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COMPRESSED OPTIMIZATION OF DEVICE ARCHITECTURES (CODA)

MOTIVATIONS AND PROCEDURE
• Designing devices which can be simply controlled may become infeasible as device complexi-
ty grows1.

• A"simple" operation involves a small number of electrodes located near to the quantity of in-
terest.

• Using ideas from compressed sensing2'3, we can find the"simplest" operation associated with
a desired outcome.

The CODA procedure works as follows:
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(1) Starting at a working point, use device simulation to find a linearized model (S) relating elec-
trode voltages (control vector) to dot occupations / tunnel barriers (operational target)

(2) For a given operational target to, find all control vectors c which satisfy S (c) = to. Of these,
find the vector with the minimal L1 norm (the compressed control vector).

(3) This compressed control vector can be fed into the device simulations.

AUTOMATIC TUNING

Using COMSOL Multiphysics, we simulate a realistic 8-dot device, tuned such that one electron
is in each quantum dot has one electron, and the inter-dot tunnel barrier has a maximum
height of 1 meV.
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By applying the CODA procedure iteratively, we increase the occupation of the right-most dot by
one electron, keeping all other dot occupations and tunnel barrier heights unchanged.
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Here we simulate five devices, each with identical electrode design and heterostructure, save for
the layer of Siofie0.3 referred to as the"SiGe spacer." The height of the spacers range from 30 nm
to 38 nm.

In each device, we start with one electron in each dot, and an inter-dot tunnel barrier height of 1
meV, and apply the iterative CODA procedure, adding one electron to the right dot.
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Comparing the L1 norms of the voltages determined via the iterative CODA procedure, we find
that the L1 norm increases with SiGe spacer height. As the L1 norm is the metric for the"simplici-
ty" of an operation, this implies that in the absence of charge noise and interfacial roughness, a
smaller SiGe spacer yields a device which is"simpler"to control.

We perform semi-classical Thomas-Fermi calculations using the COMSOL Multiphysics software
package to solve a nonlinear Poisson equation in three dimensions. The L1 regularized optimiza-
tions are performed using the CVXPY package4 to transform our convex optimization problem
into an equivalent conic problem, which can then be efficiently solved using a matrix-free cone
solver. Unless otherwise stated, the heterostructure used in simulated devices is: 200 nm of
Siofie0.3 (with dielectric constant E = 13.19), a 10 nm Si quantum well (E = 11.7), 30 nm of
Siofie0.3, 10 nm of A1203 (E = 9.0), a 10 nm layer of metallic electrodes, 80 nm of A1203, and a
second 10 nm layer of metallic electrodes. For more information, see:

http://arxiv.org/abs/1409.3846.
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TWO-QUBIT OPERATIONS IN THREE-ELECTRON
DOUBLE QUANTUM DOTS

MOTIVATIONS
• The semiconductor hybrid qubit has been shown1 to be capable of fast single-qubit operations

at reasonably high fidelities.

• Strong capacitive coupling has been observed2 between pairs of double quantum dots similar to
those used as hybrid qubits.

• We discuss how this capacitive coupling can be used to produce two-qubit gates, and propose a
path towards increasing the fidelity of these gates.

MODULATING EFFECTIVE COUPLING
Changing the relative energy between quantum dots (the detuning) in a semiconductor hybrid
qubit changes the charge signiture of the logical states, as shown in the cartoon below.
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Using the Schrieffer-Wolff transformation3 to determine the effective coupling between the
qubits, we find that the qubit-qubit coupling can be modulated, despite the fact that the strength
of the capacitive coupling between the double-dot systems remains constant.
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When the detuning of both qubits is decreased, the qubit-qubit coupling becomes non-negligi-
ble, and entangling gates may be performed. One of the main contributors to the high fidelity ob-
served in single-qubit gates in the semiconductor hybrid qubit comes from the use of the sweet
spot', where the derivative of the frequency with respect to the detuning is close to zero: 7aw o

In a two-qubit system, there are three frequencies and two detunings, meaning that the"two-qu-
bit sweet spot" consists of six constraints:

a (Jo;
i=1,2,3; j=1,2

aEj

Analytical techniques such as the Schrieffer-Wolff transformation3 and numerical techniques such
as the Nelder-Mead method4 will indicate the set of physical parameters which best meet these
criteria, and therefore minimize the effect of charge noise on the proposed two-qubit gate.

METHODS AND REFERENCES
We perform fourth order Schrieffer-Wolff transformations3 using the Mathematica software pack-
age to reduce the nine-dimensional Hilbert space of the coupled system down to an effective
four-dimensional Hilbert space.
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