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Abstract

In this report, we describe some approaches to calculate the non-linear system of equations
prescribed by the harmonic balance method (HB), a frequency domain analysis technique for
modelling a non-linear system of partial differential equations (PDEs). The approach which we
ultimately pursue can be seen as a time-collocation approach, except that the harmonic balance
equations are obtained weakly (in the sense used in the calculus of variations). This weak for-
mulation allows us to adapt existing transient or stationary PDEs models in the Panzer/Trilinos
framework for frequency domain analysis via the harmonic balance method.

We begin with a motivatation for the harmonic balance method and outline its mathemati-
cal formulation. We then describe some approaches to calculate the harmonic balance formu-
lae, and their means of implementation through the modification of a Panzer tutorial problem -
a stationary Helmholtz equation with a constant Dirichlet boundary condition and a non-linear
source. For each of these approaches, we outline the necessary adaptations to solve the corre-
sponding (periodically) transient Helmholtz equation with a (temporally) periodic Dirichlet
boundary condition and non-linear source.

3



Acknowledgment

The author would like the especially thank the Charon team - Suzey Gao, Gary Hennigan,
Larry Musson, and Mihai Negoita - for their encouragement and guidance. They have all been
excellent buddies and mentors. Thanks are also due to many Trilinos developers from whom the
author has shared patient, helpful, and insightful conversations: Eric Phipps, Roger Pawlowski,
Stephen Bond, Kara Peterson, and Jason Gates.

4



Contents

1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.1 Motivation for the HB method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Mathematical overview of the HB method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Example: Lotka-Volterra system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 HB implementation in Troyanovsky’s thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1 Discretization scheme in the frequency domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Newton method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 Preconditioner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4 Linear solver: MGS-GMRES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5 Reverting from frequency domain to time domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.1 Factors for numerical accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 Factors for numerical efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3 Alternatives and modifications for modelling periodic responses . . . . . . . . . . . . . . . . . 25

4 Adapting a transient PDE for HB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5 Mathematical description of approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.1 Method of Undetermined Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.2 Time Collocation Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6 Implementation of approaches in Panzer/Trilinos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.1 Method of Undetermined Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.2 Time Collocation Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Figures

1 Example Box and Diamond truncation schemes for M = 2, ~ω = (30Hz,11Hz) . . . . . . 15
2 Caution for choosing temporal collocation points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3 Truncation of a square wave at the first 10, 50, and 250 positive integer harmonics. . . 23

Tables

1 Second-order harmonic balance of dx
dt − αx + βxy = 0 with (ω1 > ω2 > 0) . . . . . . . . . . 12

5



This page intentionally left blank.



1 Background

The Harmonic Balance method (HB) is a technique applied to approximate periodic steady
state solutions of transient partial differential equations (PDEs). Like a standard finite element
method (FEM), it approximates the PDE spatially by an algebraic system of equations. Whereas
a standard time-domain FEM uses, say, an implicit Backward-Euler method to march forward in
time, the HB method incorporates the time dimension as part of the FEM scheme by resolving the
temporal dimension with periodic sine and cosine functions at each spatial node. HB is particu-
larly efficient when the forcing term is quasi-periodic (in time) with few modes, and also when the
degree of non-linearity in the PDE is not too great. We note these considerations below, comparing
its advantages to alternative approaches such as the shooting method and the standard FEM.

1.1 Motivation for the HB method

A standard transient FEM can be used to approximate the periodic steady state solution of a
PDE by allowing the simulation to run until the transient behavior all but disappears. However,
this approach must overcome some major difficulties:

1. Too many time steps may be required in order for the system to (nearly) reach its periodic
steady-state. If this is the case, simulating an adequte number of time steps can be pro-
hibitively expensive.

2. Simulation of a transient system with a mixed frequency input may require an extremely
small time step size to resolve great oscillations. This is the case, for example, if a multi-tone
input signal contains widely spaced frequencies f1 and f2, for which a time step size of 1

f1 f2

is recommended.

Troyanovsky implements a harmonic balance method to address these points for the problem of
simulating distortion in RF/microwave semiconductor devices [Tro98]. The key advantages of
HB over a standard time domain FEM with (e.g., Backward-Euler) transient approximation are
that HB:

1. directly captures the steady state response,

2. performs equally robustly for two spectral tone inputs with different spacing, and

3. efficiently handles distributed linear components.

There is no free lunch, though. HB requires a larger number of degrees of freedom. For a
standard piecewise linear FEM on N spatial nodes (and hence N degrees of freedom per depen-
dent variable), and for which there are H frequencies to be accounted for, the HB method results
in a system of equations involving N · (2H + 1) degrees of freedom - one cosine and one sine per
fundamental harmonic, plus the constant offset (the average over the period) - per dependent vari-
able. Nonetheless, Troyanovsky claims HB has advantages in certain situations, and he optimizes
the non-linear solver method to combat this larger number of degrees of freedom.
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1.2 Mathematical overview of the HB method

The commonplace harmonic balance method is also appropriately called the harmonic Newton
method. The HB principle is that of representing all functions in a truncated Fourier expansion
(hence “harmonic”) and then equating the sine and cosine coefficients (hence “balance”). This
typically results in a non-linear algebraic system which is then solved using the Newton method.
We note that finite Fourier series are usually called quasi-periodic signals in this context.

Suppose we are solving a non-linear (real-valued) PDE

∂u
∂t

= F(∇u,u,x, t)

for a function u(x, t) which we expect to be periodic. For example, consider the drift-diffusion
operator

F≡∇ · (D∇u) + β · ∇u + R(u) + F(t)

with a periodic forcing term F(t) and a non-linear reaction term R(u).

The HB principle adopts the ansatz that the solution is well-approximated by the real part of a
finite Fourier series, expressible in a basis of sines and cosines:

u(x, t) = Re

(
H

∑
h=−H

ûωn(x) · eiωnt

)

= u0(x) +
H

∑
h=1

uR
ωn

(x) · cos(ωnt) +
H

∑
h=1

uI
ωn

(x) · sin(ωnt)

for some collection of non-negative frequencies Ω≡ {ω0 = 0,ω1, . . . ,ωH} satisfying ω1 > ω2 > · · ·>
ωH. The choice of a collection of frequencies is called the truncation scheme of the harmonic balance
method.

The HB technique exploits the following algebraic and differential trigonometric identities:

resolves spatial non-linearities


sin(ωt)sin(ηt) = 1

2 [cos ((ω− η) t)− cos ((ω + η) t)]
sin(ωt)cos(ηt) = 1

2 [sin ((ω− η) t) + sin ((ω + η) t)]
cos(ωt)cos(ηt) = 1

2 [cos ((ω− η) t) + cos ((ω + η) t)]

periodicity linearizes temporal derivative

{
d
dt cos(ωt) = −ω · sin(ωt)
d
dt sin(ωt) = ω · cos(ωt)

Of course, the temporal derivative operator (and any of its powers) becomes a linear operator in
the frequency domain. The spatial non-linearities in the system of PDEs are expressible linearly in
a sine and cosine basis by applying the product-to-sum identities.

For example, if the reaction term is R(u) = u2 and if we adopt a solution ansatz includin an
ω harmonic, then the reaction term contains a sin(ωt)cos(ωt) as a summand. This term can be
captured by the ansatz (i.e., can itself be expressed in the form of the ansatz) by the inclusion of
sin(2ωt) in the HB basis. This suggests that, if we’d like to resolve a second-order interaction and
if we have ω in the frequency basis of the forcing term F(t), we should at least include 2ω as well.
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Furthermore, we can restrict the frequency basis to be entirely non-negative because the even-
ness and odd-ness of cosine and sine provide the useful identities

cos(ω) = cos(−ω)
sin(ω) = −sin(−ω)

whenever ω is negative, so that the result is expressible in positive frequency harmonics.

Because of these properties, it is common to take Ω of the truncation scheme to be a subset of
the integer linear combinations of some fundamental frequencies. For example, if the forcing term
is given by

F(t) =
M

∑
i=1

FR
ωi

(
cos(ωi) + FI

ωi
sin(ωi)

)
,

then it is reasonable to take Ω to be a subset of {k1ω1 + k2ω2 + · · ·+ kMωM|ki ∈Z,∑M
i=i kiωi ≥ 0}.

With respect to this truncation scheme, we say that the frequency η = k1ω1 + k2ω2 + · · ·+ kMωM
has:

order ord(ω) := |k1|+ |k2|+ · · ·+ |kM|
index ind(ω) := (k1,k2, . . . ,kM)

We say that η comes from intermodulation if more than one ki is non-zero. The index set of the
truncation scheme is the set of indices which record the frequencies in the truncation scheme,
I = {(k1,k2, . . . ,kM)|∑M

i=1 kiωi ∈ Ω}. The order of the truncation scheme is equal to max
ω∈Ω

ord(ω), and

the fundamental frequencies of the truncation scheme are ω1,ω2, . . . ,ωM - which themselves have in-
dices (1,0, . . . ,0), (0,1,0, . . . ,0), . . . , (0, . . . ,0,1). We will adopt a vector notation for indices and the
fundamental frequencies, so that ~ω := (ω1,ω2, . . . ,ωM).

