
SANDIA REPORT
SAND2017-0406
Unlimited Release
Printed January 2017

The Bird Project
Using Big Data tools to support Search Analytics

John A Herzer, and Pengchu Zhang

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's
National Nuclear Security Administration under contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

2

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government, nor any agency thereof,
nor any of their employees, nor any of their contractors, subcontractors, or their employees,
make any warranty, express or implied, or assume any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represent that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government, any agency thereof, or any of
their contractors or subcontractors. The views and opinions expressed herein do not
necessarily state or reflect those of the United States Government, any agency thereof, or any
of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@osti.gov
Online ordering: http://www.osti.gov/scitech

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5301 Shawnee Rd
Alexandria, VA 22312

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.gov
Online order: http://www.ntis.gov/search

mailto://reports@osti.gov
http://www.osti.gov/scitech
mailto://orders@ntis.gov
http://www.ntis.gov/search

3

SAND2017-0406
Unlimited Release

Printed January 2017

 The Bird Project
 Using Big Data tools to support Search Analytics

John A Herzer, and Pengchu Zhang
Knowledge Systems

Sandia National Laboratories
P.O. Box 5800

Albuquerque, New Mexico 87185-MS1325

Abstract

The Bird project explored the use of big data analytics tool to improve the findability
of information within the Sandia internal network. We were able to perform query
classification utilizing the supervised learning algorithms in the Apache Spark library.
By relying on the distributed processing capabilities provided by the Apache Hadoop
framework, we successfully processed the large query log files needed to train the
models in this effort. The capabilities developed in this project are being used to
enhance the effectiveness of the enterprise search engine.

4

ACKNOWLEDGMENTS

The authors thank Richard Hickey of the High Performance Computing group for his active
support of the project as a system administrator.

5

CONTENTS

1. Introduction ……………………………………………………………………………….... 7
1.1. The Need For Improved Search Metadata …………………………………….…….. 7

 1.2. Working With Search Log Data ………………………………………….…………. 7
 1.3. Applying Advanced Analytics To The Search Domain …………………………..… 8
2. The Bird Development Environment ………………………………………………………..11
 2.1 Hadoop / Spark Overview ……………………………………………………...……. 11
 2.2 Plato Hosting Environment ………………………………………………………...... 12
 2.3 Software Development Environment ……………………………………………...… 12
3. The Bird Machine Learning Pipeline ……………………………………………….......… 15
 3.1. Preprocessing The Search Data ……………………………………………………. 15
 3.1.1. Loading The Search Log Data …………………………………………..... 15
 3.1.2. Joining The Data ………………………………………………………..…. 17
 3.1.3. Cleaning The Data ………………………………..……………………….. 17
 3.1.4. Normalizing And Labeling The Data ……………………………………… 17
 3.1.5. Transforming The Data ……………………………………………………. 18
 3.2. Training The Model ………………………………………………………………... 18
 3.3. Evaluating The Model ………………………………………………………….…... 18
4. Conclusions ……………………………………………………………………….. …........ 21
Distribution …………………………………………………………………………………… 23

FIGURES

Figure 1. The Bird Architecture ………………………………………………………………. 11
Figure 2. Sample Bash Script …………………………………………………………………. 12
Figure 3. The Bird Processing Pipeline ……………………………………………………….. 15
Figure 4. Sample Gobblin Pull File …………………………………………………………… 16

TABLES

Table 1. Search Log Tables ………………………………………………………………….... 16
Table 2. Query Types And Labels …………………………………………………………….. 17
Table 3. Confusion Matrix …………………………………………………………………….. 19
Table 4. Model Accuracy ……………………………………………………………………… 19

6

NOMENCLATURE

GB GigaBytes
SNL Sandia National Laboratories
SRN Sandia Restricted Network
ATL Applications That Listen

7

 1. INTRODUCTION

The goal of the BIRD project is to demonstrate how big data infrastructure can support analytics
for search data. We set out to show how query classification using supervised machine learning
can be accomplished in a distributed, parallelized computing environment. By proving out this
capability and gaining experience with big data tools and infrastructure, we open the door to a
number of advanced analytic efforts aimed at improving search and information findability in
general.

