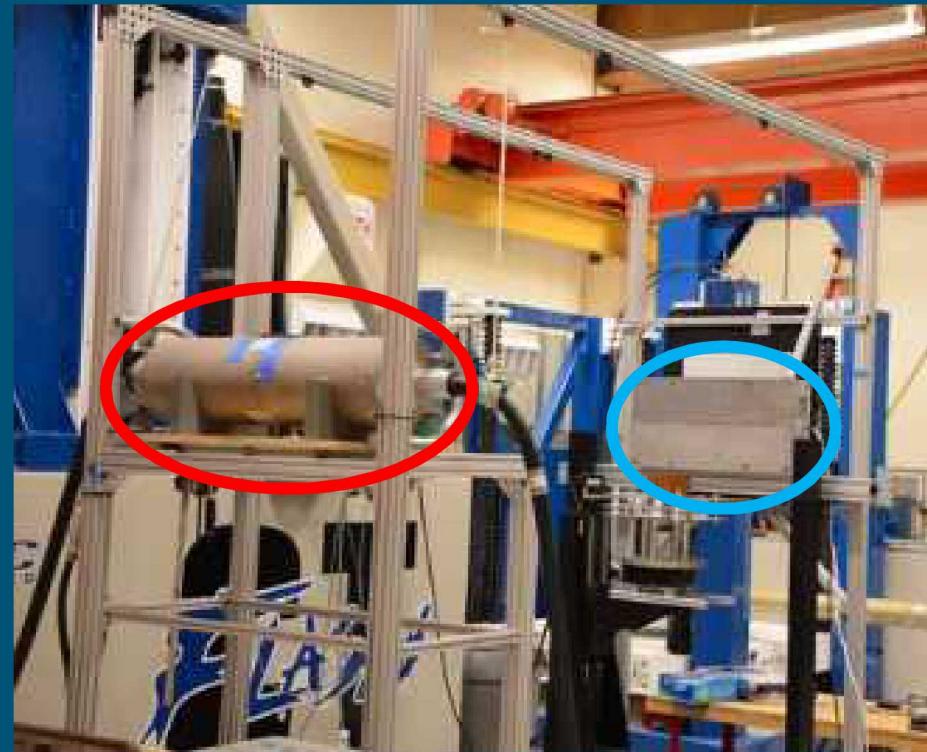
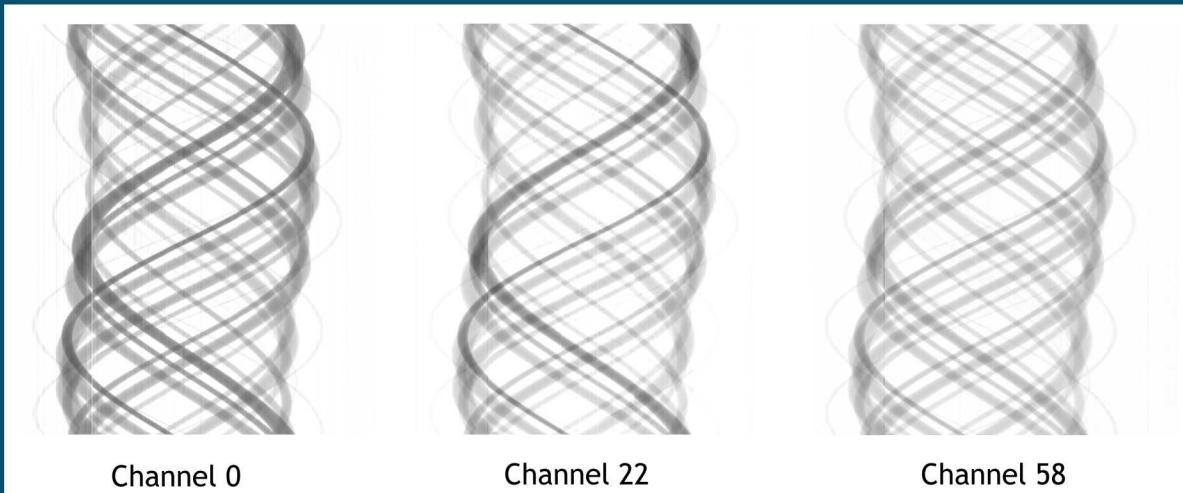