With this notation, it is sensible to alternatively express the ansatz concisely as

u(x, t) = u0(x) + ∑
~k∈I

uR
~k·~ω(x) · cos(~k · ~ωt) + ∑

~k∈I
uI
~k·~ω(x) · sin(~k · ~ωt).

1.3 Example: Lotka-Volterra system

Consider the simple first-order, non-linear Lotka-Volterra predator-prey model, a system of
transient ODEs with a periodic solution (for appropriate parameters):

dx
dt

= αx− βxy

dy
dt

= −γy + δxy
(1)

Suppose we are only interested in a single mode ω of the system, truncating at H = 1 and hence
only considering first-order interactions. Applying the HB principle, we arrive at the quasi-
periodic forms:

x(t) = X0 + XR
ωcos(ωt) + X I

ωsin(ωt)

y(t) = Y0 + YR
ω cos(ωt) + Y I

ωsin(ωt)
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We compute the terms appearing in the Lotka-Volterra equations. The temporal derivatives
are simply:

dx
dt

= −ωXR
ωsin(ωt) + ωX I

ωcos(ωt)

dy
dt

= −ωYR
ω sin(ωt) + ωY I

ωcos(ωt)

Whereas the interaction term is given by

x · y = X0Y0 + X0YR
ω cos(ωt) + X0Y I

ωsin(ωt)

+ XR
ωY0cos(ωt) + XR

ωYR
ω cos(ωt)cos(ωt) + XR

ωY I
ωcos(ωt)sin(ωt)

+ X I
ωY0sin(ωt) + X I

ωYR
ω sin(ωt)cos(ωt) + X I

ωY I
ωsin(ωt)sin(ωt),

and becomes (by applying the product-to-sum rules)

x · y = X0Y0 + X0YR
ω cos(ωt) + X0Y I

ωsin(ωt)

+ XR
ωY0cos(ωt) + XR

ωYR
ω

1
2

[cos(2ωt) + 1] + XR
ωY I

ω

1
2

sin(2ωt)

+ X I
ωY0sin(ωt) + X I

ωYR
ω

1
2

sin(2ωt) + X I
ωY I

ω

1
2

[1− cos(2ωt)] ,

which is ultimately expressible in the {1, cos(1ωt), sin(1ωt), cos(2ωt), sin(2ωt)} basis as

x · y =
[

X0Y0 +
1
2

XR
ωYR

ω +
1
2

X I
ωY I

ω

]
+
[

X0YR
ω + XR

ωY0

]
cos(ωt) +

[
X0Y I

ω + X I
ωY0

]
sin(ωt)

+
[

1
2

XR
ωYR

ω −
1
2

X I
ωY I

ω

]
cos(2ωt) +

[
1
2

XR
ωY I

ω +
1
2

X I
ωYR

ω

]
sin(2ωt).

Finally, by realizing the Lotka-Volterra system as

prey equation
{

dx
dt − αx + βxy = 0

predator equation
{

dy
dt + γy− δxy = 0

we arrive at the following system of non-linear equations (by balancing the amplitudes of like
harmonics):

prey equation



cos(0ωt) term 0 = −αX0 + β
[
X0Y0 + 1

2 XR
ωYR

ω + 1
2 X I

ωY I
ω

]
sin(0ωt) term 0 = 0
cos(1ωt) term 0 = ωX I

ω − αXR
ω + β

[
X0YR

ω + XR
ωY0

]
sin(1ωt) term 0 = −ωXR

ω − αX I
ω + β

[
X0Y I

ω + X I
ωY0

]
cos(2ωt) term 0 = β

[ 1
2 XR

ωYR
ω − 1

2 X I
ωY I

ω

]
sin(2ωt) term 0 = β

[ 1
2 XR

ωY I
ω + 1

2 X I
ωYR

ω

]

predator equation



cos(0ωt) term 0 = γY0 − δ
[
X0Y0 + 1

2 XR
ωYR

ω + 1
2 X I

ωY I
ω

]
sin(0ωt) term 0 = 0
cos(1ωt) term 0 = ωY I

ω + γYR
ω − δ

[
X0YR

ω + XR
ωY0

]
sin(1ωt) term 0 = −ωYR

ω + γY I
ω − δ

[
X0Y I

ω + X I
ωY0

]
cos(2ωt) term 0 = −δ

[ 1
2 XR

ωYR
ω − 1

2 X I
ωY I

ω

]
sin(2ωt) term 0 = −δ

[ 1
2 XR

ωY I
ω + 1

2 X I
ωYR

ω

]

(2)
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However, since we assume the solution is real (so that the balancing of sin(0ωt) is trivial) and
that the solution is only to be approximated to the first order in the frequency basis, we discard
the equations resulting from balancing the coefficients of harmonics not expressible by the ansatz.
Thus, we arrive at

prey equation


cos(0ωt) term 0 = −αX0 + β

[
X0Y0 + 1

2 XR
ωYR

ω + 1
2 X I

ωY I
ω

]
cos(1ωt) term 0 = ωX I

ω − αXR
ω + β

[
X0YR

ω + XR
ωY0

]
sin(1ωt) term 0 = −ωXR

ω − αX I
ω + β

[
X0Y I

ω + X I
ωY0

]
predator equation


cos(0ωt) term 0 = γY0 − δ

[
X0Y0 + 1

2 XR
ωYR

ω + 1
2 X I

ωY I
ω

]
cos(1ωt) term 0 = ωY I

ω + γYR
ω − δ

[
X0YR

ω + XR
ωY0

]
sin(1ωt) term 0 = −ωYR

ω + γY I
ω − δ

[
X0Y I

ω + X I
ωY0

]
(3)

Note that this results in 6 equations in the 6 unknowns (the coefficients of the ansatz). At this
stage, the HB method proceeds to solve the resulting system of N · (2H + 1) non-linear equations,
and transforms the solution (solved in the frequency domain) back into a time-domain expression.
Here, N = 2 because there are two quantities whose values vary over time.

We note a few observations. The linear terms of the differential equation produce linear sum-
mands in the harmonic balance. The non-linear terms of the differential equation produce non-
linear summands in the harmonic balance at orders prescribed exactly by the product-to-sum
trigonometric identities (which includes higher- and lower- order frequencies).

To demonstrate a higher-order truncation scheme and to better understand the structure of the
harmonic balance equations, we now consider a secord order truncation HB method in which the
solution ansatz takes the form

x(t) = X0 + XR
ω1

cos(ω1t) + X I
ω1

sin(ω1t) + XR
ω2

cos(ω2t) + X I
ω2

sin(ω2t)

y(t) = Y0 + YR
ω1

cos(ω1t) + Y I
ω1

sin(ω1t) + YR
ω2

cos(ω2t) + Y I
ω2

sin(ω2t)

We will not explicitly carry out the procedure of the harmonic balancing as above, but we arrange
the terms of the resulting equations in Table 1.

Here, we made use of the following symbolic formulae (which ensures the expressions on the
right hand side are expressible the harmonic truncation scheme):

Formulae for ω > η

cos(ωt)cos(ηt) =
1
2

[cos ((ω− η) t) + cos ((ω + η) t)]

cos(ωt)sin(ηt) =
1
2

[−sin ((ω− η) t) + sin ((ω + η) t)]

sin(ωt)cos(ηt) =
1
2

[+sin ((ω− η) t) + sin ((ω + η) t)]

sin(ωt)sin(ηt) =
1
2

[cos ((ω− η) t)− cos ((ω + η) t)]

Formulae for ω < η

cos(ηt)cos(ωt) =
1
2

[cos ((ω− η) t) + cos ((ω + η) t)]

cos(ηt)sin(ωt) =
1
2

[+sin ((ω− η) t) + sin ((ω + η) t)]

sin(ηt)cos(ωt) =
1
2

[−sin ((ω− η) t) + sin ((ω + η) t)]

sin(ηt)sin(ωt) =
1
2

[cos ((ω− η) t)− cos ((ω + η) t)]

XR
ω cos(ωt)

YR
η cos(ηt)

(cc)(sc) (cs)

X I
ω cos(ωt)

YI
η cos(ηt)

(ss)

Note that the last four bands in Table 1 record the product interactions ω− η in the frequency
bins (1,0)− (1,0), (0,1)− (0,1), (1,0)− (0,1), and (0,1)− (1,0), respectively and in order. Fur-
thermore, within each of these four bands are four rows, recording the cos-cos, cos-sin, sin-cos,
and sin-sin interactions, respectively and in order. In general, higher-order interactions (products)
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Table 1. Second-order harmonic balance of dx
dt − αx + βxy = 0

with (ω1 > ω2 > 0)

