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Introduction 
Project Objectives (from FY15 SOPO)  
1) Leverage recent SAM kernel improvements by developing a robust solver specifically 
designed for CSP systems. This work will allow for simulations of more complex plant 
control algorithms and receiver, field, and storage models optimization codes while also 
providing a standardized interface that will streamline modeling efforts. 
2) Integrate SolarPILOT into SAM as a replacement for DELSOL3. SolarPILOT 
maintains the capabilities of DELSOL3 and add the ability to investigate complex solar 
field designs, analyze a greater variety of heliostat geometries, and characterize custom 
field layouts. Furthermore this work enables full integration and multi-threading within 
SAM. 
3) Develop advanced power cycle and hybrid plant models that have been proposed for 
CSP systems. These innovative power cycles are potentially higher efficiency and lower 
cost alternatives to current CSP cycles. 
Introduction  
Previous work led by NREL has produced a suite of hourly CSP performance and 
annual financial models that are currently implemented in SAM. These analysis tools 
are used within the DOE national laboratory system and worldwide by researchers, 
industry members, academics, and policymakers to determine the potential 
performance and financial impact of renewable energy technologies. 
SAM includes models for the following CSP solar-field technologies: parabolic troughs, 
both molten-salt and direct-steam central receivers, dish/Stirling, and direct-steam linear 
Fresnel systems. SAM also includes a generic solar system model that represents the 
solar field using a set of optical efficiency values for different sun angles and can be 
used for any solar technology that uses solar energy to generate steam for electric 
power generation. Each technology model requires information about the receiver and 
collector, power block, thermal storage, and operating conditions to predict component 
and overall system performance. The CSP models also include an optional auxiliary 
fossil backup system, as appropriate. This project aims to maintain SAM’s unique ability 
to efficiently model pertinent CSP technologies by improving the functionality of SAM 
and improving current or creating new technology models. 
Layout 
This three year project is composed of six tasks. While there is some dependence 
between tasks, each task’s objectives, approach, and conclusions are distinct enough to 
motivate separate sections for each task. Our goal is that each section serves as a 
stand-alone reference for its task. The sections are in rough chronological order. We 
included less detail for the first three tasks as we completed them in the first two years, 
and the respective annual reports contain extensive documentation. We completed the 
final three tasks in FY15. Consequently, these sections contain the most information as 
well as documentation regarding FY15 milestones. Some work has lent itself well to 
journal publication, and we have elected to provide documentation in journal format for 
several topics to facilitate the direct submission of work from this project to high-impact, 
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peer-reviewed journals. We provide relevant introductory material but refer the reader at 
the appropriate juncture to the appendices that contain the formatted papers. 

Core Programming Enhancements 
Motivation 
CSP system models in SAM typically consist of independent models corresponding to 
the system components. For example, the molten salt parabolic trough model consists 
of components for the solar field, power block, and controller. This framework allows 
multiple systems to share component models (e.g. the trough, Fresnel, and power tower 
all use the same power cycle model). In a system simulation, the performance of these 
components is interdependent – i.e. the performance of any one component is a 
function of the performance of the other components. In turn, the system model is highly 
implicit and an iterative solver is required to find the correct solution. In order to solve 
the system model, as of 2012 the CSP system models were coded in TRNSYS [1], a 
general purpose transient modeling platform written in the Fortran programming 
language that uses a successive substitution solver. 
As SAM became generally accepted as a standard for CSP system modeling, 
limitations of the TRNSYS software hindered the advancement of the SAM models on 
several fronts.  First, the TRNSYS software is not thread-safe and therefore the CSP 
models cannot be run effectively on highly parallelized computer architectures.  In 
addition, as is discussed in greater detail in the Dispatch Optimization section, the 
iteration structure imposed by TRNSYS, while generally applicable, is rigid and does not 
easily allow the solution method strategies to be modified for improved convergence, 
optimization, or system control. Third, the need to support SAM models across multiple 
operating systems (Windows, Linux, Mac OSX) requires that high quality compilers exist 
across all platforms and hardware architectures (x86-32,x64), which in our experience is 
problematic with Fortran – while excellent C++ compilers exist everywhere.  Fourth, 
using an object oriented language like C++ allows the system models to be represented 
in reusable classes instead of unwieldy subroutines, making it easier and less error-
prone to update and modify the software. Finally, TRNSYS is proprietary software. 
Although SAM was licensed to use it, users could easily use SAM’s component models 
for customized studies without purchasing TRNSYS. Crucially, this also meant that SAM 
was reliant on TRNSYS for upgrades and improvements to the core solver. 
Approach 
We addressed the limitations described above by leveraging a new in-house modeling 
framework (this framework, TCS, was developed by Aron Dobos in the Energy Modeling 
and Forecasting Group at NREL). This reentrant, thread-safe framework is programmed 
in C++ (a modern object oriented language for which high quality free development 
tools are available) and built upon a custom successive substitution solver. The solver 
calls a class-based system of types. This approach compartmentalizes data and 
recipes, which creates a more intuitive code and a thread-safe environment without 
global variables. (Note that a thread-safe environment is achievable in Fortran – but 
less conveniently so, and it is very cumbersome to modify extensive Fortran codes to be 
thread-safe). Additionally, the new framework eliminates the parallel-processing-
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bottleneck of repeatedly opening, reading, and closing input text files by reading the 
files, passing the information to C++, and then treating the information as constant data. 
The new framework integrates scripting for convenient testing of models across a 
variety of operating regimes, and includes built-in visualization of timeseries data to 
accelerate the code-debug-fix-validate model development process. Additional details 
describing the framework and the process we followed to reconstruct our CSP models 
in it can be found in the 2013 Continuation Report. 
Results 
The goals of this task were to accurately reconstruct the CSP models into the TCS 
framework while improving computational performance, especially when parallelized. 
The following is a brief discussion of task outcomes regarding the milestones. Detailed 
discussion can be found in the 2013 fourth quarter report. We also wrote a conference 
paper on this topic [2]. 
Figure 1 shows current parallelization performance on an Intel i7 mobile processor that 
has four physical cores and hyperthreading.  Hyperthreading is a technology that can 
efficiently map two parallel threads onto one processor core with little overhead, so that 
the processor appears to have 8 virtual cores.  Up to four cores, the overhead is at or 
below 10%.  Above that, hyperthreading allows the TCS thread-based parallelization to 
more effectively utilize the processor than the TRNSYS simulation in which each 
simulation requires a separate operating system process to execute.   Although we do 
not have access to a computer with 32 physical cores, we suspect the overhead shown 
for 2, 3, and 4 cores to be reduced and that the 15% overhead target on 32 core 
machine would be within reach.  Note that cores 5 through 8 in the above figure are not 
representative with respect to the 15% 32 core metric, as the processor that generated 
these results is utilizing hyperthreading, not physical processor cores. Still, these results 
are a meaningful example of the performance gain for a typical PC. 

