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Sandia National Laboratories

■ A National Security Science & Engineering Laboratory

• "Exceptional service in the national interest"
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■ Defense Systems & Assessments
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SNL's Additive Interests

• Reduce risk, accelerate development

• simplify assembly & processing

• prototypes, test hardware, tooling & fixturing

• Add value

• design & optimize for performance, not mfg

complex freeforms, internal structures,
integration

• engineered materials

gradient compositions

microstructure optimization & control

multi-material integration

— "print everything inside the box, not just the
box"

1•11\._

prototype AM mirror & structure
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100%
dense
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dense

printed battery

1
ire)full scale additive weapon

mock-up
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lattice implementation
w/TO solutions from
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Powder Bed Fusion

N 3D Systems ProX 200 @ Sandia

• 1070nm laser, 300W max power

• scan speed = 1.4m/sec

30um powder layer, 100um beam diameter, 50µm overlap

deposition rate —100 mm3/min

• 105-106 °C/sec heating & cooling rates

• melt pool depth — 2-3x layer thickness

• research platforms for process & material characterization

• 316L SS

N Part capabilities

• 0.001-0.002" best accuracy

• surface finish

>5-10 pm Sa (— casting)

worse for downward surfaces

• geometry limits

wall thickness > 100 p.m, overhangs < 45°

• single material

> 99% density

strength typically near to, but less than wrought

anisotropic properties

ProX 200, materials
science lab

316L SS
lattice part

Smea
NOM
labiebis



Material Assurance

■ Material formation concurrent w/geometry

■ want to predict part/material performance

feedstock certs inadequate for performance

■ how to ID a bad part? 

complexity isn't "free"

requires significant design margins and/or rigorous post-process inspection /
validation

■ Quantify critical material defects & useful signatures

■ D-tests, NDE, process monitoring, mod-sim, ?

■ Understand mechanistic impacts on properties

■ build process-structure-property relationships to predict margins & reliability

■ characterize stochastic response to design for uncertainties

■ provide scientific basis for qualification of AM metals for high consequence
applications
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Representative Material Defects

Blue = Austenite (FCC)
Red = Martensite/Ferrite (BCC)
Black = non-indexed

phase map
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17-4PH Study

• Exploring as alternate to 304L

• higher strength w/multiple
strengthening mechanisms

• Monolithic build w/110 dogbones

• custom design per ASTM

• external vendor w/constant process

Concept Laser M2

• SHT + H900 HT @ Sandia

• High-throughput testing

• digital image correlation (DIC)

• custom dogbone per ASTM

• necessary to rapidly capture
material distributions

• applicable for the lab & production

high throughput test sample w/120 dogbones,
lx1 mm gage x-section

drop-in tensile tester
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Stochastic Response

• Defect dominated failure

• 3-parameter Weibull fits inform design
threshold

• ductile dimples & shear rupture planes

• voids & lack-of-fusion boundaries are likely
crack nucleation sites

• Extensive performance variations

• can inter-build performance be predicted?
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Material Performance Fit to 3-Parameter Weibull Distributions

• Based on weakest link theory

P =1— exp
m

(-7 Cio 

—e o

• where
• P = probability of failure at stress, a

• m = Weibull modulus, i.e. scatter

• cro = characteristic strength

• ao = threshold, strength where P = 0

99.9

90

70 -
50 -

•

2 -

1 -

0.1 
1000 1050 1100 1150 1200

Ultimate Tensile Strength, M Pa
1250

99.9

90 -
70 -
50 -

2 -

1 -

0.1

.

•

0 0 0 0 00 0 0 0 0co A cb 0) 0••

Yield, MPa

4 5 6 7 8 9 10 15

Elongation, %

AMS spec for H900: modulus = 197 MPa, yield = 1172 MPa, UTS = 1310 MPa, strain at failure = 5% 0 labielarli el b I 181 m I I



1600

co 1400

2
ui 1200

05 1000
rn

4) 800

rn
c
LLI

a) 400

112

200

600

1600

03 1400
0_
2
ui 1200

(-13 1000

•ca) 800
4,)

600

CD 400

200

AM vs. Wrought 17-4PH
Vendor 1

N=104
8 10 12

Engineering Strain. %

Vendor 2

UTS wripiaht 17-4

Min. UTS cast 17-4

I :
1

IS o

Io 
d

1,3 aJ

12-

I 'Z.,

I =.