Order 0th 1st 2nd

Freq 0 = ω0 ω1 ω2
[

2
0

]
· ~ω

[
1
1

]
· ~ω

[
1
−1
]
· ~ω

[
0
2

]
· ~ω

Term cos sin cos sin cos sin cos sin cos sin cos sin cos sin
Prey equation: dx

dt − αx + βxy = 0
dx
dt ω2X I

(1,0) −ωrXR
(1,0) ω1X I

(0,1) −ω1XR
(0,1)

[
2
0

]ᵀ
~ω X I

(2,0) −
[

2
0

]ᵀ
~ω XR

(2,0)

[
2
0

]ᵀ
~ω X I

(2,0) −
[

1
1

]ᵀ
~ω XR

(1,1)

[
1
−1
]ᵀ

~ω X I
(1,−1) −

[
1
−1
]ᵀ

~ω XR
(1,−1)

[
0
2

]ᵀ
~ω X I

(0,2) −
[

0
2

]ᵀ
~ω XR

(0,2)
−αx −αX(0,0)
+βxy βX(0,0)Y(0,0)

βXR
(1,0)Y(0,0) βX I

(1,0)Y(0,0)

βX(0,0)YR
(1,0) βX(0,0)Y I

(1,0)
βXR

(0,1)Y(0,0) βX I
(0,1)Y(0,0)

βX(0,0)YR
(0,1) βX(0,0)Y I

(0,1)
1
2 βXR

(1,0)Y
R
(1,0)

1
2 βXR

(1,0)Y
R
(1,0)

1
2 βXR

(1,0)Y
I
(1,0)

1
2 βX I

(1,0)Y
R
(1,0)

1
2 βXR

(1,0)Y
R
(1,0) − 1

2 βXR
(1,0)Y

R
(1,0)

1
2 βXR

(0,1)Y
R
(0,1)

1
2 βXR

(0,1)Y
R
(0,1)

1
2 βXR

(0,1)Y
I
(0,1)

1
2 βX I

(0,1)Y
R
(0,1)

1
2 βXR

(0,1)Y
R
(0,1) − 1

2 βXR
(0,1)Y

R
(0,1)

1
2 βXR

(1,0)Y
R
(0,1)

1
2 βXR

(1,0)Y
R
(0,1)

1
2 βXR

(1,0)Y
I
(0,1) − 1

2 βXR
(1,0)Y

I
(0,1)

1
2 βX I

(1,0)Y
R
(0,1) + 1

2 βX I
(1,0)Y

R
(0,1)

− 1
2 βX I

(1,0)Y
I
(0,1)

1
2 βX I

(1,0)Y
I
(0,1)

1
2 βXR

(0,1)Y
R
(1,0)

1
2 βXR

(0,1)Y
R
(1,0)

1
2 βXR

(0,1)Y
I
(1,0) + 1

2 βXR
(0,1)Y

I
(1,0)

1
2 βX I

(0,1)Y
R
(1,0) − 1

2 βX I
(0,1)Y

R
(1,0)

− 1
2 βX I

(0,1)Y
I
(1,0)

1
2 βX I

(0,1)Y
I
(1,0)

are captured in the frequency domain (as sums) by the following analytic identities:

m

∏
j=1

cos(ωj) =
1

2m ∑
~e∈{1,−1}m

cos(~e · ~ω)

n

∏
k=1

sin(ηk) =
1
2n ∑

~f∈{1,−1}n

cos
(
~f ·~η − ~f ·~1 · π

2

)
[

m

∏
j=1

cos(ωj)

]
·
[

n

∏
k=1

sin(ηk)

]
=

1
2m+n+1 ∑

~e∈{1,−1}m

~f∈{1,−1}n

cos
((

~ω
+~η

)
·
(

~e
~f

)
−
(

~0m
~f

)
·
(

~0m
~1

)
· π

2

)

+
1

2m+n+1 ∑
~e∈{1,−1}m

~f∈{1,−1}n

cos
((

~ω
−~η

)
·
(

~e
~f

)
+
(

~0m
~f

)
·
(

~0m
~1

)
· π

2

)

However, it should be noted that although these product-to-sum formulae are analytically correct,
but are not meaningful in the adopted harmonic truncation scheme. In particular, when

(
~ω
−~η

)
·(

~e
~f

)
< 0, then the coefficient of this interaction should be recorded in the the

(
~ω
−~η

)
·
(

~e
~f

)
≥ 0

frequency bin (with the opposite sign for sine bases, and the same sign for cosine bases).

2 HB implementation in Troyanovsky’s thesis

Troyonovsky implemented HB in the Stanford PISCES TCAD simulator, which uses a con-
trol volume method (CVM) for spatial discretization. The equations we seek to model are the
isothermal lattice semiconductor electron and hole drift-diffusion system coupled with the Pois-
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son equation, called the van Roosebroeck semiconductor equations:

∇ · (−ε∇Ψ) = q
(

p− n + N+
D − N−A

)
∂n
∂t

=
1
q
∇ · Jn − R Jn = qDn∇n− qµnn∇Ψ

∂p
∂t

= −1
q
∇ · Jp − R Jp = −qDp∇p− qµp p∇Ψ

Here, Ψ is the electric potential, n and p are the electron and hole concentrations, N+
D and N−A are

the donor and aceptor doping concentrations, q is the fundamental electron charge, ε is the electric
permittivity of the semiconductor, R is a regeneration term, µn and µp are the carrier mobilities,
and Dn and Dp are the carrier diffusivity coefficients.

Troyanovsky presents and compares a few harmonic balance methods in his thesis [Tro98],
the efficiency of each hinging on accelerating the linear solver required in the Newton method
for the solution of the non-linear system of equations obtained by discretization of the semi-
conductor equations. The approaches resemble that of [FML96], in which a block-diagonal pre-
conditioner (with some off-diagonal blocks for highly non-linear systems) is advocated. This, in
essence, makes implemented harmonic balance approach a GMRES/Krylov subspace method as-
sisted Newton method. The present section details each component of the implementation.

We remark that the van Roosbroeck semiconductor equations proposed in 1950 [VR50] is based
on the assumption of Maxwell-Boltzmann statistics and the Einstein relation (to determine the
diffusivity D = µkBT as a function of the carrier mobilities µ and the Boltzmann constant kB).
Since its formulation, this model has been extensively analyzed. Typically in the analyses, the
physically appropriate charge-neutrality and thermal equalibrium assumptions are imposed.

The existence of a stationary solution was established in [Jer85]. The transient, mixed Dirich-
let/homogeneous Neumann boundary value problem has been analyzed [Jer87], even for the
assumption of Fermi-Dirac statistics [GG89]. In these analyses, weak (and physically realistic)
assumptions are placed on the diffusion coefficient functions. Recently, the transient model was
formulated as a Boltzmann equation with a low–density collision operator, in which the existence
of a solution follows readily from an application of the Fredholm alternative [Jün09].

2.1 Discretization scheme in the frequency domain

Since PISCES implements a control volume method, the equations above are re-expressed and
evaluated at each control volume Ωk (and its boundary ∂Ωk) as

‹
∂Ωk

εEdS =
˚

Ak

q
(

p− n + N+
D − N−A

)
dA

‹
∂Ωk

JndS =
˚

Ak

q
(

R +
∂n
∂t

)
dA

‹
∂Ωk

JpdS =
˚

Ak

−q
(

R +
∂p
∂t

)
dA

The left-hand side integrals are evaluated by assuming that the current densities Jp and Jn along
with the electrostatic potential E ≡ −∇Ψ are constant along each edge, and a finite-difference
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approximate is used for the integration over each component of ∂Ωk . The right-hand side integrals
are integrated over the control volume with the assumption that the integrands are constant within
each control volume.

Stabilization

Troyanovsky adopts the Scharfetter-Gummel stabilization scheme. Whenver the potential dif-
ference between the endpoints of an edge ekm exceeds 2kBT

q , we replace the flux with

Jn · skm =
qµkmβkm

dkm

nk

Ψk−Ψm
βkm

e
Ψk−Ψm

βkm − 1
− nm

Ψm−Ψk
βkm

e
Ψm−Ψk

βkm − 1


where skm is the (directed) unit tangent vector from node vk to vm, µkm is the effective average
mobiility along the edge, and

βkm =
βk − βm

ln( βk
βm

)
with β =

Dn

µn
.

Harmonic truncation frequency basis

Let V = {xn}N−1
n=0 be the collection of vertices of the mesh. A carrier concentration u(x, t) is

evaluated at these N spatial points. Applying the HB principle at each node xn, the approximating
quasiperiodic solution is taken to have the form

u(xn, t) = Un(t) = Un0 +
H

∑
h=1

[
UR

nhcos(ωht)−U I
nhsin(ωht)

]
.

