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Motivation

• With nuclear tests conducted underground, infrasound can
tell us something about DOB (too deep, no surface motion
and no infrasound)

• Compared to EQs of same magnitude, UGTs have larger
infrasound amplitudes and shorter durations

• Cost-effective measure

• By recording infrasound on tests such as SPE, we gain source
knowledge necessary for event characterization and yield
estimation at greater distances
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Motivation (Contd.)

• Recordings close-in provide a way to "observe" the waveform
before transmission through the atmosphere (know what we
are starting with)

• lnfrasound signal propagation is variable due to dynamic
nature of the atmosphere and can be accounted for with
atmospheric specifications (G2S and ECMWF)

• lnfrasound is the primary IMS technology for atmospheric
explosion detection
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Infrasound From DPRK Testing

2013 & 2016 detected at I45RU and 130JP

(Assink et al GRL 2016)

2013 test:

• Good SNR at 145

• Weak detection at I30

2016 test

• Weak detections on both stations

Depth estimate for the 2016 shot?

• Comparing seismic to acoustic signals
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• The detections of the 2013 event

were clearer, presumably due to

shallower depth of the test and

better atmospheric conditions for

propagation and detection.
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Infrasound From DPRK Testing:
Propagation Modeling

Atmosphere During the 2013 Test
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Infrasound From DPRK Testing:
Rayleigh Integral

• Modeling has been done with the infrasound to infer local
topography at the site through directionality and the Rayleigh
Integral
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Map of SPE Infrasound Arrays

• 8 lnfrasound Arrays

• 4 sensors per array

• Hyperion Sensors

• Flat from -0.1 to -40 Hz

w/porous hoses

• -o.l - 100 Hz without hoses

• 100 Pa Full Scale Range
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SPE Observations from SPE 4'
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SPE-4 rime Waveforms (Filtered 1-5 Hz)
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SPE Observations from SPE 4'

SPE-4prime Waveforms (Filtered 5-20 Hz)
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SPE Observations from SPE 5
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SPE-5 Waveforms (Filtered 1-5 Hz)
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SPE Waveforms Comparisons 1 - 5

SPE 1 (1 Pa p2p)
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SPE 4' and 5 Surface Accelerations
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The Rayleigh Integral

1) Use surface acceleromter 2) Extrapolate sparse data across

data to get ground motion entire grid and calculate pressures
DTRA Surface Accelerometers DTRA Surface Accelerometers
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3) Integrate pressures at each point
across over both area and time to
create synthetic pressure waveforms

Obsersei Position
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motion

4) Resulting synthetic pressure waveform can be compared to observed data
SPE 2 Observed vs. Synthetic Waveforms - Filtered [1-5 Hz]

IS 1. IS 1'. ' IS 1. IS 1' 
1—

IS 2.1- IS 2. IS 2.4-

-IS 3,1 IS 3,2 IS 3,3 ' IS 3/ '  -

t ,1,;
t, ,

I 4. I I I

IS 6.1- IS 6.

IS 7. IS 7.

IS 5. IS 5. IS 5. IS 5

Observed o 1.25a Synthetic

0.25 km

0.24 km

0.26 km

0.35 km

1 km

2 km

0 6

0.

2 0 2

t 0 0

.0 2

Ravlenall Interval for IS 3 1 Filtered S-20 FS:

I/

— 1S3.1 Data

— 153.1 Synthetic IaltD

-0 a

5 km -0 6

10 0

N STec
■ Lawrence Livermore

National Laboratory • Los Alamos
NATIONAL LABORATORY

550.1943

11 5 120 12.!