4 6 8

Engineering Strain, %

10 12

99.9

80

50

20
10

ro 5

2 2
a. 

1

0.1

99.9

80

50

20

10
ro 5

2 2
.,-. 1

, 0
■

,.... . )
a

o/ -o a 
,' c c o
/ > >
, 0 

900 1100 1300 1500
Yield, MPa

(NI
CD

0.1
900 1100 1300 1500
Ultimate Tensile Strength, MPa

99.9

80

50

20

10

ro 5

2 2
a_ 1

10 15 20 25 2
Engineering Strain, %

0.1
H900 data for vendor 1 (top left), vendor 2 (top right) & wrought (bottom) w/corrected

stress area

1 
Elongation, % 

10

AMS spec for H900: modulus = 197 MPa, yield = 1172 MPa, UTS = 1310 MPa, strain at failure = 5%



Material Characterization

■ NDE before testing

■ detect defects, performance correlations

■ density (Archimedes)

■ resonant ultrasound spectroscopy (RUS)

■ optical surface measurements

■ computed tomography (CT)

■ Post mortem after testing

■ inform performance & failure mechanisms

■ fractography

■ metallography

■ composition

■ XRD

■ Do reasonable defect signatures exist which tie to
performance tests?

dogbone in 2-point RUS test fixture

17-4PH dogbone porosity

0.0100in

0.0000

-0.0080

-0.0160

-0.0259

fracture surface



Metallurgical Interrogations

• Microstructure

• optical, SEM, EBSD, WDS micro-probe

• Composition

• LECO combustion, ICP mass-spec, XRD

• powder analysis

• Microhardness
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Element
Vendor 1, run 2

(wt%)

Cr 16.64

Mo 0.045

Si 0.38
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V 0

W 0

Ti 0

Ta 0

Al 0

Ni 4.24

Mn 0.24

C 0.012

N 0.056

Co 0

Cu 4.05

P 0.019

S 0.003

O 0.100

Nb 0.30

bulk chemical analysis

1 0



Trends Across the Part
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mplicit Part Correlations

• Archimedes density

• stronger correlations w/process
performance

• Surface finish

• No significant trends observed
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Resonant Ultrasound Spectroscopy

• Swept sine wave input from 2-point transducer

• spectrum = 74.2 kHz to 1.6 MHz

• intent is to identify outliers, variations, process limits, defects

• Identified 19 resonance peaks

• Z-score compares peak frequency w/average & std. dev.

• no strong trends across 17-4PH dogbone population

resonance response spectra
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Explicit Porosity Measurements
• Computed tomography (CT)

• NDE "gold standard" for porosity measurement

• gage sections imaged w/resolution of 7 or 10 p.m voxel edge length

• What can we see? Does it inform material behavior predictions?

• justifiable for qualification and/or production?
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Defect Characterization
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• Total Volume of Defects ( Vtat)

• Pore Volume Fraction ( Vfract)

• Spatial Location of Pores (x, y, z)

• Total Number of Defects (N)

• Total Defects/Length (N/L)

• Average Defect Volume ( Vavg. )*

• Avei age Equivalent Spherical Diameter ( ESDavg.

• Average Cross-Sectional Area ( CSAavg. )*

• Average Nearest Neighbor Distance ( NNDavg. )*

How do we best represent the
defect populations present?

Madison, J., QNDE, "Corroborating Tomographic Defect Metrics with Processing Parameters & Mechanical Response in Metal AM", In press.
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Post Mortem Analyses

• Can forensic trends be identified?

• CT data analysis

• calculate cross-section per layer

• gage sections are rough & porous

• fractures sometimes correspond to minimum areas

• general trends remain weak
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Fractography

• Defect dominated failure observed

• Increasing data fidelity & integration
• overlay fracture surface w/porosity map using DREAM.3D

• roughness inhibits registration accuracy

• fracture surface may correlate to large pore
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Microstructure Examination

• Compositional analysis identified no anomalies

• XRD revealed unexpected austenite variation in X-Y

• what about Z?