Some common and simple truncation schemes are

1. Box Method: Choose B1, . . . BH > 0. Demand each index to satisfy |ki| < Bi.

2. Diamond Method: Choose D > 0. Demand |k1|+ · · ·+ |kH | < D

3. Combination of Box and Diamond

We depict the truncation schemes by marking subsets of ZM. When M = 2, this is easy to visualize.
We produce an example in Figure 2.1. Note that all the indices are contained in the hyperspace
~k · ~ω ≥ 0, and that the number of harmonics H can be readily computed in each of the Box and
Diamond schemes:

Proposition 2.1. Let~k = (k1, . . . ,kM) ∈ZM denote the lattice points which correspond to the indices of the
truncation scheme. Suppose ~ω = (ω1, . . . ,ωM) are the fundamental frequencies. Let B1, . . . , BM be the Box
method pure harmonic cut-offs, and let P be the Diamond method pure harmonic cut-off. Then the number
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of frequencies in the Box and Diamond truncation schemes are given by

HBox =
(B1 + 1)(B2 + 1) · · · (BM + 1)

2
+

1
2

HDiamond =
1
2

min{M,P}

∑
`=0

2`

(
M
`

)(
P
`

)
+

1
2

Figure 1. Example Box and Diamond truncation schemes for
M = 2, ~ω = (30Hz,11Hz)

k1

Box (order 3, B1 = B2 = 3)

k2

k2 = −ω1
ω2

k1

k1

Diamond (order 4, D = 5)

k2

k2 = −ω1
ω2

k1

Proof of Proposition 2.1. Geometrically, HBox is the number of lattice points inside the intersection
of the closed hyperspace H+ = {~k|~k · ~ω ≥ 0} with the closed box B = [−B1, B1]× ·[−BM, BM]. Let
us first count the total number of points in B. Since the fundamental frequencies are not commen-
surate, i.e., are linearly independent over Q, the hyperplane~k · ~ω = 0 contains only one point,~0.
Note that there are (B1 + 1)(B2 + 1) · · · (BM + 1)− 1 integer points in B \ {~0}. By symmetry, the
hyperplane exactly divides the number of points in B \ {~0} in half. Accounting for the point~0 in
the hyperplane~k · ~ω = 0, we arrive at the formula for HBox.

Similarly, HDiamond is the number of lattice points contained in the intersection of the closed
hyperspace H+ = {~k|~k · ~ω ≥ 0} with the closed diamond D = {~k|∑M

i=1 |ki| ≤ P}. Let us first count
the total number of points in D. Observe that a point~k0 = (k1, . . . ,kM) ∈ D defines a non-negative
integer partition of an integer no greater than P, since |k1|+ · · ·+ |kM| ≤ P and |ki| ≥ 0 for all i.

We briefly discuss such partitions before counting. Suppose that exactly ` of the ki are non-
zero, so that M − ` of the ki are zero, and that |k1| + · · · + |kM| = r. We will call the sum |k1| +
· · · + |kM| of M non-negative integers |ki|, which consists of exactly ` non-zero summands, an
`-partition of the integer r. We say that two `-partitions of r are different if the ordering of
the summands or the values of the non-zero summands are different. Observe that there are
2` points of D (including~k0) which define the same `-partition of r as~k0; this is because the point
(±k1, . . . ,±kM) for any choice of signs also has exactly ` non-zero terms, and 2` signs (in front
of the non-zero ki) can be alternated to account for a different point in D. Second, the number
of integer partitions of r < P into exactly ` positive numbers is equal to

(
P
`

)
; we can see this be

choosing ` numbers p1, . . . , p` from the list 1,2,3, . . . , P, and uniquely correspond to it the partition
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p1 + (p2 − p1) + · · ·+ (p` − p`−1) of the integer p` < P. Finally, observe that ` can be any integer
between 0 and min{P, N}, inclusive. Thus, there are exactly ∑min{M,P}

`=0 2`
(

M
`

)(
P
`

)
points in D.

Accounting for the point~0 as in counting HBox (which is counted in the summation at index
` = 0 corresponding to zero non-zero entries), we arrive at the formula for HDiamond.

Aside: The symmetry of the formula for HDiamond reveals a surprising quality of the Diamond
truncation scheme. Adopting M fundamental frequencies and truncating at order P results in the
same number of degrees of freedom in the harmonic balance as from adopting P fundamental
frequencies and truncating at order M. There is a generating function proof of this fact, as well.
Let L(P, M) denote the number of points~k = (k1, . . . ,kM) ∈ ZM such that |k1|+ · · ·+ |kM| ≤ P. It
has been shown that

∞

∑
P=1

∞

∑
M=1

L(P, M)xPyM =
1

1− x− y− xy
,

as a generating function identity, in which the generating function is obviously symmetric in x
and y.

Large signal distortion characterization

For a quasi-periodic input signal

v(t) =
H

∑
n=1

(
VR

n cos(ωnt) + V I
n sin(ωnt)

)
=R

(
H

∑
n=1

Vneiωn

)
,

a common metric for quantifying its large signal distortion is its nth harmonic distortion:

HDn :=
|Vn|
|V1|

for n ≥ 2. Its total harmonic distortion is defined as

THD :=

√
∞
∑

n=2
|Vn|2

|V1|
.

In the presence of great harmonic distortion, more frequencies should be included in the HB basis.

Temporal collocation points

The harmonic balance method results in a non-linear system of equations in 2H + 1 unknowns,
which are the amplitudes of the quasi-periodic ansatz expansion of the state variable. Observe that
a non-linear term in the PDE will most likely produce a necessary condition for the exact solution
to truly have the form of the ansatz, resulting in an over-determined system of equations. These
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additional conditions come from balancing amplitudes at higher frequencies, and are discarded
in the non-linear system of equations. For example, in the predator-prey system (1), the harmonic
balancing resulted in an over-determined system of equations (2) which was reduced to a system
of equations (3) by balancing only the frequencies present in the solution ansatz.

Some non-linear terms like eu, sin(ωt) · u, u2 (as functions of the state variable u(x, t)) ex-
pressed in the frequency domain are not representable in the harmonic balance ansatz since higher-
order harmonics appear in their Fourier expansion. However, their Fourier series expansion can
be easily truncated, and heuristically, the higher order harmonics have negigible amplitudes.
Other terms non-linear terms like f (u) · u, where f (u) does not have a simple Fourier expansion,
must be transformed approximated in the frequency domain differently.

In order to arrive at a system of 2H + 1 equations in 2H + 1 unknowns, we choose temporal
collocation points~t := (t0, t1, . . . t2H) at which to calculate the Discrete Fourier transform matrix Γ =
Γ(~t) and its inverse Γ−1. We use this to evaluate the non-linear terms like f (u) · u in the harmonic
balancing, resulting in a summand of Γ−1 ( f (u(~t)) · u(~t)

)
. The harmonic balancing then doesn’t

(analytically) come from balancing the coefficients of the cos(ωht) and sin(ωht) terms, but from
(symbolically) balancing the coefficients of cos(ωhti) and sin(ωhti) for all h = 0, . . . , H and i =
0, . . . 2H + 1. Thus, we can drive the residual as close to zero as possible at these points in time. The
collocation points~t should be chosen so the matrices Γ and Γ−1 are well-conditioned for the DFT
and the IDFT.

Aside: The Nyquist Sampling Theorem states that a quasi-periodic signal

f (t) =
H

∑
h=0

Fheiωht

can be recovered by sampling at a rate of 2ωH (if the ωi are given in Hz). Improperly imposing
a frequency band limit, say, if we are attempting to reconstruct f (t) without knowledge of its
frequencies, results in a poor reconstruction. The numerical inaccuracy of the solution obtained
from solving the truncated harmonic balancing system of non-linear equations is related to the
aliasing effect of inadequate sampling.

Figure 2. Caution for choosing temporal collocation points

t0 t1 t2 t3 t4 t5 t6

This phenomenon is illustrated in Figure 2. Even with the 7 time collocation points t0, . . . , t6, the
two depicted harmonics are indistinguisable. In other words, a signal that has been sampled in the
time domain at these collocation points cannot be reliably expressed in a frequency basis which
includes both of these harmonics. So, more time collocation points are required to distinguish
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them. From a different perspective, if the lower frequency is included but the higher frequency
is not included in the truncation scheme, then the harmonic balance method may inaccurately
attribute too much energy to the lower frequency harmonic (since it omits the larger frequency
harmonic).

Frequency Mapping Method

When very few frequencies are included in the harmonic truncation, it may be beneficial to
perform a change of basis in the frequency domain so that all of the frequencies can be realized
as multiples of a single fundamental harmonic. This would allow for the use of a Discrete Fast
Fourier Transform. Frequency remapping methods are referred to as Artificial Frequency Map-
ping, Frequency Mapping Method, and Frequency-remapping Method in the literature.

A frequency remapping replaces the H harmonics

k1ω1 + · · ·+ kMωM

and with another set of H harmonics

k1ω̂1 + · · ·+ kMω̂M.

We define the remapping function to be the assignment

σ : ωi 7→ ω̂i.

