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PROMOTES

High Performance Reduction/Oxidation Metal Oxides for
Thermochemical Energy Storage
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SunShot Goals

Metric Goal Metric Goal

Cp 0.6 kJ/kg*K

To 1000-1200 °C

Kinetics > 8x10-4 mol 02/s

AHtotal

6 (realized)

System Cost

> 1500 kJ/kg

0.2 < 6 < 0.5

< $15/kWht

Turbine Air Out

Parameter Space:

• Energy storage capacity, Al-ltpt = AHrxn+ CpAT
=1500 kJ/kg

• Cycling between TH of 1000 — 1350 °C and
of 200 °C

• p02 during reduction 10-3 atm
• p02 during oxidation 1 atm
• Oxygen non-stoichiometry (5) = 0.2 — 0.5

KEY PARTNERS: Georgia lnstitute of Technology, King Saud University, Arizona State University
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Mixed lonic-Conducting (MIEC) Oxides
11111111111k, 

o Redox-active materials which efficiently conduct both 02- and
electrons

o No crystallographic phase change occurs during redox
o Vacancies facilitate oxide ion transport
o Redox activity continuous over variety of T and p02

a
• '1("N'

+ 6
e

• cationo" " cation
7Eln y

• ,-\
02- ion can "hop"
across vacancies

6

Advantages of Metal Oxides (MO):
• Open or closed configurations
• Air can act as both the reactant

and heat transfer fluid
• Environmentally benign
• No catalyst necessary
• No compression required for

sto rage
• Amenable to multiple scales and

temperature ranges
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Doped LaCo03

La.Sri_SoyMn i _y03.8 (LSCM) and La,5101..CoyFel _y (LSCF)

o Known redox-active perovskite materials
o Large solid solubility range
o Crystallize in several perovskite-related space groups
o In general: more symmetric space groups show higher redox

capacities

LSCM

CM8237 - Rhombohedral

LSCM 991

SCM

Tetragona l

782 - Cubic

20 30 40 50

2q (degrees)

60 70

LSCF

LSCF9128 - Rhombohedral

20 30 40 50

2q (degrees)

LSCF3773 - Cubic

60 70
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LSCM/LSCF Compositions
 411101111=

La.Sr1,CoyFel_y03_6 ("LSCFXXXX") La.Srl_xCoyMnl_y03_5 ("LSCMXXXX")

Material Crystallographic Reduction Reoxidation Material Crystallographic Reduction Reoxidation
Composition Phase Onset (°C) A6 Composition Phase Onset (°C) 65

LSCM1991 Tetragonal 432 0.32 LSCF1991 Cubic 406 0.31

LSCM1982 Tetragonal 438 0.31 LSCF1982 Cubic 394 0.37

LSCM1973 Tetragonal 431 0.28 LSCF1973 Cubic 372 0.36

LSCM2891 Tetragonal 425 0.33 LSCF2891 Cubic 369 0.38

LSCM2882 Tetragonal 256 0.28 LSCF2882

LSCM2873 Tetragonal 395 0.31 LSCF2873 Cubic 366 0.38

LSCM3791 Cubic 343 0.39 LSCF2828 Cubic 340 0.35

LSCM3782 Cubic 359 0.36 LSCF3791 Cubic i5. 0.38

LSCM3773 Cubic 358 0.31 LSCF3773 Cubic 0.40

LSCM4664 Cubic 334 0.24 LSCF4691 Cubic 342 0.35

LSCM7337 Rhombohedral 772 0.01 LSCF4682 Cubic 332 0.36

LSCM8228 Rhombohedral 932 -0.01 LSCF4673 Cubic 336 0.35

LSCM8237 Rhombohedral 972 0.00 LSCF4646 Cubic 349 0.30

LSCM9119 Orthorhombic 825 0.02 LSCF4664 Rhombohedral 342 0.32

LSCM9128 Orthorhombic 834 0.00 LSCF5555 Rhombohedral 500 0.29

LSCM9137 Orthorhombic 901 -0.01 LSCF6446 Rhombohedral 609 0.22

LSCF7337 Rhombohedral 736 0.19

LSCF8228 Rhombohedral 926 0.06

LSCF8237 Rhombohedral 886 0.08

LSCF9128 Rhombohedral 1005 0.01

LSCF9137 Rhombohedral 970 0.03

Materials with highest oxygen capacity (ö) advanced to equilibrium TGA
measurements
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High-Resolution Equilibrium TGP

o Used to estimate thermodynamic parameters
o Isothermal holds at 600, 800, 950, 1100, and 1250 °C; p02 varied at each

temperature and held until equilibrium
o Thermodynamic parameters extracted by van't Hoff approach:

—6iGrxn (1 —6'Hrxn 6'Srxn 
ln(p02) = 2 = 2 •

RT T 

o Enthalpy determined by slope, entropy by intercept for each value of 6
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LSXM Enthalpy
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Material Reduction onset (°C) Maximum 6 Enthalpy at 6max (kJ/kg)

LSCM1991 432 0.434 216

LSCM3791 343 0.460 242

LSCM3782 359 0.412 236

LSCF2882 357 0.486 212

LSCF3791 352 0.461 223

LSCF3773 348 0.455 223
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LSCX Summary

o The LaxSr i _xCoyXi _y03_6 (X = Mn,Fe) perovskites display many of the
required characteristics required for high temperature TCES
• Redox active
• Reduction > 06 = 0.35 observed for several compositions
• Do not degrade when cycled
• Stable in operating environment

o Studies provided insight on structural/thermal properties of TCES
perovskites

o However, LSCM/LSCF are not optimal
• Reduction extent is adequate, but enthalpy falls short of SunShot

goal (1500 kJ/kg)
• Constituent oxides are not earth abundant
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Increasing Reaction Enthalpy

AGred = AHred —TASred,

o AGred = 0 is the onset of reduction (equilibrium)

• Assuming entropy term is similar between materials (i.e., constant), a
change in reduction enthalpy necessitates a change in reduction
temperature
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In the LSCX system, materials with

0  ,  high reduction temperatures had low
800 1000 1200 redox capacity (6 < 0.25).

Ideal materials show a favorable
balance of increased reduction onset
temperature without large decrease in
reduction capacity. New compositions
focus on materials in this window.

Reduction onset temperature (°C)
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Doped CaMni_yBy03-6 Perovskiterw

o Ca is a +2 element, forcing the B-site, e.g. Mn, to adopt a higher
oxidation state (+4)

o Ca as the main element in the A-site lowers the molecular
weight dramatically (Ca = 40.078 g/mol)

o Ca more abundant and less expensive than Sr or La
o Calcium perovskites reduce at high temperatures, resulting in

increased partial molar reduction enthalpies

• Higher reduction temperatures indicative of stronger M-O
bonds

o Tred of CaMn03 = 875 °C (vs. 432 °C for LSCMI991)

o However, decomposes under reducing conditions
o Doping CMO can help stabilize the structure
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Stability Under Reducing Conditions

• CCM28 and CM decompose under 1000 °C Ar anneal
• CTM28 and CAM28 convert from orthorhombic (blue) to tetragonal (red)
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CAM28 XRD

Orthorhombic Phase

20 30

Indicators of phase transition from Orthorhombic to Cubic-

like phase at High Temperature (1000 °C to 1200 °C )

40
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HT XRD results for: Cam28 low_p02
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Total storage potential

AH rxn+ CpATAHtot

Latent heat assumes p02 swing of 0.001 to 0.9
Sensible heat assumes Cp = 15R,TL = 200 °C

LSCM3791

Temperature (°C)
1100
1200
1350*

Sensible (kJ/kg)
536
595
684

CTM28

Latent (kJ/kg)
192
225
289*

Total (kJ/kg)
728
820
973

Temperature (°C)
1100
1200
1350*

Sensible (kJ/kg)
793
881
1013

CAM28

Latent (kJ/kg)
290
362
481*

Total (kJ/kg)
1083
1243
1494

Temperature (°C)
1100
1200
1350*

Sensible (kJ/kg)
826
918
1056

Latent (kJ/kg)
293
351
450*

Total (kJ/kg)
1119
1269
1506

*Values at 1350 °C are extrapolated from 6 vs T data
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CAM28 Cyclic Behavior
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-Doped CaMn03 

CYM28
o Analogue of CAM28
o Large increase ofTred - 1022 °C in air
o Not single phase
o Poor redox capacity
o Y seems to substitute on the A-site (for Ca) rather than on the B-site

o Increase in Tred observed in other A-site doped CaMn03 compositions
o Can A-site doping result in an increased Tred while maintaining the higher redox

properties of the parent compound?