Spectral CT
thoroughly
samples these
curves →
images from
several
different
energy bins

- Sandia National Laboratories is developing an advanced spectral CT system
 - Single acquisition system with energy-discriminating, photon-counting detector
 - Nearly twice the energy of systems in existence at 300 keV

Spectral Computed Tomography

- MultiX Detector:
 - 5 modules
 - 0.8 mm pixel pitch
 - 128 channels
 - 300 keV maximum energy detection
- 4 axis motion control to allow for maximum flexibility
- FOV: images objects up to half meter wide and 9 meters tall
- System has been acquiring data as of May 2017
- 128 images reconstructed from each of the channels using Recon



Channel 0

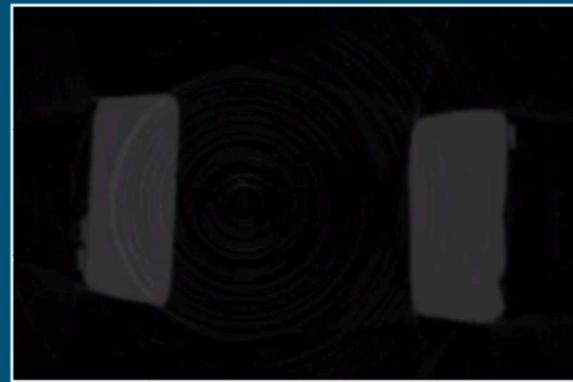
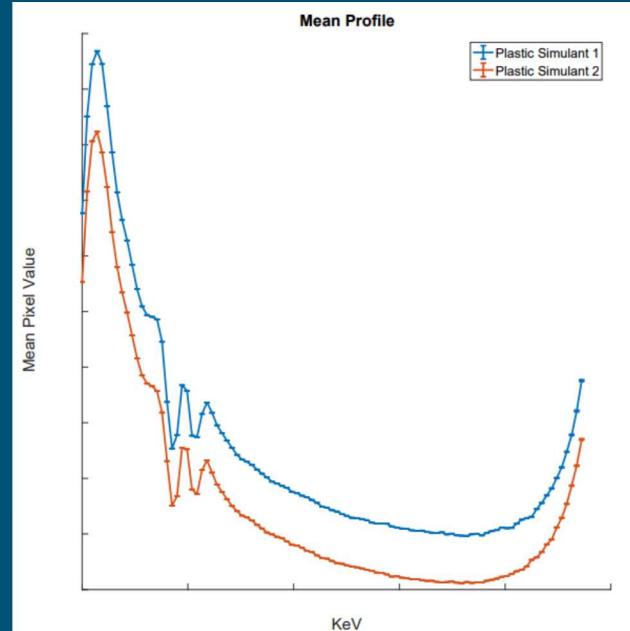
Channel 22