A robust frequency remapping method should be easily invertible and has a densely distributed
spectrum in its entire bandwidth. For example, the order P, two-tone box truncation harmonic
balance method has a commonly used remapping function σ : (ω1,ω2) 7→ (2P + 1,1).

An immediate benefit of a FMM for the weak formulation of the HB equations is the reduction
in magnitude of the largest truncated frequency. This allows us weakly obtain the harmonic balance
equations readily via numerical integration over the time domain.

2.2 Newton method

Since the harmonic balance method arrives at a non-linear system of equations, it is customary
to solve it via the Newton method. Starting with an initial guess x0, we calculate the residual r0.
Then, we iterate via

xn =

[
∂F

∂x

∣∣∣∣
xn−1

]−1

F(xn−1) + δn−1.

The linearized problem may still be difficult to solve due to the sheer size of the matrix involved.
Where the standard backward Euler method deals with a N × N matrix, we are now faced with a
N(2H + 2)× N(2H + 2) matrix. More will be said of this linearized problem, shortly.

HB Jacobian

The residual vector is of length N(2H + 2) (we include the sin(0t) term for consistency in the
assembly of the HB Jacobian). It is formed by concatenation of the N vectors Fn, each of length
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2H + 2 and corresponding to the 2H + 2 frequency coefficients at the nth node:

Fn =



FR
n0
0

FR
n1

FI
n1
...

FR
nH

FI
nH


⇒ F =


F0
F1
...

FN−1

 Xn =



XR
n0
0

XR
n1

X I
n1
...

XR
nH

X I
nH


⇒ X =


X0
X1
...

XN−1



Observe that the HB Jacobian ∂F
∂X is of size N(2H + 2)×N(2H + 2). It has a block form, realized

as an N×N matrix of (2H + 2)× (2H + 2) blocks. The state vector itself is a spectral expansion of
the amplitudes in the frequency domain, recording the amplitudes of each of the 2H + 2 harmon-
ics. For consistency, we can arrange the state vector of these spectral coefficients in the product
lexicographical order on the set {nodes} × {harmonics}.

Explicitly, we have a (2H + 2)× (2H + 2) block

∂Fn

∂Xm
=




∂FR

n0

∂XR
m0

∂FR
n0

∂XI
m0

∂FI
n0

∂XR
m0

∂FI
n0

∂XI
m0




∂FR
n0

∂XR
m1

∂FR
n0

∂XI
m1

∂FI
n0

∂XR
m1

∂FI
n0

∂XI
m1

 · · ·


∂FR

n0

∂XR
mH

∂FR
n0

∂XI
mH

∂FI
n0

∂XR
mH

∂FI
n0

∂XI
mH




∂FR
n1

∂XR
m0

∂FR
N1

∂XI
m0

∂FI
n1

∂XR
m0

∂FI
N1

∂XI
m0




∂FR
n1

∂XR
m1

∂FR
N1

∂XI
m1

∂FI
n1

∂XR
m1

∂FI
N1

∂XI
m1

 · · ·


∂FR

n1

∂XR
mH

∂FR
N1

∂XI
mH

∂FI
n1

∂XR
mH

∂FI
N1

∂XI
mH


...

...
. . .

...
...

...
. . .

...
∂FR

nH

∂XR
m0

∂FR
nH

∂XI
m0

∂FI
nH

∂XR
m0

∂FI
nH

∂XI
m0




∂FR
nH

∂XR
m1

∂FR
nH

∂XI
m1

∂FI
nH

∂XR
m1

∂FI
nH

∂XI
m1

 · · ·


∂FR

nH

∂XR
mH

∂FR
nH

∂XI
mH

∂FI
nH

∂XR
mH

∂FI
nH

∂XI
mH




and from which we can assemble the N · 2 · (H + 1)× N · 2 · (H + 1) HB Jacobian

∂F
∂X

=


∂F1
∂X1

∂F1
∂X2

· · · ∂F1
∂XN

∂F2
∂X1

∂F2
∂X2

· · · ∂F2
∂XN

...
...

. . .
...

∂FN
∂X1

∂FN
∂X2

· · · ∂FN
∂XN


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The assembly of the HB Jacobian is efficiently constructed by the block structure

∂Fn

∂Xm
=


Φ00

nm Φ01
nm · · · Φ0H

nm
Φ10

nm Φ11
nm · · · Φ1H

nm
...

. . .
...

ΦH0
nm ΦH1

nm · · · ΦHH
nm

 =
[
Φhi

nm
]

hi where Φhi
nm =

 ∂FR
nh

∂XR
mi

∂FR
nh

∂XI
mi

∂FI
nh

∂XR
mi

∂FI
nh

∂XI
mi



and Φhi
nm is nothing other than the partial derivative of the hth spectral expansion coefficient at the

nth spatial node, with respect to the ith spectral expansion coefficient at the mth spatial node. Of
course, the 2× 2 size of Φhi

nm is necessary to account for the derivative of the complex function
Fnh(X) = FR

nh(X) + jFI
nh(X) with respect to the complex state variable Xmi = XR

mi + jX I
mi.

2.3 Preconditioner

The diagonal block preconditioner is effective for systems with few to moderate non-linearities.
This is because the diagonal block preconditioner can be obtained in the small signal limit (some-
times referred to as the low-level distorition approximation). Though it is simple to implement,
drawback of a block diagonal preconditioner is that it loses its sparsity when higher orders of
harmonic interactions are included in the truncation scheme. Some authors have proposed a sec-
tioned preconditioner [TYD00].

2.4 Linear solver: MGS-GMRES

Troyanovsky uses the Generalized Minimum RESidual algorithm (GMRES), a Krylov subspace
method involving non-symmetric matrices, to solve the linear system Ax = b. At the kth iteration,
we produce an approximate solution xk and corresponding kth residual

rk := Axk − b.

Each iterate xk belongs to the affine space x0 + Kk, where

Kk := span{r0, Ar0, A2r0, . . . , Akrk}

is the kth Krylov subspace of A with the initial vector r0. It is chosen (uniquely) to minimize the
Euclidean norm of rk, implemented as a least squares problem

min
xk∈x0+Kk

||rk||2 = min
xk∈x0+Kk

||Axk − b||2.

Note that formulating the kth least squares problem requires defining a basis for Kk. The com-
mon implementation of GMRES adopts the Arnoldi process to calculate a basis. The Arnoldi
process is the modified Gram-Schmidt method applied to the (linearly independent) set

{r0, Ar0, A2r0, . . . , AN−1r0},

resulting in an orthonormal basis
{v1,v2, . . . ,vk}
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for the Krylov suubspace Kk. The kth least squares problem is thus determining the k coefficients
a1

k , a2
k , . . . , ak

k to minimize the quantity

||rk||2 :=
∣∣∣∣∣∣(x0 + a1

kv1 + · · ·+ ak
kvk

)
− b

∣∣∣∣∣∣
2

.

Modified Gram-Schmidt

During the process of obtaining an orthonormal basis for the Krylov subspaces, an appropriate
algorithm should be adopted to minimize the accumulation of numerical error.

(Classical) Gram-Schmidt
for i = 1 to n do

w← ui
for j = 1 to i− 1 do

rji = 〈vj,w〉
end for
for j = 1 to i− 1 do

w = w− rjivj
end for
rii = ||w||2
vi← w

rii
end for

Modified Gram-Schmidt
for i = 1 to n do

w← ui
for j = 1 to i− 1 do

rji = 〈vj,w〉
w = w− rjivj

end for
rii = ||w||2
vi← w

rii
end for

The only difference between the classical and modified Gram-Schmidt processes are: in classical
Gram-Schmidt, at each (outer-most) ith step, the projection of the ith original vector to the i − 1
previously constructed vectors are substracted from the ith original vector; in Modified Gram-
Schmidt, at each (outer-most) ith step, the projections are subtracted so as not to accumulate nu-
merical error.

Krylov subspace methods

The GMRES method exploits the Cayley-Hamilton theorem from linear algebra: if A is an
n× n invertible, square matrix, then A is a root of its characteristic polynomial χA

χA(A) = An + cn−1An−1 + · · ·+ c1A + c0 In×n = 0n×n.

Note that the coefficient c0 is the product of the eigenvalues of A, since the roots of χA are exactly
the eigenvalues of A. Invertibility of A ensures c0 6= 0. Manipulating this equation, we easily see
that the inverse A−1 is expressible as a linear combination of powers of A itself:

0n×n = An + cn−1An−1 + · · ·+ c1A + c0 In×n

⇒ 0n×n = An−1 + cn−1An−2 + · · ·+ c1 In×n + c0A−1

⇒ A−1 = − 1
c0

[
An−1 + cn−1An−2 + · · ·+ c1 In×n

]
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So, the solution x0 to Ax = b is readily given by

x0 = − 1
c0

An−1b− cn−1

c0
An−2b− · · · − c2

c0
A1b− c1

c0
In×nb

2.5 Reverting from frequency domain to time domain

The matrix Γ is the Discrete Fourier Transform (DFT) matrix. Its numerical representation
depends on the choice of the 2H + 1 time collocation points. Its inverse, Γ−1, is the Inverse Discrete
Fourier Transform (IDFT) matrix.