1.1. The Need For Improved Search Metadata

Enterprise search is inherently different from internet search. The extensive cross-linking
between sites on the internet doesn’t exist on intranet sites like the SRN. Consequently, the rich
set of metadata that search companies like Google gather on the internet doesn’t exist within
enterprise networks. Not surprisingly, Google’s PageRank algorithm, which boosts the ranking
of sites that are linked to more frequently, isn’t effective for enterprise search.

Modern search engines provide powerful capabilities for indexing content and retrieving
documents that contain the query terms supplied by the customer. Without good metadata,
however, they have difficulty determining which documents should be ranked at the top of the
search results. Consequently, documents that contain the search term but that aren’t particularly
relevant to the query are often listed at the top of the results.

One approach to address the lack of metadata for enterprise content is to implement conceptual
search. With conceptual search, we are searching for the concept or idea represented by the
customer’s search query rather than rely on exact term matching. To accomplish this, we need to
understand the logical domain of the customer’s query as well as metadata about our collections
that identify the domain of individual documents. We can then match up queries with
appropriate documents based on the similarity of the domains to which they belong

Query classification, then, is an important step on our path to achieving conceptual search.
Search logs, consisting of query, results and click data can be of great value in classifying
queries.

1.2. Working With Search Log Data

SearchPoint, Sandia’s corporate search engine, records all activity related to customer search
behavior in database logs. These logs include queries submitted by customers, the set of search
result links returned by the engine, as well as the links that were clicked by the customer. In
May 2013, the database administration department notified us that the size of the SearchPoint
database logs were causing performance problems on GPPR1, the production database instance

8

where they resided. They worked with us to migrate nearly three years of data from the larger
tables to an archive instance in the data warehouse. This archival eliminated the performance
issues that they were seeing. Since then, though, the database has continued to grow at a rate of
several GB per month and is now approaching 200 GB in total size. It appears that another data
archival may need to be performed in the near future.

While the archival of older data eliminated the related performance issues, it limits what can be
achieved with machine learning. The effectiveness of machine learning models increases with
the amount of data that is provided to them. Our ability to identify patterns in search logs would
be significantly enhanced if we could analyze all available search log data from a single online
repository. Like many other companies, we are finding that modern enterprise computing
infrastructure, with its reliance on relational databases, cannot handle the volume of data needed
for large machine learning projects. Hadoop and Spark, on the other hand, were specifically
designed to handle these large data sets. These tools have become a standard part of the big data
environment because they address this problem by running parallel processes across a distributed
set of nodes.

1.3. Applying Advanced Analytics To The Search Domain

One of the biggest challenges faced in the implementation of any search engine is relevancy
ranking. For a search engine to be useful, the results must be ranked by relevancy with the most
relevant documents listed first. There are two aspects to optimizing relevancy; local
optimization and global optimization. Local optimization addresses the problem of ranking
documents obtained from a single search index. There are a number of algorithms designed to
address this problem, the most popular of which is Term Frequency – Inverse Document
Frequency (TF-IDF). This algorithm boosts the ranking of a document based on how frequently
a search term occurs in the document. It adjusts the boost factor based on how common each
term in the query is across the entire corpus.

Global optimization addresses the need to rank results coming from federated sources. In a
federated system, queries are made to remote systems in real time to obtain their relevant results.
The results coming from multiple indexes or applications must be integrated and ranked
appropriately. Because term frequencies and similar corpus statistics are typically not available
from remote repositories, algorithms like TF-IDF cannot be utilized. One approach to global
optimization is to classify customer queries by domain. If we know the probability that a query
pertains to a specific domain, we can adjust ranking results from responding systems based on
the domains they represent. Essentially, we are matching the domain of the query with the
domain of responding systems.

9

The ATL framework is a type of federated system in which registered applications provide
formatted answers for the customer’s query. It is primarily responsible for intercepting requests
from the SearchPointNext client and applying various degrees of artificial intelligence to
construct a set of rich results that are returned to the client as a response. This platform interacts
with a diverse set of Sandia Restricted Network (SRN) applications, services, databases, and Solr
search indices to extract relevant information and construct these rich results. Since 2012, the
ATL framework has evolved to host a variety of services that are consumed by the
SearchPointNext application in order to create a richer, more personalized experience for the
user.