Channel 58

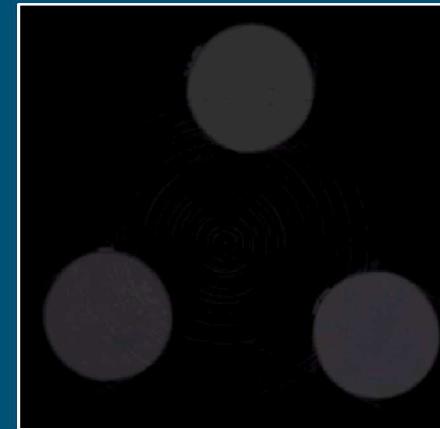
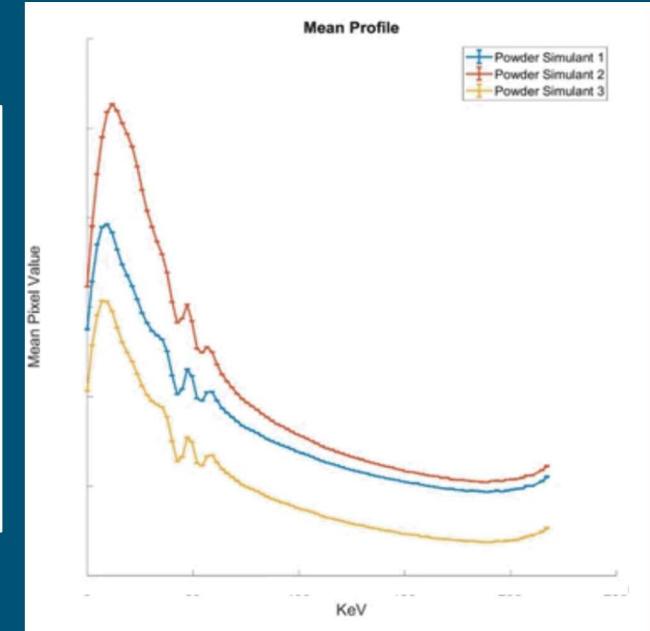
5 Preliminary Experiments

- Two 1 pound block of explosive simulant
 - Very similar composition
- Three 1-inch diameter cylinders of powder explosive simulants
 - Very similar composition

116 keV energy bin



116 keV energy bin

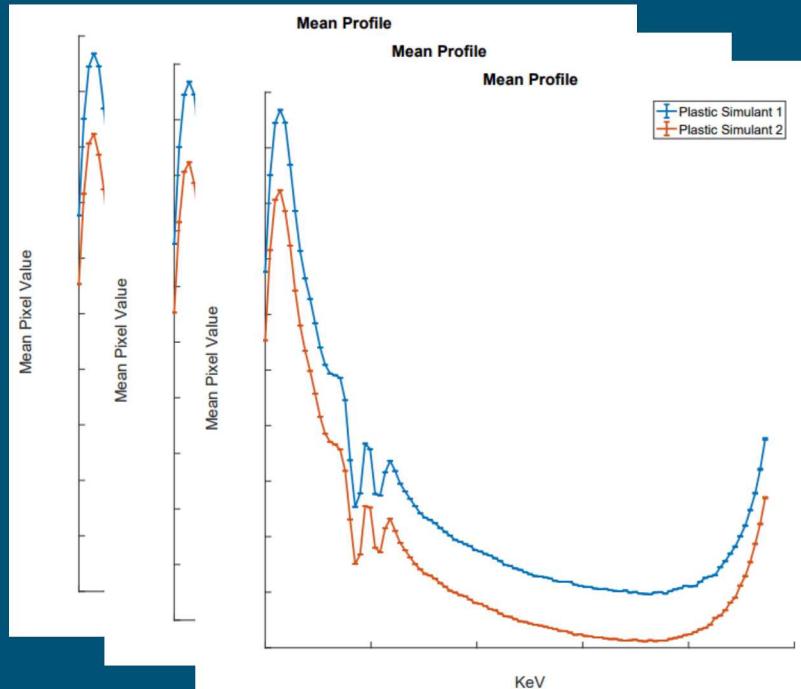


Materials with similar composition can be quantitatively separated using energy-dependent attenuation waveforms from spectral CT system¹