Γ =



1 cos(ω1t1) sin(ω1t1) · · · cos(ω1tS) sin(ω1tS)
1 cos(ω2t1) sin(ω2t1) · · · cos(ω2tS) sin(ω2tS)

...
...

...
. . .

...

1 cos(ωHt1) sin(ωHt1) · · · cos(ωHtS) sin(ωHtS)



3 Considerations

3.1 Factors for numerical accuracy

We discuss modifications which may affect numerical accuracy.

Tuning the Box and Diamond harmonic trunctation

The Box and Diamond methods for harmonic truncation can be equivalently thought of as
a choice of a `p metric on ZM and a cut-off R-ball in the `p-norm on the space ZH. For, the
linear combinations k1ω1 + · · ·+ kMωM of the M harmonics correspond to a ZM tuple of numbers
(k1, . . . ,kM). Then, the Box Method simply considers the tuples which lie within an `∞ distance at
most R from the origin, whereas the Diamond Method only considers the tuples which lie within
an `1 distance at most R from the origin. Interpolation between the Box and Diamond methods
can be achieved by choosing p ∈ (0,1) for the `p-norm on ZH.

Gibbs phenomenon

If the input signals are continuously piecewise differentiable, but with discrete jumps at count-
ably many points of discontinuity, then their Fourier truncations poorly estimate their values near
the discontinuity. See Figure 3.1 (borrowed from https://en.wikipedia.org/wiki/Gibbs_phenomenon)
for a depiction of the poor approximation of a square wave.

For the square wave, it is known that any quasi-periodic approximation (with large bandwidth)
under- and over-shoots the true value (depending on whether the discontinuity is approached
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Figure 3. Truncation of a square wave at the first 10, 50, and 250
positive integer harmonics.

from the left or the right) by a value of approximately 0.089489872236 times the value of the jump
at the discontinuity.

If any of the input signals are discontinuous, then their quasi-periodic truncation will experi-
ence Gibbs penomena. In this case, the temporal collocation points should be chosen away from
the discontinuities to avoid the numerical inaccuracies of truncation coming from the over- and
under-shooting.

The collocation points can also be chosed to resolve extremely large gradients (an by analogy
we can think of the discontinuous jumps as infinite gradients). A time-mapped harmonic balance
has been explored [NW99] in which a non-linear change of variable t = λ(t̂) of the time variable t
scales the temporal derivative via the product rule:

d
dt

=
1

λ′(t̂)
d
dt̂

.

One advantage of the time collocation point remapping is that a uniform grid of points can be
used in the t̂ variable, and a Discrete Fourier Transform can be applied.

Aliasing from insufficient harmonics

The Plancherel theorem relates the L2-norm of a T-periodic function to the `2-norm of its fre-
quency spectrum (given by its Fouerier expansion):

f (t) =
∞

∑
n=−∞

f̂ (n)ein 2π
T t

⇒ || f ||L2(R) =
∞

∑
h=−∞

| f̂ (n)|2

where f̂ (n) is the projection of f onto ein 2π
T t given by

f̂ (n) =
1
T

ˆ s=T

s=0
f (s)e−in 2π

T sds.

In general,
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Proposition 3.1. We have the following a priori estimates on the Fourier coefficients of f :

f absolutely continuous ⇒
∣∣∣ f̂ (n)

∣∣∣ ≤ K( f )
|n|

f bounded variation ⇒
∣∣∣ f̂ (n)

∣∣∣ ≤ var( f )
2π|n|

f p-times continuously differentiable ⇒
∣∣∣ f̂ (n)

∣∣∣ ≤
∣∣∣∣∣∣ f (p)

∣∣∣∣∣∣
L1

|n|p

f ∈ C p, ωp = modulus of cty of f (p) ⇒
∣∣∣ f̂ (n)

∣∣∣ ≤ ωp( 2π
n )
|n|

f α-Hölder continuous ⇒
∣∣∣ f̂ (n)

∣∣∣ ≤ K( f )
|n|α

Such a priori estimates of Fourier coefficients inform a choice for the cut-off frequency ωH,
ensuring negigible L2 energy in the tail

∑
n≥ωH

| f̂ (n)|2.

In an effort to make our harmonic balance implementation as paramter-free as possible, we may,
for example, ask the user for a tolerance on the solution approximation. Then, these a priori
Fourier coefficient estimates can be used to determine the truncation order of the harmonic balance
method.

Proof. We will prove the estimate for f ∈ C p.

∣∣∣ f̂ (n)
∣∣∣ = ∣∣∣∣∣
ˆ T

0
f (t)eintdt

∣∣∣∣∣
=

∣∣∣∣∣ f (s)eins
∣∣∣s=T

s=0
−
ˆ T

0
f (t)

1
in

eintdt

∣∣∣∣∣ by integration by parts

=

∣∣∣∣∣0− 1
in

ˆ T

0
f ′(t)eintdt

∣∣∣∣∣ since T-periocity of f gives f (T) = f (0)

≤ 1
|n|

∣∣∣∣∣
ˆ T

0
f ′(t)eintdt

∣∣∣∣∣
...

≤ 1
|n|p

∣∣∣∣∣
ˆ T

0
f (p)eintdt

∣∣∣∣∣ by re-iterating the above (p− 1) times

≤ 1
|n|p

∣∣∣∣∣∣ f (p)
∣∣∣∣∣∣
L1
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3.2 Factors for numerical efficiency

Collocation point sampling affects conditioning of Γ

A near-orthogonal selection method is applied in [KSSV88]. They are motivated by the observa-
tion: a well-conditioned matrix has nearly orthogonal rows. The method was originally proposed
by [KSV86] as an over-sampling-and-optimize approach.

3.3 Alternatives and modifications for modelling periodic responses

Shooting method

The shooting method is an approach to solve the equation

g(u(t)) +
d
dt

q(u(t)) = w(t)

when w is a periodic driving function with period T, and when we expect the solution u to be
periodic with the same period T. Mathematically, this imposes the constraint

x(T) = x(0)

The shooting method has some advantages over HB when HB experieinces difficulties. The
presence of great non-linearities (i.e., expressions that must be written in many modes) depreci-
ates the efficiency of HB. This can be detected by a more populated HB Jacobian, in which case
the Jacobian loses its diagonally dominant form. This makes the Jacobian more difficult to precon-
dition (the commonly used block Jacobian is no longer a sufficient preconditioner, heuristaclly so
because the block Jacobian can be obtained in the small-signal limit).

Shooting method to calibrate HB

Bertazzi-Bonani-Guerrieri-Ghione compare the shooting method and HB method for deter-
mining the steady-state solution of a physics-based device model in [BBGG08]. They observe that
”the shooting method appears more robust from a numerical standpoint, at least for strongly non-
linear conditions, while the HB approach yields better accuracy but is significantly more sensitive
to the initial condition”. In light of this, they propose the following strategy: apply the shooting
method with a limited number of time points to arrive at a good initial condition with which to
start the HB method.

4 Adapting a transient PDE for HB

We briefly summarize the essential terminology for the harmonic balance method in order to
formulate/set notation for a PDE analysis.
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We assume the PDE we would like to numerically solve takes the form

F (u(x, t), f (x, t)) = 0

on a domain Ω ⊂ R3, with solution u(x, t), and where f (x, t) is a quasi-periodic function band-
limited to a specified set of fundamental frequencies ω1 > . . . > ωM > 0, whose frequency spectrum
is supported at positive integer linear combinations of these fundamental frequencies. For a suc-
cessful harmonic balance method, the solution u(x, t) should itself be a quasi-periodic function.
We call ~ω = (ω1, . . . ,ωM) the vector of fundamental frequencies, and M the number of fundamental har-
monics. A harmonic balance method must adopt ~ω and a truncation scheme T ( ZM

∗ which indexes
linear combinations of the fundamental frequencies without loss of information, i.e. |T |= |~ω · T |.
The truncation scheme dictates the truncated frequency basis ~ω · T and the solution ansatz

u(x, t) = U0(x) + ∑
α∈T

[Uc
~α(x)cos(~α · ~ωt) + Us

~α(x)sin(~α · ~ωt)] .

We will assume f takes the corresponding form, following the truncation scheme,

f (x, t) = F0(x) + ∑
~α∈T

[Fc
~α(x)cos(~α · ~ωt) + Fs

~α(x)sin(~α · ~ωt)] .

We call P := max~α∈T ||~α||`∞ the order of the truncation scheme, and H := |T | the total number of har-
monics of the truncation scheme. When necessary, we will order T using the (left-to-right) lex-
icographical order � on ZM

∗ , so that T = {~α1 �~α2 � · · · �~αH}. Note that this lexicographical
ordering reasonably yields:

~α1 · ~ω > · · · >~αH · ~ω.