 
Figure 1: Parallelized performance of the TCS physical trough model on an Intel i7 mobile processor with 
four physical cores and hyperthreading. 
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Table 1 shows validation of the default case for each technology model that we 
converted to TCS. The results in the table are the root-mean-square deviation (RMSD) 
calculated from the hourly power generation results of an annual simulation and 
normalized by the design net power output. The results show that the validation was 
well within the 1% milestone target. Technology models requiring significant iteration 
within and between components trend towards high RMSDs. Because the RMSD 
considers the absolute difference each timestep, the annual cumulative energy 
difference balances positive and negative errors and is typically less than the RMSD. 
Table 1: Validation of TCS against Fortran of the default case for each technology model. Results are the 
root-mean-square deviation calculated from the hourly power generation results of an annual simulation and 
normalized by the design net power output. 

Physical Trough Model Empirical Trough 
Model Generic Solar System Molten Salt Power 

Tower 
0.78% 0.05% 0.02% 0.38% 

    

Direct Steam Power 
Tower 

Direct Steam Linear 
Fresnel Dish Stirling 

 

0.69% 0.34% 0.05% 
 

It is worth reviewing the planned and recently added SAM features that this code 
restructuring enabled. Previously SAM called DELSOL to model the solar field 
performance and then passed those results via text file to the CSP system performance 
models. Now we have incorporated SolarPILOT and the system performance models 
into the same coding framework. This arrangement eliminates the major bottleneck of 
reading and writing text files and facilitates running batch simulations through scripting 
because only one main function call is required. The new framework also enables 
callbacks in the user interface to share information with performance models. We 
implemented this feature to add user interaction with solar field design and optimization 
and sCO2 cycle design. The ability to access thread-safe component-level performance 
models allows us to develop wrappers around the code that we can use for design and 
operation optimization. It also allows us to isolate various methods and functions to 
share with collaborators without overwhelming them with our entire code base and 
risking our IP. We will be using these capabilities on our ongoing CSP research 
projects. Moreover, the new framework reveals a potential pathway for users to simulate 
custom component models within SAM’s system models by developing models that 
connect to SAM through API’s. Finally, because this task allowed us to spend time 
improving existing code, we were able to find important bugs and improve its 
functionality and usability. 

