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Abbreviations and Acronyms

CO Carbon monoxide

DI Direct Injection or Drivability Index

Exx A gasoline-ethanol blend with xx% ethanol by volume

GPF Gasoline Particulate Filter

HC HydroCarbon

HoV Heat of Vaporization

LFV150 Liquid Fuel Volume remaining at a temperature of 150°C

LSPI Low Speed Pre-Ignition

MON Motor Octane Number

OI Octane Index

PMI Particulate Matter Index

RON Research Octane Number

SI Spark Ignition

Txx The Temperature at which xx% of a fuel sample is evaporated
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1 Thrust I Fuel Merit Function 
To assist in making an initial down-selection of promising fuel blendstock candidates, it is useful 
to define a fuel "Merit Function." This tool is intended to help rank blendstock candidates in a 
systematic manner when multiple fuel properties are varying simultaneously. Impacts of 
blendstocks that must necessarily be considered in a ranking process include:

1. the potential for efficiency gains in an engine

2. the  impact on criteria emissions

3. vehicle fuel system and after-treatment costs

4. blendstock production scale and economics

5. blendstock life-cycle greenhouse gas emissions

6. blendstock infrastructure compatibility

7. customer acceptance criteria

Here we focus mainly on the first criterion, and attempt to define "merit" based on the blended 
fuel's impact on engine efficiency. Coupled with appropriate vehicle assumptions and modeling 
in a framework such as Autonomie, this "merit function" allows fuel economy gains to be 
estimated based on fuel properties. Incorporated in this function is a factor related to the 
anticipated volume of the blendstock that can be produced or, alternatively, the fraction of the 
blendstock that can be tolerated in the base fuel.

Some fuel properties may also impact initial vehicle cost—primarily due to higher after-
treatment or fuel system costs. Often the additional costs associated with a specific property are 
unknown. However, where a reasonable cost estimate exists we cite it to provide some assistance 
to the ASSERT and Market Transformation teams as they work towards defining the overall 
costs/benefits of a given fuel blendstock. We anticipate that these overall costs will couple fuel 
economy, vehicle cost, fuel production cost, and other costs associated with infrastructure 
development, climate and health impacts, and other societal issues. We also hope that the 
original equipment manufacturers can provide some additional cost estimates as the fuel ranking 
process matures.

In addition to the considerations listed above, a fuel must possess a number of other qualities in 
order to be considered practical. For example, it should be soluble in hydrocarbon blendstocks, it 
should not be a known carcinogen or teratogen, and it should not result in blended fuel properties 
that are inconsistent with current specifications for distillation metrics, vapor pressure, 
corrosivity, flashpoint, etc. These additional considerations have been described in greater detail 
in the LGGF FY16Q1 Milestone report.
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The merit function described here is applicable only to "Thrust I" fuel blendstocks targeted at 
stoichiometric, spark-ignition engines operating in conventional flame propagation combustion 
modes. For some of the fuel properties considered the formulation of the merit function is 
currently based on very incomplete information—particularly when the interactions between 
efficiency and after-treatment devices or pre-ignition phenomena must be considered. Clarifying 
and quantifying these interactions is one of the central outcomes of the research to be performed 
by the Advanced Engine Development and Fuel Properties teams. Accordingly, we view the 
formulation presented here as a first approximation that will need to be refined considerably as 
the state of our knowledge progresses. 

1.1 Brake Fuel Efficiency Merit Function Basis

The merit of a blendstock is assessed by the efficiency gain achieved when blended with a 
baseline fuel representative of a current "regular" gasoline grade. This grade is assumed to have a 
Research Octane Number (RON) of 91 and a Motor Octane Number (MON) of 83, giving a 
Sensitivity (S=RON-MON) of 8 and anti-knock index (AKI) of 87. We also assume a baseline 
fuel ethanol content of 10 vol%, yielding a HoV of 415 kJ/kg, a flame speed of 46 cm/s, a lower 
heating value (LHV) of 42 MJ/kg, and a particulate matter index (PMI) of 1.4. The ethanol mole 
fraction is approximately 0.21 when calculated with a liquid molar volume ratio of 0.42 (see
Anderson et al. 2012). Such a fuel could be produced by blending ethanol with a petroleum-
based Blendstock for Oxygenate Blending (BOB) with a RON = 84, a MON=79, a HoV=350 
kJ/kg, a flame speed of 44 cm/s, a LHV of 43.8 MJ/kg, and a PMI of 1.5. 

The merit function is written as a linear combination of the blended fuel properties that are 
expected to exert a significant impact on efficiency. Blending models that allow the prediction of 
mixture properties are still being developed; accordingly, we propose adopting a simple linear 
model based on the fuel mixture blendstock properties Pi and the mole fraction of each 
blendstock i:

i
i

imix PP   (1)

Much of the non-linearity in mixture properties, such as mixture RON, is removed when the 
mixture properties are computed based on mole fraction rather than mass fraction or volume 
fraction. We anticipate that with this formulation the mole fraction of the blendstock can reflect 
realistic estimates of potential production volume developed by the ASSERT team.