Objective

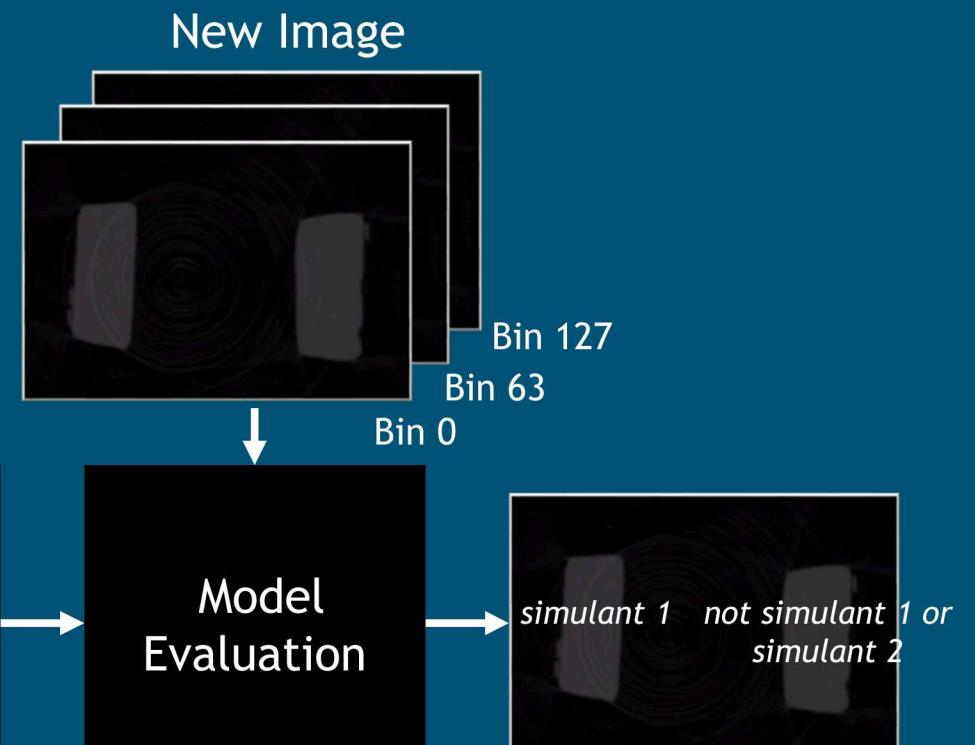
- To investigate the utility of machine and deep learning techniques for understanding quantitative spectral CT information
 - Given training/reference data for various materials, can algorithms be developed for automated material classification?
 - Which algorithms perform optimally in this context and why?