The ATL framework’s justification is largely based on the assumption that user search queries,
and their associated metadata, often offer clues that can allow an intelligent application to
construct a more useful, detailed, and personalized response for the user. As more applications
are added to the framework, the potential for multiple applications constructing responses to
individual queries becomes increasingly likely. To address the potential information overload
associated with an increasing number of responses, query classification can help us assign
confidence scores to application responses and determine the most appropriate ranking.

10

11

2. THE BIRD DEVELOPMENT ENVIRONMENT

2.1. Hadoop / Spark Overview

The BIRD project utilizes the Apache Hadoop product in order to efficiently analyze the large
volume of search log data produced by the SearchPoint application. Hadoop is an open source
framework for distributing data storage and processing across a large cluster of nodes. The
Hadoop model relies on commodity hardware for the nodes and has a fault tolerant capability
that anticipates hardware failures and provides automatic fail-over. The Hadoop Distributed File
System (HDFS) is responsible for breaking up large data sets into equal-sized blocks and
distributing them across the nodes in the cluster. It works hand in hand with MapReduce, the
algorithm in Hadoop that is responsible for breaking up a job into multiple tasks and running
them in parallel across the nodes of the cluster. The MapReduce process consists of two phases,
the map phase and the reduce phase. In the map phase, the job is broken up into many small
tasks, each of which can be performed on a single block of data. The processing code and the
data on which it work are sent to available nodes, taking advantage of data locality by ensuring
that each nodes only works with its local data. The output from each nodes processing is then
integrated in the reduce phase using summary operations.

To improve efficiency, the BIRD project uses Apache Spark running on top of Hadoop to
provide in-memory operations. By performing operations in memory, it is able to avoid the
pervasive file IO activity in pure Hadoop installations, reducing latency by several orders of
magnitude. With this toolset, it is possible to run iterative algorithms on the data, something
that is not practical in the Hadoop environment. Spark also provides an SQL component,
bringing support for structured data typically handled by relational databases. Figure 1 shows
the elements of the big data environment used by the Bird project.

 Figure 1: The Bird Architecture

Plato hardware cluster

Hadoop Distributed File System YARN

Spark Execution Environment

Spark SQL Spark MLib

Bird Pipeline

12

2.2. Plato Hosting Environment

Plato is the Hadoop cluster implemented as part of the High Performance Computing initiative at
Sandia. It is provided in the Cloudera Enterprise suite along with Hadoop cluster configuration
management and monitoring tools. Hadoop version 2.6.0 and Spark version 1.6.0 are installed
on this platform along with a number of common tools for the Hadoop ecosystem, including
Avro, HBase, Hive, Mahout, Yarn and others. Currently, the Plato environment consists of 3
management nodes and 51 worker nodes running on Red Hat Enterprise Linux boxes. The
cluster provides 1.5 petabytes of raw storage.

The Plato cluster is accessed via designated edge nodes. Customers can log into edge nodes
using a Plato account that can be obtained from the WebCars application .

2.3. Software Development Environment

The Spark API supports three programming languages at this time: Scala, Java and Python.
Spark itself is written in Scala and this language is very popular in big data projects. Scala was
chosen as the language for this project because of its powerful functional programming
capabilities and conciseness. While Spark provides an interactive shell for trying out the
framework’s functionality, the complexity of the Bird project’s data transformations required
submitting batch jobs via the spark-submit command. For scheduling and controlling the Spark
jobs, YARN (Yet Another Resource Negotiator) was utilized. A sample Bash script used to
invoke a Spark job is shown in Figure 2.