Our initial merit function is written as:
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H(x) represents the Heaviside function. A brief discussion of each of the terms follows.

1.1.1 RON & Sensitivity S

Fuel octane is a measure of its knock resistance. Here we follow Kalghatgi (2001) and use the 
Octane Index (OI) to characterize a fuel's effective octane rating:
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KSRONOI  (3)
where S is the fuel sensitivity and K is an engine-dependent constant that depends on design 
parameters and operating conditions. A representative K value for down-sized boosted engines is 
-0.5; however, this is left as a free parameter in the merit function. Increasing OI allows engine 
compression ratio to be raised, leading to a higher thermodynamic efficiency. However, even at a 
fixed compression ratio, higher OI allows engine operation at mid-to-high loads with a greater 
knock-limited spark advance (KLSA), also resulting in higher efficiency.

Determining the impact of OI on engine efficiency is not straightforward, as it encompasses both 
engine design parameters as well as the engine's operating profile within the speed/load map. 
Here we follow the two-step approach of Chow et al. (2014) and Leone et al. (2015), among 
others. First, we assume that an increase in OI of three points will allow an increase in engine 
compression ratio of 1, which in turn results in an average increase in efficiency of about 1.6%. 
Due to the increased efficiency, as well as improved knock-limited performance, the engine will 
produce higher torque and can be downsized—resulting in additional efficiency improvements. 
This efficiency boot-strapping effect of downsizing is expected to differ between naturally 
aspirated and boosted engines, but using an additional efficiency multiplier of 1.2 represents an 
average expected gain. Consequently, an increase in OI of 3 leads to an expected increase in 
efficiency of 1.9%, or equivalently an increase in OI of 1.6 leads to an efficiency increase of 1%. 
Normalization of the terms in the merit function related to OI (RON and S) by the factor 1.6 thus 
makes their value correspond to the expected percentage increase in efficiency.

Note that this efficiency increase is an expected "average" over the speed-load map. When 
coupled with Autonomie-like modeling to deduce the associated fuel economy improvement, 
previous work has applied the efficiency increase uniformly over the engine speed-load map 
(Chow et al. 2014).

1.1.2 Heat of Vaporization (HoV)

Knock can be mitigated both through the inherent chemical autoignition resistance of a fuel 
represented by the octane index, or by charge cooling. For direct-injection engines, the in-
cylinder vaporization process reduces the charge temperature and can thus potentially provide 
improved efficiency through knock mitigation—Leone et al. (2015) provides additional 
background and a recent review. 

There is a lack of consensus in the literature regarding the magnitude of the impact of charge 
cooling from fuel vaporization. A comprehensive, multi-cylinder engine study has indicated that, 
for ethanol fractions less than 30%, there is a negligible impact of HoV on KLSA and brake 
thermal efficiency at low-to-moderate loads when RON and MON are held constant (Leone et al. 
2014). In contrast, Kasseris and Heywood (2012) report that increased HoV increases the 
effective octane rating at a rate of about 0.15 ON/ethOH v%, and that the rate of increase is 
approximately linear in ethOH fraction. Still other studies provide evidence that the impact of 
HoV is at least partially included in the RON test (Stein et al. 2012; Foong et al. 2013), and may 
not need to be accounted for separately. The latter study indicates that for ethanol fractions 
below about 40%, increasing HoV increases a fuel's effective octane rating at a rate of only about 
40% of the rate of high ethanol blends. The issue is further complicated by the expectation that 
the fuel sensitivity impacts the effectiveness of vaporization cooling. Until further clarification is 
obtained, we adopt the position that a fuel's effective OI is impacted only modestly by HoV, and 
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increases at a rate of about 0.01 ON / (kJ/kg). This is equivalent to 0.06 ON/ethOH v% (cf 0.16 
ON/ethOH v% adopted in Leone et al. (2015) for blends with ethanol fractions greater than 
40%).

Heat of vaporization also impacts engine efficiency through other mechanisms. Here we rely 
largely on the analysis in Jung et al. (2013), which found that vaporization cooling increased the 
thermal efficiency of a boosted, DI engine by about 4.2% between E0 and E85 or 1% for an 
increase in HoV of ~130 kJ/kg. This increase was due to reduced HC/CO emissions (~22%), 
increased pumping work (~-8%), the HoV/LHV ratio1 (~50%), and the balance is due primarily 
to reduced heat transfer. The estimate is likely conservative due to the relatively large 
displacement of the test engine compared to an expected downsized engine displacement.

Although we have limited our considerations to how HoV impacts engine efficiency, it can also 
have other important impacts on engine operation—such as cold-start behavior. 