• further complication to dogbone performance

• source = powder, atmosphere?

as printed, -0 vol%
retained austenite
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Red = Martensite/Ferrite (BCC)
Black = non-indexed
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Material Models

• Want to inform & predict material variability

• Approach

• explicitly subtract spherical CT porosity volumes
from dogbones

• solve tensile loading

ignore residual stress, surface finish & defects
w/volume below —90µm3

continuum properties calibrated to low porosity
sample D16

• leveraged in on-going efforts

• Expectations

• large defects will intensify & localize deformation

• microscale void mechanisms will drive failure
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High Throughput Testing: Gen 2
316L SS dogbone array with 25 dogbones
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ProX 316L Process Development

• Scope

• process mapping w/CMU

• process sensitivity study

• powder reuse

• machine metrology

• in-situ process signatures

• Very robust material

unique EBSD grain structure for 316L SS
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Beam Diagnostics
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Structure-Properties Summary

• Material assurance is a challenge
• material behavior is complex

predictive inter-build correlations for 17-4PH have not been
straight-forward

contributing factors include process, feedstock,
measurement, surface finish, microstructure, residual stress,
part geometry

• orthogonal testing pursuing multiple signatures is
invaluable (& necessary) for qualification / product
acceptance

• Tools developed to interrogate & analyze defects
• performance distributions can be captured efficiently &

used to understand material & process

• tracking intra-build population shifts may be possible

intra-build / process change correlations identified for 316L SS
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Pursuing In-Situ Signatures

• 3D Systems ProX 200

• 3D Systems Open Protocol platform

• Thermal

• Stratonics ThermaViz two-color pyrometer

• IR cameras: FLIR C2, A310 & SC6811

• Optical

• Photron PhotoCam Speeder V2 high speed cameras

blue light illumination

• Ocean Optics LIBS2500plus spectrometer

• Keyence LJ-V7020 & LJ-V7200 laser line scanners

• Acoustic

• audio microphone, acoustic emission

• Laser characterization

• Ophir Spiricon SP928 beam profiler

• Ophir L50(300)A-LP1 power meter

493

48 0

462

45 3

44 4

43 4

42 5

116

FLIR A310, laser on plate, -100W, 1.4m/sec, 125pm hatch,
100pm beam dia.
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Photron high speed optical melt pool video



ntentional Porosity Structure

■ Introduced intentional pores

• 316L stainless steel

• 1-10 layer thickness

30-300µm

• lx1x5.25mm column

175 layers

87,500 T-V frames per part

• Tests are quick
• data analysis is not...

• seek to correlate spatial sensor data

(X,Y,Z,time) to material porosity (X,Y,Z)

captured hole structure

lx1x5mm 316L SS column
w/support walls
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captured defect holes part CT image, Zeiss
Xradia 520 Versa, voxel resolution - 2pm,

Harlan Brown-Shaklee

porosity map generated using DREAM.3D near the 10 & 20pm pores



Material Reconstruction

VVOLUME
GRAPHICS

Micro-computed tomography

Adobe Photoshop

LICE ad pi UL.Co011 ly

16bit > 8bit conversion
lossless filetype

conversion

Ilk 190B17-1T .T.31;1,

Serial-sectioning

FIJI

alignment & registratic
cropping

grayscale matching
autoleveling
image filtering
thresholding

MATLAB
Interactive Data Language

IDL
3D reconstruction
3D quantification

image processing &
quantification. 3D
reconstructions

ParaView
Parallel Visualization Application

BlueQuartz Software
Specializing in Software Tools tor the Scientist

http://dream3d.bluequartz.net



[ICT Data Registration

• Rough surfaces create challenges

• Registering pore structures to nominal design

• calculate top three hole centroid locations

• calculate A(x,y,z) from design locations

• remove slope & offsets
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Pore Identification

• Largest 9 pores easily distinguished
by volume

• Aim pore indistinguishable from
process porosity by size
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Melt Pool Monitoring

• Stratonics Therma-Viz two-color

pyrometer

• CMOS imagers, —20µm/pixel

• 750 & 900nm filters (short & long)

• Tpixel func(I1 /12)

• Fixed field, angled side viewing

• FOV: 80 x 65 pixel (1.6 x 1.3 mm)

• frame rate: 6-7kHz

• exposure: 90µsec

• Challenges

• data rate

• image resolution & registration

• emissivity variation across melt

pool

ThermaViz installed in the 3D Systems ProX 200

ThermaViz raw intensity data (left),
radiance data (center) & melt pool

temperature (right)