Training Data

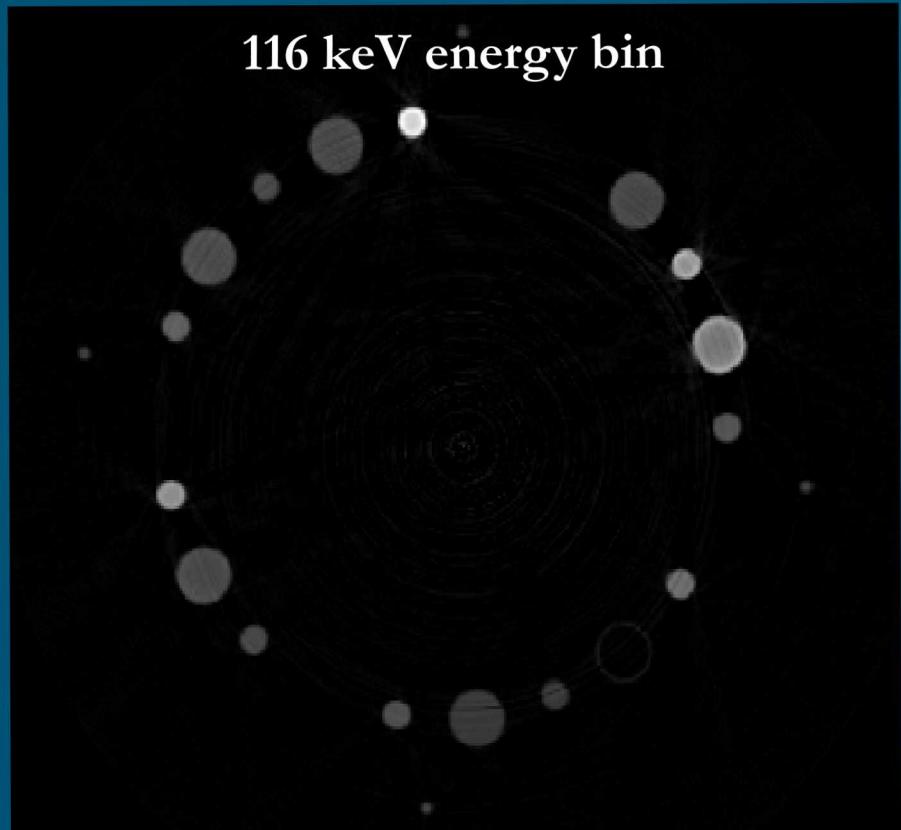


Model
Development

Model
Evaluation



- 17 cylindrical samples in circular orientation
 - 128 images reconstructed for energy bins uniformly spaced up to 250 keV
 - Variety of materials: empty polyethylene bottle, Nylatron, Delrin, SAE 30 motor oil, acrylic, nylon, two samples of water, teflon, polyethylene, soft-drink Pepsi, lexan, diet soft-drink Coke, aluminum, magnesium, salt, and phenolic
- Small dataset
 - Voxel-by-voxel attenuation profiles extracted for each material
- Split into training (70%) and testing (30%) subsets
- Task: develop model to correctly label each object



Logistic regression

- Binary regression model with *linear* decision boundary

$$\sum_{i=1}^m y^{(i)} \log(h_{\theta}(x^{(i)})) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)}))$$

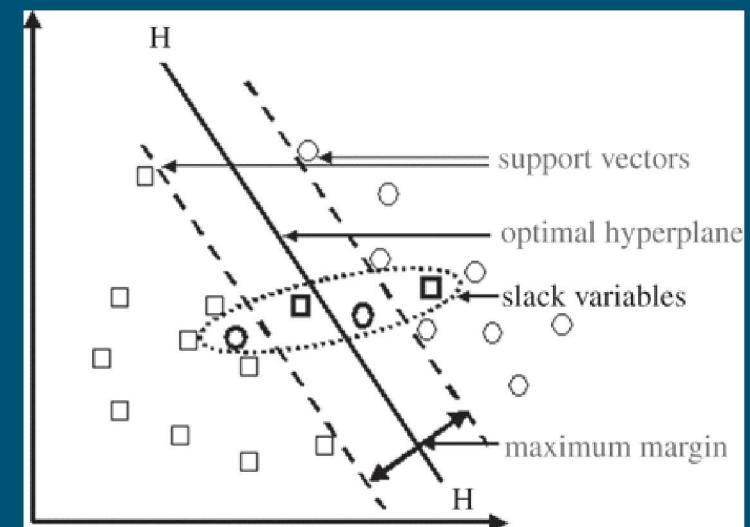
- Model extended to multi-class setting with error-correcting output codes (ECOC)
 - 17 objects → 136 binary classifiers ($= 17(17-1)/2$) → majority voting scheme

Soft-margin support vector machine (SVM)

- Binary regression model with consideration of non-linearly separable data

$$\begin{aligned} & \min_{w, b} \frac{1}{2} \|w\|_2^2 + C \sum_{i=1}^m \xi_i \\ \text{s.t. } & y^{(i)}(w^T x^{(i)} + b) \geq 1 - \xi_i, \quad i = 1, \dots, m; \quad \xi_i \geq 0, \quad i = 1, \dots, m \end{aligned}$$