/usr/bin/spark-submit \
 --class SPNLoader \
 --master yarn\
 --deploy-mode cluster \
 --jars /home/jherzer/spark-csv_2.10-1.4.0.jar,/home/jherzer/commons-csv-1.4.jar \
 --executor-memory 10g \
 --driver-memory 10g \
 target/scala-2.10/maraca_2.10-1.0.jar

 Figure 2: Sample Bash script

/usr/bin/spark-submit \
 --class SPNLoader \
 --master yarn\
 --deploy-mode cluster \
 --jars /home/jherzer/spark-csv_2.10-1.4.0.jar,/home/jherzer/commons-csv-1.4.jar \
 --executor-memory 10g \
 --driver-memory 10g \
 target/scala-2.10/maraca_2.10-1.0.jar

13

14

15

3. THE BIRD MACHINE LEARNING PIPELINE

The BIRD project is architected as a collection of data processing applications that, when
combined, expose a distributed machine learning pipeline for the classification of
SearchPointNext search queries. This pipeline is essentially a workflow consisting of a set of
ordered steps. By executing these steps in the prescribed order, the workflow will preprocess
and store raw query data, implicitly generate record labels, train and store a series of one-vs-rest
logistic regression models for query classification, and finally, evaluate the performance of the
generated models using a held-out set of test data.

3.1. Preprocessing The Search Data

A number of preprocessing steps were performed in order to prepare the data for training of the
logistic regression models. Figure 3 shows the components that comprise the project pipeline.
Spark, itself, provides a pipeline mechanism for transforming data and fitting the data to a model.
The Bird pipeline is built on top of the underlying Spark pipeline.

 Figure 3: The Bird Processing Pipeline

3.1.1. Loading The Search Log Data

The search logs are currently stored as relational tables in the Oracle database. The table below
summarizes the content of the log tables that are being used by the BIRD project.

16

Table 1: Search Log Tables

To pull Search log data from the Oracle database, the BIRD project used Gobblin, a universal
data ingestion framework for Hadoop. Gobblin is an open source software tool developed at
LinkedIn. It was designed to support the extraction, transformation and loading of large volumes
of data from a number of different data sources. Gobblin jobs have been created to pull the
current contents of the search logs to HDFS storage and provide updates on a recurring basis for
newly added content. Pull files were created to define the parameters for these jobs. The
following pull file, for example, defines a job which will move content from the search_query
table to HDFS storage.

Job properties
job.name=SearchQueryGobbler
job.group=KnowSys
job.description=batch ingestion of searchpoint records
job.schedule=0 0 0 0/1 * ?

Extract properties
extract.namespace=spt
extract.table.type=append_only
extract.delta.fields=received_date
extract.primary.key.fields=search_id

Source properties
source.querybased.schema=spt
source.entity=search_query
source.querybased.extract.type=append_hourly
source.timezone=America/Denver

Figure 4: Sample Gobblin Pull File

table content size

search_query search terms submitted by customers 6.4M rows

search_result search result links returned for individual queries 144.8M rows

search_result_set metadata about a set of search results 6.4M rows

search_result_click history of search result links clicked by customers 3.4M rows

17

3.1.2. Joining The Data

A number of joins were performed in order to create a single DataFrame (i.e. Spark table) that
could be used for training the models. First, an inner join between the search_result and
search_result_click dataframes was completed. Next, an outer join of the newly created join
table and the search_result_set dataframe was performed. Finally, an outer join of the previous
DataFrame and the search_query dataframe was carried out, resulting in a DataFrame where the
tuples represented all user searches with corresponding clicks.

3.1.3. Cleaning The Data

Before the data could be normalized, it needed to be cleaned up. Filters were used to remove
records with null query fields. In order to remove special characters and extra whitespace,
SparkSQL User Defined Functions (UDF) were created. UDFs are column-based functions for
transforming DataFrames that are defined using Scala functions.

3.1.4. Normalizing And Labeling The Data

Classification tasks, such as the one undertaken in the Bird project, are a form of supervised
learning. As such, the data used to train the model is expected to contain labels. These labels are
the output or response that we want the model to be able to predict. In our case the label for each
search query would be the type of the query. Because the search query data does not contain
labels itself, we needed to find a way to generate artificial labels for the data.

We identified 7 distinct query types that could be identified from the data. A combination of
lookup tables and regular expressions were utilized to identify queries. Those queries that could
not be put in one of these categories were identified as “other”. This data normalization activity
resulted in a set of consistent query term identifiers from which labels could be derived. A
docNormalizer UDF was created that read in the query term values from the DataFrame and
created a new column, “clean_normalized_query”, which contained one of the assigned labels.