1.1.3 Flame Speed

There are few studies that directly link fuel flame speed to increased engine efficiency or load. 
High flame speed benefits part-load operation by decreasing burn duration, which also mitigates 
knock at high load. Recent work in a highly boosted, downsized DI engine has shown a 1-2% 
increase in BMEP at fixed spark timing and fueling (Remmert et al. 2014) for fuels formulated to 
have higher flame speeds. However, the flame speeds were not reported and quantification of the 
impact of SL on load or efficiency is not possible. Earlier (Farrell et al. 2003) work clearly 
showed that cycle-averaged fuel consumption in vehicles with lean-burn, stratified DI engines 
can be improved by high SL (potentially high olefin), low aromatic fuels. At high load, engine 
testing showed high aromatic content appeared to be beneficial. The vehicle tests indicated that 
the relative thermal efficiency increased by about 1% for every 2-4 cm/s increase in flame speed, 
depending on the olefin/aromatic content of the fuel. Although these results may not be directly 
applicable to homogeneous SI engines, in the absence of additional data we adopt them as a first 
estimate.

1.1.4 Distillation Characteristics

The distillation characteristics of a fuel can impact vehicle fuel economy through multiple 
mechanisms, all of which are difficult to quantify. For example, fuels with a low Driveability 
Index (a function of the T10, T50, T90 distillation temperatures) may exhibit greater stability and 
tolerate greater combustion timing retard during cold starts, thereby shortening the catalyst 
warm-up phase and decreasing fuel consumption. Distillation characteristics also impact mixture 
formation, potentially affecting both knock propensity and soot formation—though the impact 
can be mitigated in the design process through engine-fuel co-optimization. Here we consider 
only the impact of distillation characteristics on the propensity for low speed pre-ignition (LSPI), 
which will decrease fuel economy by requiring avoidance of fuel-efficient low-speed, high load 
regions in the engine operating map.

Recent studies have indicated that cylinder wall-wetting that leads to detachment of fuel-oil 
droplets from the cylinder wall leads to increased LSPI frequency. A fuel’s distillation 

                                               
1 The HoV/LHV ratio enters in due to the fact that the fuel HoV detracts from the measured LHV, but is energy that 
is available "for free" in an engine application.
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characteristics impact the vaporization times and locations of liquid phase fuel, and fuels with 
low volatility are expected to increase wall-wetting and hence LSPI. In a recent (yet 
unpublished) study that varied fuel distillation characteristics above ~100°C, fuel volatility 
clearly correlated strongly with LSPI frequency. All of the fuels fell within US and European 
volatility specifications. The strongest correlation obtained was with the liquid fuel volume 
remaining at a temperature of 150°C (the approximate liner temperature), which is denoted here 
LFV150.

To express this as an equivalent fuel economy penalty, we assume that the regions of the 
speed/load map avoided due to LSPI correspond to speeds below 2000 rpm and loads above 8 
bar. Unpublished data obtained from a 2L turbocharged engine indicate that during the US06 
cycle 1.3% of the fueled engine cycles fall into this load/speed range, corresponding to 
approximately 2% of the fuel consumed during the cycle. We assume that the brake thermal 
efficiency drops by 10%, from 0.36 to 0.33 (fuel consumption increases from 250 to 275 [g/kW-
hr]), when the LSPI region is avoided, and that the fraction of time spent avoiding the LSPI 
region is proportional to LFV150, up to a maximum of 20%:

[%]
20.0

*02.0*[%]10 150
150 LFV

LFV


Thus, while the Decision Tree classifies all fuel blendstocks with a boiling point less than 190°C 
as gasoline like, the merit function penalizes components with a boiling point greater than 
150°C.

1.1.5 Particulate Matter Index (PMI)

Although additional work is required to clarify its applicability, the PMI of a fuel has been 
shown to correlate with particulate mass emissions from PFI engines as well as DI engines 
(Aikawa et al. 2010; Sobotowski et al. 2015). Depending on the drive cycle, particulate mass can 
increase several times over for a unit increase in PMI. Likewise, particulate number emissions 
have been shown to increase with PMI (Aikawa et al. 2010). As a starting point, we assume that 
mass emissions increase three-fold for every unit increase in PMI. 

The increased particulate emissions can impact both engine efficiency and vehicle cost if they 
necessitate the addition of a gasoline particulate filter (GPF). Although addition of a GPF will 
degrade fuel economy due to both increased pumping losses and increased potential for knock, 
recent studies indicate that the impact is minor (Mamakos 2011; Chan et al. 2013; Kern et al. 
2014; Mamakos et al. 2013). Guided by the analysis in Mamakos et al. (2013), we assume that 
over the vehicle lifetime increased backpressure degrades the fuel economy by 0.5% if a
particulate filter is required—which we assume corresponds to a PMI > 2.0. Added to this is a 
0.17% degradation due to filter regeneration. We also assume that the regeneration frequency is 
proportional to the particulate mass emissions, tripling for every unit increase in PMI and 
incurring an additional efficiency penalty of 0.5% for every unit of PMI above 2.0. 

Incorporating a GPF will also increase the initial cost of the vehicle, which will depend strongly 
on vehicle size. Again following Mamakos et al. (2013), we assume a typical GPF cost of ~$200 
(160 €). Interestingly, accounting for societal benefits and costs as well, Mamakos et al. (2013)
suggest that the net benefit to society of adding a GPF could be negative.
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