- Performs well in the presence of small training sets
- Augmented with ECOC

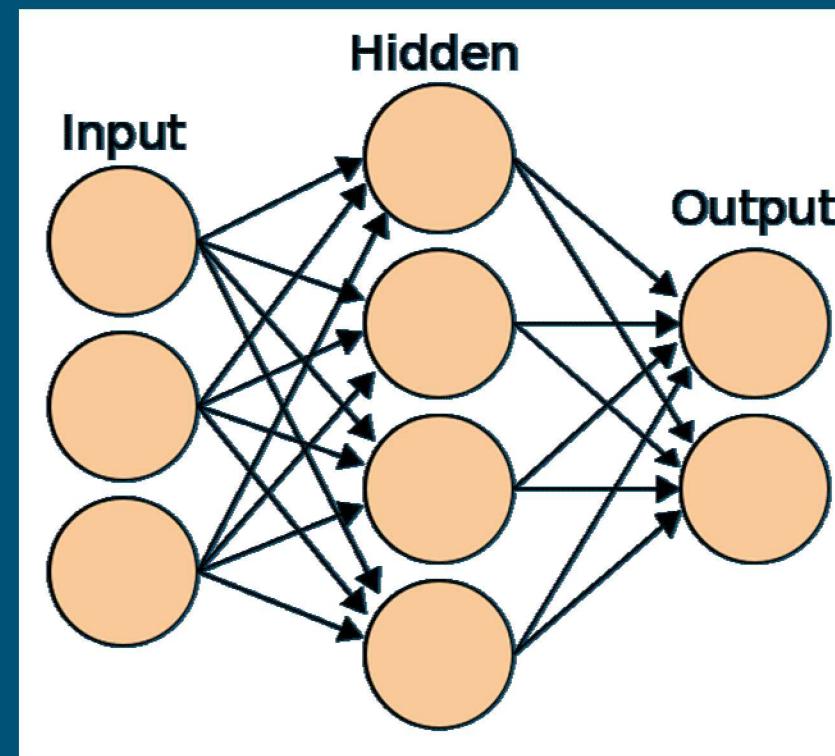


Kernelized soft-margin support vector machine

- Maps input features to higher-dimensional space prior to model calibration
 - Utilizes gaussian (exponential) kernel
 - Augmented with ECOC

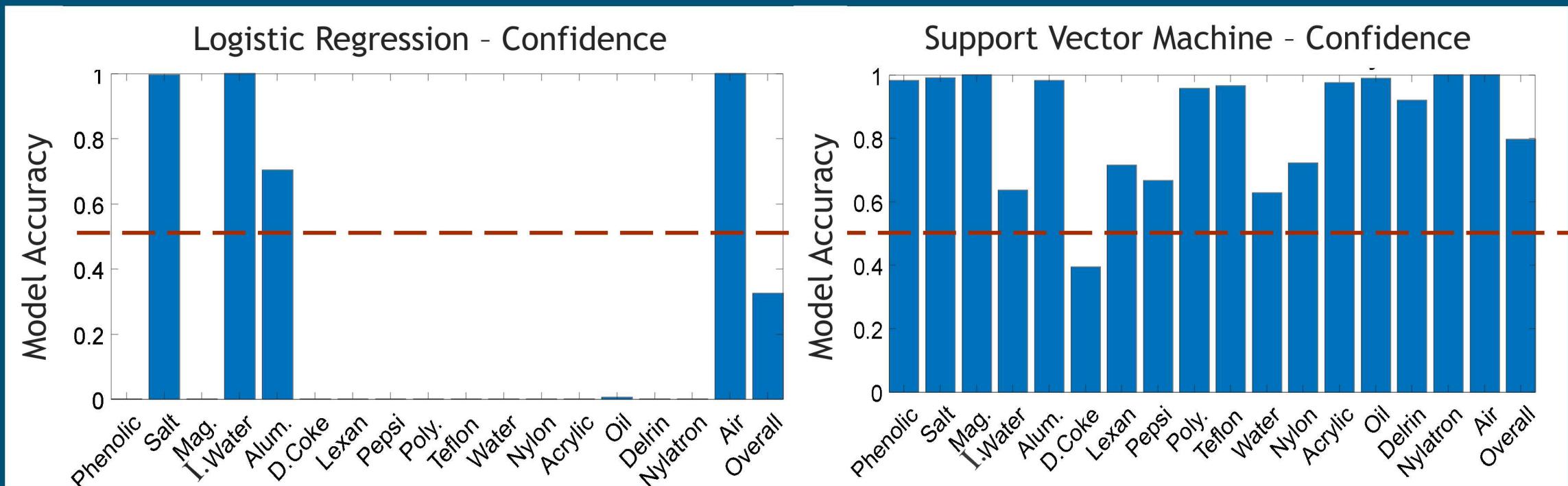
Multilayer perceptron

- Single hidden layer with 300 neurons
- Softmax output layer
- Cross entropy loss