 Table 2: Query Types and Labels

 Query Type Label
Building Number 6
Organization Number 5
Corporate Policy Number 4
SAND Report 3
Corporate Form 2
Top 100 Query 1
Other 0

18

3.1.5. Transforming The Data

The Spark ML library provides a pipeline API as the primary mechanism for coordinating
machine learning steps. Pipelines (or workflows) are based on DataFrames and replace the
Resilient Distributed Dataset (RDD) model utilized in older versions of the product. The
pipeline API simplifies the assembly and configuration of distributed machine learning
workflows. Pipelines consist of Transformers, which provide transformations on the data, and
Estimators, which are used to fit the model to the input data. Since all input data is accessed via
DataFrames, operations on the data are implemented as UDF applications. Transformations
such as feature extractions are typically represented as new columns in the DataFrame, making
debugging much easier.

Machine learning models rely on features, or independent variables, to evaluate the data and
provide predictions. The feature chosen to train the query classification model was a TF-IDF
score calculated on the normalized query field. A Spark pipeline containing the components
needed to calculate TF-IDF and fit the model to the data was set up. This pipeline included a
Tokenizer to split the query terms by white space, a StopWordsRemover to remove stop words
from the queries, a HashingTF component to create the term frequency scores and an IDF
component for the inverse document frequency calculation.

3.2. Training The Model

The SPNTrainingPipeline application is responsible for training the model with the query data.
The preprocessed DataFrame created by the last application in the Bird pipeline is read in from
HDFS storage and utilized for this purpose. 40% of the data was set aside for testing the model,
the remaining data was used for training.

Logistic Regression was chosen as the type of model used in this project for classifying queries.
Unlike linear regression, which provides continuous outcome values, logistic regression predicts
a category for each observation. That is, the dependent variable is categorical. Since there are
more than two possible categories, we need to use multinomial rather than binomial logistic
regression. The Spark implementation of logistic regression doesn’t currently support
multinomial outcomes, so we utilized Spark’s One-vs-Rest classifier. This approach relies on
construction of binary classifiers for each category. The classifier that is most confident that an
outcome belongs to its category will be selected for each observation.

3.3. Evaluating The Model

The final application in the Bird pipeline, SPNQueryClassifier, was responsible for evaluating
the model against the test data held back from the previous training stage.

19

 Table 3: Confusion Matrix

A confusion matrix was generated in order to describe the performance of the classification
model. It consists of a table where the columns represent the instances of a predicted class and
the rows represent the actual class membership of the data. This way of depicting the results
makes it easier to identify false positives and negatives. The confusion matrix for the query
classification exercise is shown in Table 3.

Utilizing the MultiClassMetrics class provided by Spark, we were able to obtain the accuracy for
each of the models, as shown in Table 4. The extremely high accuracy of the models is likely
due to the fact that labels were artificially generated for the search query data. Because the
labels and the TF-IDF scores used as the model feature were both derived from the same dataset
column, there is a high level of correlation between them.

 Table 4: Model Accuracy

Other Top100 Forms SAND Policy Orgn Bldg
Other 1523760.0 0.0 21.0 2.0 5.0 8.0 10.0
Top100 0.0 966913.0 0.0 0.0 0.0 0.0 0.0
Form 292.0 0.0 16501.0 2.0 12.0 12.0 6.0
SAND 47.0 0.0 0.0 4093.0 0.0 0.0 3.0
Policy 55.0 0.0 6.0 0.0 17700.0 16.0 1.0
Orgn 75.0 0.0 40.0 5.0 12.0 37417.0 8.0
Bldg 84.0 0.0 43.0 0.0 12.0 65.0 25218.0

 Category Accuracy
Other 0.9999
Top100 1.0
Forms 0.9807
SAND 0.9879
Policy 0.9956
Orgn 0.9963
Bldg 9.9920

20

21

4. CONCLUSIONS

The Bird project was able to demonstrate the classification of search queries using supervised
machine learning. We utilized big data infrastructure based on Hadoop and Spark to perform
predictive analytics on a large set of search query, results and click data. It would have been
difficult, if not impossible, to carry out this type of analysis in a traditional enterprise computing
environment using resources such as relational databases.

22

23

 DISTRIBUTION

1 MS1325 John Mareda 09537
1 MS1325 Pengchu Zhang 09537
1 MS0899 Technical Library 9536 (electronic copy)