A successful harmonic balance method first creates a system of equations whose degrees of free-
dom are the coefficients of the solution ansatz, {U0(x),Uc

k(x),Us
k(x)|k = 1, . . . ,2H}, and then min-

imizes F (u) (or some functional of F , in the method of weighted residuals) as much as possible
(in a sense dictated by the FEM, say by GMRES). Of course, when it is known a priori that the so-
lution u is band limited, then a reasonable implementation of the harmonic balance method with a
truncated frequency basis containing the frequency spectrum of u should recover u exactly (up to
machine precision). In this note, our focus lies solely in obtaining the system of harmonic balance
equations.
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5 Mathematical description of approaches

5.1 Method of Undetermined Coefficients

By expressing F (u) analytically in the frequency domain according to the truncation scheme
T , we have the expression

F (u(x, t), f (x, t), t) =F0(x)
(

U0(x),Uc
~γ(x),Us

~γ(x), F0(x), Fc
~γ(x), Fs

~γ(x)
)

+ ∑
~α∈T
F c

~α(x)
(

U0(x),Uc
~γ,Us

~γ, F0, Fc
~γ, Fs

~γ

)
cos(~α ·ωt)

+ ∑
~α∈T
F s

~α(x)
(

U0(x),Uc
~γ(x),Us

~γ(x), F0(x), Fc
~γ(x), Fs

~γ(x)
)

sin(~α ·ωt)

+ ∑
~β∈(ZM

∗ \T )
F c

~β
(x)
(

U0(x),Uc
~γ(x),Us

~γ(x), F0(x), Fc
~β
(x), Fs

~β
(x)
)

cos(~β ·ωt)

+ ∑
~β∈(ZM

∗ \T )
F s

~β
(x)
(

U0(x),Uc
~γ(x),Us

~γ(x), F0(x), Fc
~β
(x), Fs

~β
(x)
)

sin(~β ·ωt)

We adopt the convention that a subscript vector ~γ, especially in the argument of a function, indi-
cates the dependence of that function on all γ ∈ T . In particular, this helps us suppress notation:

F0(U0,Uc
~γ,Us

~γ, F0, Fc
k , Fs

k ) := F0

(
U0,Uc

~α1
,Us

~α1
, . . . ,Uc

~αH
,Us

~αH
, F0, Fc

~α1
, Fs

~α1
, . . . , Fc

~αH
, Fs

~αH

)
The first three summands yields a system of 2H + 1 coefficients F0,F c

~γ,F s
~γ in the 2H + 1 un-

determined coefficients U0(x),Uc
~γ(x),Us

~γ(x). Equating these to zero yields the coupled, non-linear
system of harmonic balance equations. We discard the last two summands for a few reasons: the
are not captured by the ansatz form, their equation to zero would lead to an over-determined
system of equations, and they heuristically have very small/numerically insignificant amplitudes
because of the Plancherel theorem (assuming the solution is L1). Thus, in order to perform the
harmonic balance, we must collect the system of equations

0 = F0(x)(U0(x),Uc
~γ(x),Us

~γ(x), F0(x), Fc
~γ(x), Fs

~γ(x))

0 = F c
~α(x)(U0(x),Uc

~γ(x),Us
~γ(x), F0(x), Fc

~γ(x), Fs
~γ(x))

0 = F s
~α(x)(U0(x),Uc

~γ(x),Us
~γ(x), F0(x), Fc

~γ(x), Fs
~γ(x))

for all~α ∈ T and for each x ∈ Ω. In the discretization, of course, only finitely many {xn|0 ≤ n ≤
N} ⊂Ω are considered. We can then enforce this system of equations weakly:

0 =
ˆ

V
F0(x)(U0(x),Uc

~γ(x),Us
~γ(x), F0(x), Fc

~γ(x), Fs
~γ(x)) · φn dx

0 =
ˆ

V
F c

~α(x)(U0(x),Uc
~γ(x),Us

~γ(x), F0(x), Fc
~γ(x), Fs

~γ(x)) · φn dx

0 =
ˆ

V
F s

~α(x)(U0(x),Uc
~γ(x),Us

~γ(x), F0(x), Fc
~γ(x), Fs

~γ(x)) · φn dx

(4)

for all volumes V in the mesh of Ω, for all nodal basis functions φn (for a first-order FEM), and
arrive at a system of non-linear equations of the harmonic balance.
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5.2 Time Collocation Method

Suppose that ~α · ~ω divides T for all α ∈ T . Let V be a volume in the mesh of Ω, and again
let {xn|0 ≤ n ≤ N} be the mesh vertices with nodal basis functions φn. Observe that the integrals
(over space and time) of F (u, t) against the time-space tensor basis (Fourier-Lagrange) yields:

ˆ
V

[ˆ T

0
F (u, t) · 1dt

]
· φn dx = T

ˆ
V
F0(x)(U0(x),Uc

~γ(x),Us
~γ(x), F0(x), Fc

~γ(x), Fs
~γ(x)) · φn dx

ˆ
V

[ˆ T

0
F (u, t) · cos(~α · ~ωt)dt

]
· φn dx =

T
4π

ˆ
V
F c

~α(x)(U0(x),Uc
~γ(x),Us

~γ(x), F0(x), Fc
~γ(x), Fs

~γ(x)) · φn dx

ˆ
V

[ˆ T

0
F (u, t) · sin(~α · ~ωt)dt

]
· φn dx =

T
4π

ˆ
V
F s

~α(x)(U0(x),Uc
~γ(x),Us

~γ(x), F0(x), Fc
~γ(x), Fs

~γ(x)) · φn dx

the right-hand sides of which coincide (up to a constant scalar) with the right-hand sides of the
system of equations from the Method of Undetermined Coefficients, above. Note that the time-
space tensor product basis is {φn · 1,φn · cos(~α · ~ωt), sin(~α · ~ωt)}. In other words, the weak form
of the harmonic balance equations arises from the L2(V, [0, T])-projection of F (u, t) onto the time-
space tensor basis, and performing only the temporal integral. So, we can alternatively equate the
left-hand sides to 0, and form a superficially different system of harmonic balance equations.

By applying Clenshaw-Curtis quadrature, we can approximate the temporal integration:
ˆ T

0
F (u, t) · 1dt =

1
L

[
L

∑
k=0

wkF (u, tk)

]
ˆ T

0
F (u, t) · cos(~α · ~ωt)dt =

1
L

[
L

∑
k=0

wkF (u, tk) · cos(~α · ~ωtk)

]
ˆ T

0
F (u, t) · sin(~α · ~ωt)dt =

1
L

[
L

∑
k=0

wkF (u, tk) · sin(~α · ~ωtk)

]
Note that ifF (u, t) actually has a frequency spectrum supported on ~ω · T , then this approximation
is exact (even if we use the trapezoidal rule) when L > 2H. Hence, we arrive at

0 =
1
L

L

∑
k=0

wk

[ˆ
V
F (u(x, tk), tk) · φn dx

]
0 =

1
L

L

∑
k=0

wkcos(~α · ~ωtk)
[ˆ

V
F (u(x, tk), tk) · φn dx

]
0 =

1
L

L

∑
k=0

wksin(~α · ~ωtk)
[ˆ

V
F (u(x, tk), tk) · φn dx

] (5)

an alternative formulation to the system of non-linear harmonic balance equations.

6 Implementation of approaches in Panzer/Trilinos

In this section we outline means for obtaining the harmonic balance equations corresponding
to an arbitrary PDE model implemented in the Panzer/Trilinos framework, with respect to the
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approaches described in the previous section. By minimally modifying the existing time-domain
(transient or stationary) FEM model, and by externally handling the harmonic balance calculations
(with respect to the time-domain equation set), we seek to gain the capability to model any time-
domain equation set in the frequency domain with few adaptations. For the sake of concreteness,
we will work with a Panzer tutorial problem: a stationary Helmholtz equation on a 2-D domain,
with a constant Dirichlet boundary condition and a non-linear source term. The tutorial files
themselves can be found in the Trilinos repository at:

{Trilinos directory}/packages/panzer/adapters-stk/tutorial/step0*/

However, the Helmholtz equation and the contribution of a non-linear source term are exercises
to be completed in the tutorial. The resulting files we work with are:

main.cpp
Step01_LinearFunction.cpp
Step01_SinXSinYFunction.cpp
Step01_BCStrategy_Dirichlet_Constant_decl.hpp
Step01_BCStrategy_Dirichlet_Constant.hpp
Step01_BCStrategy_Dirichlet_Constant_impl.hpp
Step01_BCStrategy_Factory.hpp
Step01_BCStrategy_FreqDom_Dirichlet_decl.hpp
Step01_BCStrategy_FreqDom_Dirichlet.hpp
Step01_BCStrategy_FreqDom_Dirichlet_impl.hpp
Step01_ClosureModel_Factory.hpp
Step01_ClosureModel_Factory_impl.hpp
Step01_ClosureModel_Factory_TemplateBuilder.hpp
Step01_EquationSetFactory.hpp
Step01_EquationSet_Helmholtz.hpp
Step01_EquationSet_Helmholtz_impl.hpp
Step01_EquationSet_Projection.hpp
Step01_EquationSet_Projection_impl.hpp
Step01_LinearFunction.hpp
Step01_LinearFunction_impl.hpp
Step01_SinXSinYFunction.hpp
Step01_SinXSinYFunction_impl.hpp
input.xml