Intra-dataset classification accuracy

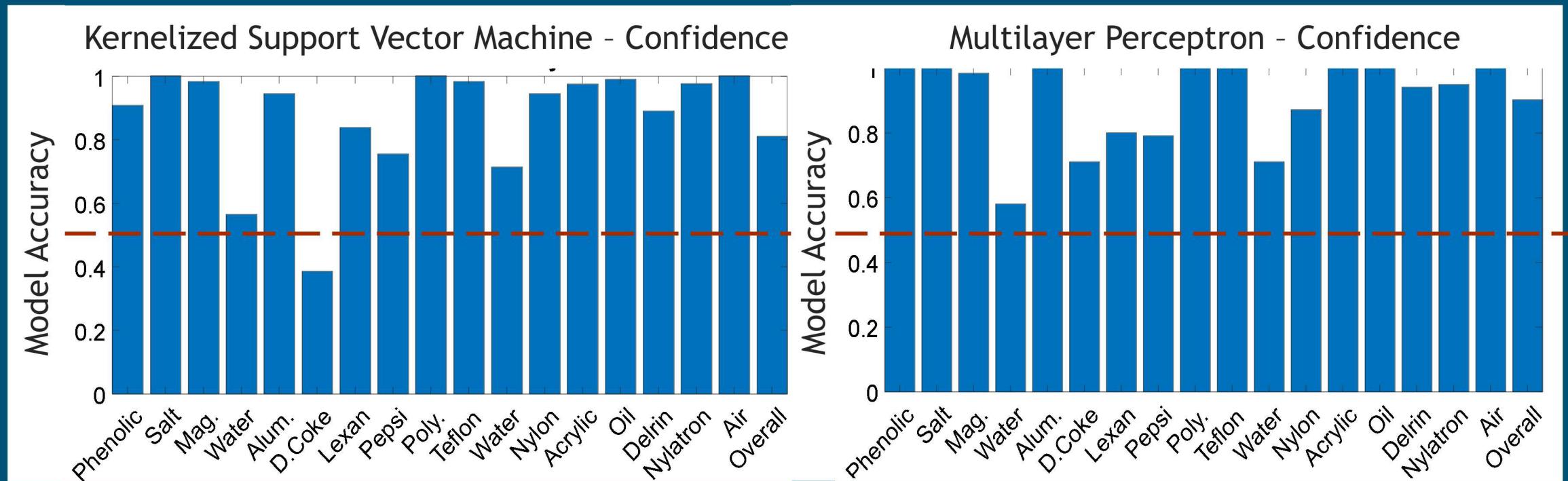
- Voxel-by-voxel attenuation waveforms split in a 70 : 30 fashion (training : validation)
 - Accuracy above 50% (dashed red line) designates successful classification



Intra-dataset classification accuracy

Intra-dataset classification/training accuracy

- Voxel-by-voxel attenuation waveforms split in a 70 : 30 fashion (training : validation)
 - Accuracy above 50% designates successful classification



- For intra-dataset classification, a multilayer perceptron model provides the best performance

Model development

- Logistic regression not applicable for classification task
 - Other linear classifiers (i.e. Naïve Bayes) may perform poorly as well
- Support vector machines yield high training/intra-dataset classification accuracies
- Kernelization of input features does not appear to facilitate classification
- Neural networks yield the best intra-dataset classification performance
 - Potential overfitting issues may be present

Material classification

- Dissimilar materials (i.e. plastics and soft-drinks) consistently distinguished from one another
- Performance within different types of plastics (e.g. polyethylene and acrylic) or elements (e.g. magnesium and aluminum) unclear