Therma-Viz Data Analysis

• Registration tied to process layers

1.5

0 5

• Melt pool metrics 0

• peak temperature, centroid location, area,
length, width, kurtosis, skewness

• Two approaches

• process experiments

Matlab, Stratonic CSVs, 10s-100s images

• porosity column builds

Python scripts, Stratonic ̀ raw.viz' files, 100k

images quickly (minutes)

compute pool properties using contour data
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Melt Pool Metrics
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Line Scan on 316L Plate, 10mm/sec, 65W
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Line Scan on 316L Plate, 100mm/sec, 65W
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Line Scan on 316L Plate, 1000mm/sec, 65W
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3.5

Finding Process Porosity
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max temperature data, layer 173
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Process-Structure Summary

• Exploring two color pyrometry for porosity detection

• absolute temperature accuracy is questionable

• Intentional porosity

• observed in pyrometry data down to 60p.m size

• Aim pores — same scale as process porosity

• Process porosity

• correlations less straightforward

• additional analyses on-going

• Is lower resolution & slower data rates still useful?

• scale-up is a challenge

it

ThermaViz raw intensity data (left), radiance data (right) & melt pool
temperature (bottom), 99ms exposure, 9Hz sample rate



Qualification Tomorrow

• "Changing the Engineering Design & Qualification Paradigm"

• leverage AM, in-process metrology & HPC to revolutionize product realization

Quantify &
Optimize

material / part performance simulation
Performance
Predictions

Exemplar
Performance

process simulation

Guide

AM
Process

AM 17-4PH tensile dogbone (above) &
stress-strain response (below)

Predict

Process
Models

Exemplar
Models

Materials
Models

Inform

In-Situ
Measurements

Alinstante
Properties

Property
Aware

Processing

thermal history during bi-
directional metal deposition

E

2

17-4PH dogbone
porosity



Wholistic Design Paradigm for AM
99,9
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Jared, B., Scripta Materialia, "Additive manufacturing: Toward holistic design", 2017.
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Austenite Spatial Variation

Trend with Row Positions
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As-Polished Microstructures

As-printed (no HIP)

.41

•

ep. 
20 pm

20 pm

HIP (15 ksi, 1093°C, 6 hrs)

•

20 prn

20 wr•

HIP (15 ksi, 1093°C, 6 hrs)
+ ambient pressure 1200°C, 2

h rs

•

20 pm

20 pm

Official Use Only



Impact HIP on 17-4PH

• 33 tensile bars were sent to external
vendor for HIP, 4hr @ 1110°C, 100 MPa

• impact

• collapsed internal porosity

• decreased largest void size by -80%

• improved Weibull characteristic strength by

13%

1600r

1400 -

cT 1200

,̀,13 1000

b4 800c 

a) 600

c
400

200

o
o

Untreated Sa m pl es

2

HIPed
17-4PH
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HIP-ed Samples
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Engineering Strain from DIC, %
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• Unique challenges for processes, equipment &
parts

• geometry depends on material, process, machine,
orientation, supports, post-processing...

• equipment accuracy generally exceeds process

• Challenges

• metrology can be harder than fabrication

• inferior surface quality

• form deviations included in uncertainty analyses

• GD&T applies, but less "traditional" surfaces

• internal features

• now worried about material, not just geometry

—

Ti-6AI-4V polyhedron &
"Manhattan" artifacts

17-4 PH "death" star

%Conran., in

0.2 -03

Coordinate, in

Ti "Manhattan" error map

17-4 PH polyhedron texture anisotropy map

center tip

profile

0 03 -0.01  0.01

PosNon, in

0.02 0.03

Hy Tran, Bradley Jared



■ Slow velocity line scans

■ address limited frame rate

■ on-plate

better temperature values?

need to look at dendrite arm spacing to get cooling rates

■ scatter vs. velocity, power on printed surface

■ Melt pool response

■ shutter speed, sample rate

■ bead on plate, single powder layers

■ line & area scans

■ laser power, velocity, cross-feed

■ Jon's data analysis — part leaning?



Motivation

• Optical systems are commonly constrained by size,
weight & power
• many "non-precision" applications are addressing using AM

• Opportunities exist for light-weight, reflective optics
• geometrical complexity (i.e. integration, optimization)

• new materials (& hierarchies)

• rapid design & fabrication cycles

• limits include

form accuracy

surface finish

material selection

topology optimized part designed using lattice structures

direct write printed alumina part

Robbins, J., Additive Manufacturing, "An efficient and scalable approach for generating topologically optimized cellular structures for additive manufacturing ", 2016.
Smea
NOM
labiebis