We will refer to an arbitrary transient PDE model as EquationSet TimeDomain. For our pur-
poses, these are derived from panzer::EquationSet DefaultImpl. With the aforementioned goals
in mind, we create a new equation set

EquationSet FreqDom : panzer::EquationSet DefaultImpl

which constructs the harmonic balance residuals inside its

EquationSet FreqDom : buildAndRegisterEquationSetEvaluators()
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member function by instantiating a EquationSet TimeDomain object and calling its corresponding
member function

EquationSet TimeDomain : buildAndRegisterEquationSetEvaluators()

appropriately. The precise details and construction of the harmonic balance residuals depends on
the approach. Concretely, we create these new files for the frequency domain equation set and also
for a library of calculators of the various harmonic balance parameters (calculating the truncation
order, truncation scheme, ordering the harmonics, dealing with the multi-indices, etc.)

Step01_EquationSet_FreqDom.hpp
Step01_EquationSet_FreqDom_impl.hpp

Step01_FreqDom_Parameters.cpp

In the following, the descriptions of the implementations can be almost completely contained
within these new files. This is in accordance with our goal of minimally affecting the existing
EquationSet TimeDomain files.

6.1 Method of Undetermined Coefficients

Observe that the finite element numerical integration of
´

VF (u, t)φndx in the system of equa-
tions (4) provides us with a formula relating the coefficients of u over space, for a fixed point in
time. The structure of this formula determines the formulae F0, F c

~γ, F s
~γ.

Record the transient residual formula

Create degrees of freedom which are the amplitudes U0,Uc
~γ,Us

~γ of the solution ansatz. If the
formula can actually be recovered, then we can create a new “Fourier transform” evaluator which
takes that formula and performs the appropriate evaluations on the U0,Uc

~γ,Us
~γ to calculate the

method of undetermined coefficients approach to the harmonic balance formulae F0(U0,Uc
~γ,Us

~γ),
F c

~α(U0,Uc
~γ,Us

~γ), F s
~α(U0,Uc

~γ,Us
~γ).

Overloading operators (á la Sacado)

Create a new Sacado::Fourier class analogous to the Sacado::Tay Taylor polynomial auto-
matic differention class. With operator overloading, we can re-use the code for the evaluators
from the time domain equation set because the calculation of the residual will automatically per-
form calculations in the truncated Fourier basis.

6.2 Time Collocation Method

Observe that each integral of the summations in the time collocation approach to the harmonic
balance formulae (5) can be seen as the weighted summand, whose value is the residual at time
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tk. So, the system of non-linear equations is simply a weighted linear combination of the FEM
residuals at the L + 1 points in time. This is the approach we are currently pursuing.

Note that, for each of the time collocation points tk, we need a time domain degree of freedom
Uk(xn) with which to evaluate the EquationSet TimeDomain residual evaluators. Note that

Uk(xn) = U(xn, tk) = U0(xn) + ∑
~γ∈I

[
Uc

~γ(xn) · cos (~γ · ~ω · tk) + Us
~γ(xn) · sin (~γ · ~ω · tk)

]
Now, each of the factors cos (~γ · ~ω · tk) and sin (~γ · ~ω · tk) are constants, so Uk(xn) is nothing other
than a linear combination of the frequency domain degrees of freedom, U0, Uc

~γ, and Us
~γ.

Solving this system of equations then gives us L + 1 snapshots in time of the solution. By the
Shannon-Nyquist Sampling theorem, if

L > 2max
~γ∈I
{~γ · ~ω},

then we can recover the time domain expression from the coefficients U0,Uc
~γ,Us

~γ. By this, we mean
that, mathematically speaking, if it is known a priori that the solution is truly band-limited with a
frequency spectrum supported within the harmonic balance truncation basis, then this can recover
the true solution.

Note that this method sums over many time collocation points. A smaller value of L can be
used if we apply a frequency remapping method. Furthermore, in order to efficiently perform this
large summation, we can employ a new Panzer/Phalanx capability - the “contributes to” property
from PHX::EvaluatorWithBaseImpl. Whereas the tutorial problem’s evaluators are registered via:

{
Teuchos::ParameterList p;

p.set("Sum Name", dof_name_+"timedom_res_at_time_coll_pt");
p.set("Values Names", residual_operator_names_RCP);
p.set("Data Layout", basis->functional);

RCP< PHX::Evaluator<panzer::Traits> >
op = rcp(new panzer::Sum<EvalT,panzer::Traits>(p));

fm.template registerEvaluator<EvalT>(op);
}

we now instead register them via:

{
Teuchos::ParameterList p;

p.set(‘‘Sum Name’’, dof_name_+’’timedom_res_at_time_coll_pt’’);
p.set(‘‘Values Names’’, residual_operator_names_RCP);
p.set(‘‘Data Layout’’, basis->functional);
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// begin: use the ‘‘contributes to’’ Panzer capability
RCP< PHX::EvaluatorWithBaseImpl<panzer::Traits> >
op = rcp(new panzer::Sum<EvalT,panzer::Traits>(p));

PHX::Tag<typename EvalT::ScalarT>
tag0(‘‘FreqDom Residual’’,basis->functional);

op->addContributedField(tag0);
// end: use the ‘‘contributes to’’ Panzer capability

fm.template registerEvaluator<EvalT>(op);
}

Note that we must appropriately zero out the fields which are contributing.

Intrepid-Fourier tensor basis

Another benefit of the time collocation approach is that, if EquationSet TimeDomain uses In-
trepid’s compatible function spaces

H(grad,Ω) = HGRAD
H(curl,Ω) = HCURL
H(div,Ω) = HDIV
L2(Ω) = HVOL

then the time collocation approach inherits all of these advantages. In essence, the time collocaiton
approach is an Intrepid-Fourier basis finite element method whose basis functions are tensored
over space and time. This approach essentially manually integrates out the time dimension, and
evaluates each value of the residual in time as a linear combination of the frequency domain
degrees of freedom.
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[Jün09] Ansgar Jüngel. Drift-Diffusion Equations, pages 1–29. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2009.

[KSSV88] K. S. Kundert, G. B. Sorkin, and A. Sangiovanni-Vincentelli. Applying harmonic bal-
ance to almost-periodic circuits. IEEE Transactions on Microwave Theory and Techniques,
36(2):366–378, Feb 1988.

[KSV86] Kenneth S Kundert and Alberto Sangiovanni-Vincentelli. Simulation of nonlinear cir-
cuits in the frequency domain. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 5(4):521–535, 1986.

[NW99] Ognen J. Nastov and Jacob K. White. Time-mapped harmonic balance. Design Automa-
tion Conference, pages 641–646, 1999.

[Tro98] Boris Troyanovsky. Frequency domain algorithms for simulating large signal distortion in
semiconductor devices. PhD thesis, Stanford University, 1998.

[TYD00] Boris Troyanovsky, Zhiping Yu, and Robert W. Dutton. Physics-based simulation of
nonlinear distortion in semiconductor devices using the harmonic balance method.
Computer Methods in Applied Mechanics and Engineering, 181(4):467 – 482, 2000.

[VR50] W. Van Roosbroeck. Theory of the flow of electrons and holes in germanium and other
semiconductors. Bell System Technical Journal, 29(4):560–607, 1950.

33



DISTRIBUTION:

1 MS 1081 Paiboon Tangyunyong, 01755
1 MS 1168 Steven Wix, 01356
1 MS 1177 Joseph Castro, 01355
1 MS 1177 Xujiao (Suzey) Gao, 01355
1 MS 1177 Gary Hennigan, 01355
1 MS 1177 Eric Keiter, 01355
1 MS 1177 Lawrence C. Musson, 01355
1 MS 1177 Mihai Negoita, 01355
1 MS 1177 Heidi K. Thornquist, 01355
1 MS 1179 Harry P. Hjalmarson, 01341
1 MS 1318 Roger P. Pawlowski, 01355
1 MS 1318 Kara J. Peterson, 01442
1 MS 1318 Eric T. Phipps, 01441
1 MS 1320 Eric C. Cyr, 01442
1 MS 1321 Jason M. Gates, 01442
1 MS 1352 Lorena I. Basilio, 01152
1 MS 1352 Matthew Bettencourt, 01168
1 MS 1352 Keith Cartwright, 01152

1 MS 0899 Technical Library, 9536 (electronic copy)

34



v1.40

35