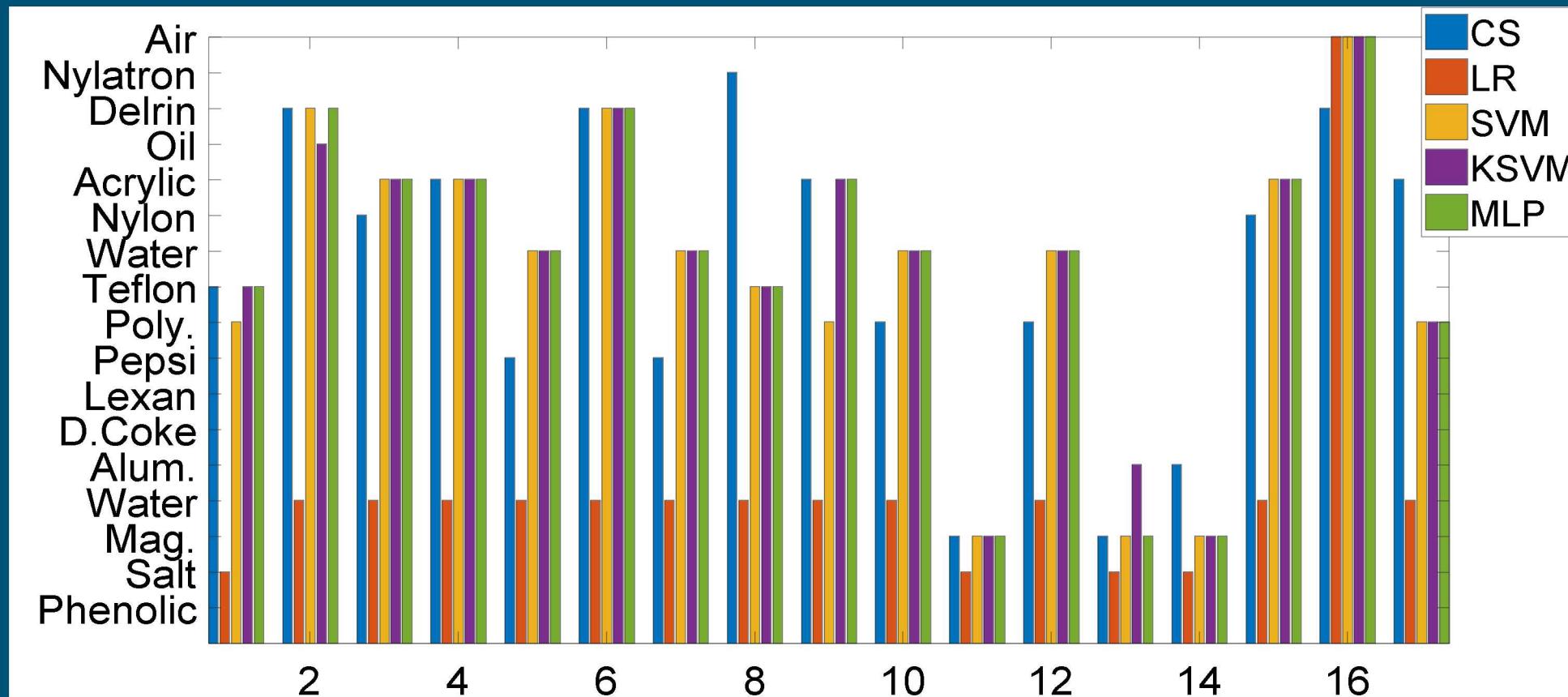
→ Materials potentially mislabeled in dataset likely matched with highly similar materials

Future Work

- (1) Expand training set size
- (2) Quantitatively evaluate models on different set
- (3) Explore performance metrics (i.e. precision, recall, f-score) beyond accuracy
- (4) Investigate convolutional neural networks for classification tasks
- (5) Comparison with dual-energy CT or traditional, energy-integrating detectors for material classification

Future Work

- (1) Expand training set size
- (2) Quantitatively evaluate models on different set



- (1) Expand training set size
- (2) Quantitatively evaluate models on different set
- (3) Explore performance metrics (i.e. precision, recall, f-score) beyond accuracy
- (4) Investigate convolutional neural networks for classification tasks
- (5) Comparison with dual-energy CT or traditional, energy-integrating detectors for material classification

THANK YOU!