2000

1500

o

1000

500

Ca0.7Y0.3Mn03 orthorhombic
Cat7Y0.3Mn04 tetragonal

L.J.S. Department of Energy

[SMB1-81-03_CYM28_1300C_24h_pel.xrdml] @Phi=0.0

uka-ua.4641.Adjl AIW Wth.)....14.A.a liwilLuirLit
04-017-2419> Ca o rYo ,MnO, - Calciurn Manganese Yttriurn Oxide

04-010-5365> Ca 1,7Y03Mn04 - Calciurn Yttrium Manganese Oxide
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Cal_xYxMn03 (0<x<0.5)
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o Balance between Tred and
reduction extent (5)

o At what point does Tred become
too high?
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Conclusions

o Initial LSCX investigation provided insight on structural/thermal properties of
TCES perovskites
• Promising H total values achieved, but reduction extent is adequate, but

reaction enthalpy falls short of I 500 kJ/kg goal
o Reduction onset temperature (Tred) was identified as a key indicator of AHrxn
o CaMn03 displays high Tred but decomposes under reducing conditions
o B-site doping with non-labile cations (AI,Ti) mitigates decomposition while

maintaining redox properties

• AEI total approaching I 500 kJ/kg
• Increase in reaction enthalpy of over 50% compared to LSXM
• To our knowledge these materials outperform any reported oxide TCES material

operating above 1000 °C
o A-site doping with Y further increases Tred

• Sacrifice redox extent
• What is the ideal balance between Tred and 6?

o Judicious choice of A- and B- sited dopants in CaMn03 can result in effective
TCES materials across a wide range of operating parameters
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PROMOTES

Related Talks

• James Miller,"High Performance Reduction/Oxidation Metal Oxides for
Thermochemical Energy Storage (PROMOTES)",Wednesday, Session 2-8-9

• Ellen Stechel,"Model-Free Thermodynamic Relationships for Non-
Stoichiometric Metal Oxides (M0x_d) from d-Temperature-p02 Experimental
Measurements",Wednesday, Session 2-6-1

• Robert Gill,"Solar Electricity via an Air Brayton Cycle with an Integrated Two-
Step Thermochemical Cycle for Heat Storage Based on Non-Stoichiometric
CaA102Mno803_d Redox Reactions: Kinetic Analysis", Thursday, Session 2-6-3

• Sean Babiniec,"Considerations for the Design of a High-Temperature Particle
Reoxidation Reactor for Heat Extraction in Thermochemical Energy Storage
Systems",Thursday, Session 2-8-1 1
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Thank you for your attention.
Questions?
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PROMOTES

High Performance Reduction/Oxidation Metal Oxides for
Thermochemical Energy Storage

Cold 0

Flot Reduced
Particle Storage

Cold Oxidized
Particle Storage

Solar Receiver
Reduction
Reactor (SR3)

11:=4. Pa rt i cl es

Ai r or Oxygen

Turbine Air Out

Air Brayton
Power Cycle

1. Materials Enabled
Innovation

OH total 1500 kJ/kg)

2. Solar Receiver
Reduction Reactor

3. Particle Storage at
T > 1000 °C

4. Pressurized oxidation
reactor Air acts as
reactant and heat transfer
fluid. Open cycle — no
gas storage.

5. High Temp/High
Efficiency Air Brayton
Power Cycle.
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Characterization-TGA

Preliminary Screening
• Used to determine potential redox properties quickly
• Materials are not at equilibrium
• More involved equilibrium TGA measurements performed on samples that meet criteria

(46 > 0.2)

1400 -

1200 -

1000

t2 800

E
600

400 -

200 -

30 min

20 C/min

30 min

20 min
10 min l 20 min

"

Air

0 50 100 150 200

Time (min)

Ar Air

250 300 350 400

Pre-screen method

102 -  - 1400

- 129e

- 1000
1C0 -

se-

100 150 200

Tlme (mm)

Example TGA

250

Measured weight changes are categorized in three regions:
• As31: reduction in air from 200 to 1250 °C
• As32: reduction due Ar switch at 1250 oC
• As33: reoxidation due to air gas switch at 1250 °C and cooling to 200 °C
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Materials: Reaction Enthalpy
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• First generation: Investigated/characterized LSCM, LSCF, and related perovskite
families to identify baseline composition, LSCM3891, with high redox capacity (6 =
0.46) and reasonable AHrxn (242 kg/kJ)

• Second generation: Low-cost earth-abundant compositions CXM (X = Ti, Al)
• Lower redox capacity compensated by higher Tred 4 Stronger M-O bonds and

storage of higher-quality heat
• Smaller molecular weight results in higher specific heat, and therefore mass-

specific total enthalpy
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Materials: Total Storage Capacity

AHtot = AHr„+ CpAT

Chemical + Sensible Energy Storage Measured heat capacity as a function of temperature