Sandia riOVAN
National
Laboratories



3-D Moving Media Acoustic Simulations

• 3-D Acoustic Simulations

• Massively parallel finite-difference simulation code

• Accommodates models with complex realistic 3-D

geology, topography, underground voids, and

atmospheric conditions including wind

• Weather Simulation

• WRF (Weather Research and Forecasting) from

National Centers for Atmospheric Research (20Km)

• Historical 3-D atmospheric data over North America

• Interpolates/predicts meteorological conditions

(winds, temperature, etc.) to estimate atmospheric

state

WSJ-„ NSTec
■ Lawrence Livermore

National Laboratory

3717

• Los Alamos
NATIONAL LABORATORY

25,1943

3716

Peak Pressure

WRF Simulation

3";23
3712 372

Lau el

18

Sandia riOVA11)4
National
Laboratories



Predictions and Acoustic Source Inversion

• Predictions
• Download past 10 years of

weather data for site and
estimated date/time of shot

• Run WRF models for mean and
extrema years

• Perform acoustic simulations for
these models to investigate
signal variations due to weather

• Use estimated source time
function from source inversions

• Source Inversion
• Collect observed weather data at

time of shot
• Run weather models over the

infrasound array region
• Perform acoustic simulations
• Frequency domain inversion of

synthetic and observed data
spectra
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LLNL GEODYNE L Modeling
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Seismic/Acoustic Data Fusion for Depth Determination

Ground Acceleration Acoustic Source Function

surface integral model

Ground motion estimation
• Depending on yield and depth

Nearfield acoustic source estimate
• From the ground motion estimate

Propagate to the far field to constrain the ground motion model
• Research needed to determine robust features
• Signal power (Waxler-Green)

➢ Precise atmospheric data is not available
➢ Use a mean (incoherent) transmission loss

• Peak frequency/dominant period
Possible issues:

• Atmospheric variability means signal detection is uncertain
• SNR limits acoustic feature extraction 
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Octocopter Infrasound
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Octocopter Infrasound : Directivity
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Tethered Infrasound Sensor

• Pressure waveforms at higher elevation angles

should have larger amplitudes (from contained
underground explosions) than along the ground

• Such data provide additional signals against

which to compare models and to compare to
other related measurements (such as on UGTs

with similar SDOB)

• Models include boundary integral type methods,

Rayleigh lntergral, as well as computational fluid
dynamic (CFD) methods

• About 50 m elevation at range of 100m

• Four tethers

• 5 lb package of sensor and digitizer

• Plan to use Helikite aerostat for stability
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Balloon-based High Altitude Infrasound
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10-100x larger monitoring footprint

Improve inversion for source
physics

Augment far field detection
capability

Advantages:
• Extreme detection range (-150

km)
• 3D signal characterization
• No wind noise
• Virtually unexplored

Challenges:
• Station keeping
• Limited payload capacity
• Data recovery
• Pressure/sensitivity tradeoff
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Conclusion

• Modelling infrasound signal generation from two underground explosions at the

Source Physics Experiment using the Rayleigh integral,

Geophys. J. Int. (February, 2015) 200 (2): 779-790 doi:10.1093/gji/ggu433

• Presentations at national and international conferences

• SSA, AGU, CTBTO-ITW, CTBTO-SnT

• Successful infrasound data collection and analysis on all SPE events

• 100% data return

• Quick data analysis

• Close collaboration with both LANL, LLNL, Ole Miss-NCPA
• Rayleigh Integral, Synthetic waveforms, propagation modeling, etc...

• Initial application to real-world, complex problems
• DPRK, DOB vs. Yield

• Investigating other infrasound data collection platforms
• Octocopter, tethered and free balloons

• lnfrasound is a cost effective technology that can contribute complimentary
information on underground tests in multi-technology analyses (data fusion)
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Qu est i n s ?

NeSkt 11 ■ Lawrence Livermore
National Laboratory Los Alamos

NATIONAL LABORATORY

EST.19,13

Sandia OVA11)4
National
Laboratories



Backup

Rayleigh Integral using ground acceleration for
lnfrasound Excitation

p(x, y, z; — poff up t — R/c,)ds

This is an exact solution — Blackstock's Fundamentals of Physical Acoustics,
Chapter 13

Limited by the spatial sampling of the area around ground zero and frequency
content

Analysis for a uniform monochromatic piston vibration using asymptotic analysis
shows near and far field behavior and Rayleigh distance behavior
Analysis for a nonuniform piston shows beam shaping

Diffraction analysis with Helmholtz/Kirchhoff Integral theorem also possible
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