Integrated Mirror

■ Design

■ 101.6mm diameter flat mirror

■ light-weighted w/conventional ribbing

■ alignment blade flexures integral w/monolithic structure

■ Fabrication

■ printed in Ti6AI4V using laser-powder bed fusion

■ 0.5mm electroless Ni plating applied to front & rear faces

■ diamond turned mirror face

plating issues resulted in pitting, poor form & finish

■ lead time reduced from 18 to 3 months

monolithic mirror structure design

AM Ti6AI4V mirror w/diamond turned electroless Ni coating



New Design Freedom

• Computational synthesis for optimal material use
• adaptive topological (ATO) & shape optimizations (SO)

• leverages "complexity is preferred"

• constrained by performance requirements

• bio-mimicry requires AM

• design occurs concurrent w/simulation

lens mount
w/optimized sub-

structures

ATO

o
o o
o 
/

SO

+ 0.55% volume + 3.3% volume
- 52% deflection - 64% deflection

elasto-static stiffness optimization

solution for a bar in pure torsion resembles a cholla cactus



Sandia Analysis Workbench (SAW
•• Cubit - Topology Optirnizab
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Joshua Robbins (1444), Tom Voth (1443), Miguel Aguilo (1542), Brett Clark & Ted Blacker (1543)



TO w/Lattice Structures
UPLIMILIfly SLIIIMUSS W/IIXUU fflaSS

10% dense

6.1
5.4 

5
"
7

3.6

10% 20% 50% 75% 100%

Density

tailored
lattice size

intact cells

A

Joshua Robbins (1444), Tom Voth (1443), Miguel Aguilo (1542), Brett Clark & Ted Blacker (1543)
81.1.1.11.1. I



Engineered Materials 0.12 

0.1

 DNS, realization 1
- homogenized

• Integrated Computational Materials

Engineering (ICME)

• materials analog to mechanical
engineering

• microstructure matters

• Voxel access introduces new opportunities

for control & design

• spanning multi-scales is difficult

• metallurgical limits exist

AM Inconel 718 texture control demo by ORNL

"We can now control local material properties, which will change the future
of how we engineer metallic components," R. Dehoff

0.08

-a

5 
0.06

Ri
tt; 0.04

0.02

2 4 6 8 10
distance along line, rnm

strain field due to tension-torsion

continuum model

12 14 16

crystal plasticity model

Ic2=1

LENS ® functionally graded materials



Plausible Topology Optimization (PLATO)

• SIERRA implementation

• available for government use

• Current capabilities

• SAW user interface

• elasto-static & thermal solutions

• load cases

displacement, surface or body
loads, CG, temperature, flux

• anisotropic, multi-materials

• lattices

• parallel HPC processing

• Future work

• stress optimization, UQ, material
distributions, more multi-physics,
increase efficiency, process
awareness, user intervention

100%
dense

10%
dense

Tits:Za:7::

\-AStiikk4Pt

441111014:1 polp

"41 :4 *OA

lattice implementation
w/TO solutions

minimum compliance w/fixed CG location

conversio
to CAD —4114,

• Smea
NOM



■ Additive manufacturing (AM) offers unprecedented opportunities to design complex geometries and optimized
topologies for performance gains inaccessible under conventional manufacturing constraints. However, to facilitate
adoption in high consequence applications, fundamental questions regarding the intrinsic reliability and repeatable
performance of additive metals must be answered. Distinct from traditional subtractive processes, component
geometry and material are formed concurrently in additive processes and preclude an a priori knowledge of material
performance from feedstock properties. Of interest are powder bed fusion processes where a laser scans across
successive layers of metal powder to fuse material and generate a desired part geometry. Such layerwise processing
enables access to volume elements, i.e. voxels, throughout every part with opportunities for material control but also
defect formation.

■ Predicting material performance is challenging for powder bed processes since it involves complex melting and
solidification interactions, and is implemented on equipment with limited capabilities for process control and/or defect
tracking. Consequently, material performance is commonly indeterminate and introduces unacceptable uncertainties
for certifying and qualifying additive components. On-going research is working to reduce these uncertainties by
exploring the process-structure-properties triad of stainless steel alloys. Material characterization and testing is
identifying the nature of critical defects, quantifying their impact on material properties, correlating their presence
with processing conditions, and developing a basis for understanding defect formation mechanisms. Thus, critical
defect "signatures" will be presented to provide a predictive framework for quantifying material performance
distributions using techniques that span in-situ process monitoring, post-process computed tomography,
metallography and tensile testing.