AFI,„ + Cp(Thigh — T10,)
1 2

Reduced CAM28
1

0.8

H \H 2
"i• 0.6

0.4 -

0,0
Run 1-CAM28

0.2 -
-CAM28 Run 2

CAM28 Run 3

Temp Average-CAM28

Candidate

material

Mol weight

(g/mol)

Tred Onset

(°C)
Max

100 300 500 700 900 1100

Temperature (°C)

AHrxn (kJ/kg)

(at 6max)

Cp alitot

(kJ/kg-K) (kJ/kg)

LSCM3791 209.5 343 0.461 242 *0.595 837

CTM28 141.6 901 0.293 393 *0.881 1274

CAM28 135.8 759 0.322 371 *0.910 1281

*Estimated Values: Cp = 3R.N (J/mol-K) = 15R, Thigh = 1200 °C, T10,, = 200 °C
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Doped CMO Screening
 A

Calcium perovskites exhibit higher reduction temperatures than LSCM/LSCF

Composition
>95% Single-

phase?
Crystal

structure
Reduction onset

in air (°C)
A6

CaMn03.8 (CM) Yes Orthorhombic 875 0.27

CaTin ,Mnr, (CTM28) Yes Orthorhombic 901 0.21_
CaTi0.4Mn0.603.8 (CTM46) Yes Orthorhombic 992 0.13
Ca08La0.2Ti0.4Mn0.603.6 (CLTM8228) Yes Orthorhombic 1020 0.09
Ca08Sr02Tio4Mno 603_8 (CSTM8228) Yes Orthorhombic 827 0.24

CaCo0.2Mn0803_8 (CCM28) Yes Orthorhombic 730 0.27

CaFe0.2Mn0.803.6 (CFM28) Yes Orthorhombic 418 0.28

CaFe0.4Mn0.603.8 (CFM46) Yes Orthorhombic 427 0.24

CaAln ROl_A (CAM28) Yes Orthorhombic 759 0.27

4§.
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Subtask 2.1.1:  CXM composition  refinement

• Effort to optimize enthalpy in CaXxMn 1 _.03_6 (CXM)-based materials by
balancing redox capacity with Tred:

( ) Vary X cation (Y, Zr, Zn) in CXM28
(2) A-site doping by La
(3) Vary [Ti] in CTM composition

Composition
Single

Phase?

Reduction T

°C in air

CaAI, Mn,.O (CAM28)

CaTi, Mn,.O (CTM28)

Ca, La, Ti, Mn, 0 (CLTM5555)

CaTi, Mn,,0 (CTM64)

CaTi„ Mn, . O  CTM0595 

CaZn, Mn,.O (CZnM28)

CaZr, Mn„0 CZrM28
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Preliminary TGA screening properties for newly-synthesized compositions.
CAM28 and CTM28 are added for reference. Candidate compositions are
highlighted.
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"-ase Determination

All synthesized doped calcium perovskites indexed to the orthorhombic phase
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Lattice Distortion
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• Likely due to oxygen vacancy ordering (as reported in CaMn02.5) or octahedral
distortion from Y-doping

• CYAM9128 does not distort — possibly stabilized by B-site Al
• Could order/disorder result in increased enthalpy?
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Y-doped Compositions

MW

(g/mol)

Single

Phase? 61Material

CaMn03 143.0 Y 0.224

CaA10.2Mn0.802.9(CAM28) 135.8 Y 0.203

Ca0.9Y0.1A10.2Mn0.803 (CYAM9128) 142.3 Y 0.204

Ca0.9Y0.1Mn03 (CYM910) 147.9 Y 0.159

Ca0.8Y0.2Mn03 (CYM820) 152.9 Y 0.106

o Tred increases with increasing [Y]

o Corresponding •5 decreases with increasing [Y]

62 63 Tred (°C)

0.127 0.315 875

0.100 0.270 759
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Reduction ENr*,-

TG l%

100.0 -

99.5

99.0

98.5

98.0

97.5 -

97.0 -

96.5 -

Multi-p02 TGA

CYM910

CYAM9128

Temp. /°C

0 200 400 600 800 1000 1200 1400
Time /min

A*000812 2016-03-14 16,23 Us. an6lab

fin Inetnimant naln trio Csra Uaccfmn Carimant P2nrla

- 1200

- 1000

- 800

- 600

- 400

- 200

0

• Difference in reduction extent between CYM and CYAM larger at low-T, but begins to
converge as reduction T increases

• CYM experiences larger magnitude of reduction at high T
• Indicates stronger M-O bonds and storage of higher-quality heat resulting in increased AHrxn
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