Integrated Solar Combined Cycle (ISCC) Modeling 
Motivation 
Solar hybridization with fossil-fuel power plants is one strategy to deploy CSP solar field 
technologies with a lower investment risk while maintain reliable, dispatchable 
generation. This configuration eliminates most of the power cycle cost associated with a 
solar-only plant. The thermal storage system may also be eliminated or significantly 
reduced because the fossil cycle provides guaranteed generation during changes in 
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solar irradiation. Furthermore, a solar hybrid plant may reduce the fossil-fuel 
consumption and emissions, even in comparison to an equivalent stand-alone solar 
plant. Due to these advantages, utilities have shown interest in solar integration into 
different types of fossil-fuel power plants [3], and a number of solar hybridization 
projects have been implemented or are under construction across the world. 
Solar thermal power can integrate with gas turbines, coal-fired Rankine cycles, or 
natural gas combined cycles, largely depending on its receiver outlet temperature. We 
modeled an Integrated Solar Combined-Cycle (ISCC) system for this task based on the 
discussion in the 2013 Continuation Report. An ISCC injects solar thermal power into 
heat recovery steam generators (HRSG) in a Natural Gas Combine Cycle (NGCC). 
ISCCs allow the potential for significant solar hybridization [4], [5] and have the potential 
to achieve substantial economic and environmental benefits, compared with solar 
integration into other types of power cycles. Previous work has shown that solar-to-
electric conversion efficiency may reach around 31% with a solar contribution of 10% 
compared to the overall plant power generation [4]. McMahan and Zervos reported that 
retrofitting an NGCC through replacing the duct burner capacity with solar thermal 
power can be economical when compared to a standalone CSP plant [6]. According to 
Ojo et al. [7], higher solar fractions may be achieved through new ISCC plant design 
than through retrofitting an existing NGCC plant. Montes et al. [8] suggested that 
hybridization may be more beneficial in a hot, dry climate as it provides a natural offset 
to decreased gas turbine performance on hot days. When retrofitting an existing plant 
with solar, a thorough feasibility study is needed not only to evaluate the thermodynamic 
impact of solar integration to the plant, but also to examine realistic physical/operational 
limitations in the existing plant configuration. A series of reports led by the Electric 
Power Research Institute (EPRI) [9], [10], [11] showed that, even though a conceptual 
analysis may suggest a clear benefit from solar hybridization, the physical limitations on 
the size of solar field and solar injection points may add practical constraints to an 
otherwise feasible solar integration. 
Approach 
First we selected the specific ISCC configuration to model. We chose to integrate the 
molten salt power tower as a retrofit hybridization in parallel with the high pressure 
boiler. One reason for this selection is that an ISCC configuration with a high pressure 
boiler solar injection was previously modeled by EPRI. Their oversight on this project 
provided confidence that our configuration was practical and our modeling results were 
reasonable. Retrofitting the plant allowed us to use the design of an existing NGCC 
rather than spend considerable time designing a greenfield ISCC plant. Finally, we 
chose the molten salt power tower because it is an emerging CSP technology that can 
achieve hot outlet temperatures that integrate with the ISCC high pressure boiler. This 
combination allows for the highest solar efficiencies and solar fractions, and it allowed 
us to collaborate with a visiting research from GE who was studying this configuration. 
We modeled the NGCC configuration in the IPSEpro software package. IPSEpro is a 
commercial code that contains first-principles models for common components in 
thermodynamics systems. Its graphical interface allows the user to define the 
connection between components and component operating parameters. It uses a free 
equation solver to simulate a system given fixed inputs. It’s a powerful tool for modeling 
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complex thermodynamic system behavior, but it requires a high level of user expertise 
and generally is not flexible or computationally efficient enough for the annual hourly 
simulations and high level design parametric simulations for which SAM is often used. 
We used IPSEpro to study how different amounts of solar thermal input to the high 
pressure boiler affected the cycle performance. We discuss these results at length in 
the 2013 Continuation Report and the paper we published on the topic [12]. One 
interesting contribution to the literature from our work was showing the relationship 
between solar conversion efficiency and NGCC efficiency as a function of the solar 
thermal input. At small amounts of solar thermal input, the solar conversion efficiency is 
significantly higher than the NGCC efficiency and the expected thermodynamic 
efficiency of a stand-alone CSP plant operating at those temperatures. The reason for 
this behavior is that at the hot ambient temperature used for the analysis, the NGCC 
was operating at significant off-design. This is because the solar thermal input 
contributes to the NGCC output by both supplying thermal power and boosting overall 
conversion efficiency of the NGCC flue gas by driving the NGCC closer to its design 
operating conditions. 
Then we ran the IPSEpro modeling over a range of possible operating conditions for the 
three independent operating inputs: ambient temperature, ambient pressure, and solar 
thermal input. We used the results from this parametric analysis to efficiently model the 
ISCC behavior of this configuration in SAM. We applied a three-dimensional 
interpolation routine to return performance results for a given set of inputs. Our IPSEpro 
analysis showed that ISCC behavior is strongly dependent on the design of the NGCC 
cycle. The design point behavior of the gas turbines, steam turbines, and HRSG all 
drive off-design performance. Consequently, we found that it is untenable to model 
modifiable NGCC and ISCC configurations using empirical routines – the off-design 
performance results between different designs can’t be correlated. 
Finally we integrated the ISCC power cycle model with SAM’s existing molten salt 
power tower model. This work involved developing a design point model of the molten-
salt-to-steam heat exchanger that is solved at the beginning of the simulation, and then 
developing an off-design model of the heat exchanger for off-design operation. With this 
first-principles heat exchanger model, we can capture the iterative interaction between 
the solar field and power cycle. We included the ISCC model as a CSP technology 
option in SAM. We also worked with GE to include an option in SAM to model their 
ISCC power cycle. We describe the SAM integration and present system level results in 
the 2013 fourth quarter report. 
Results 
This task advances the current work in two distinct ways. First, it adds an ISCC 
modeling option to the SAM CSP technology menu. This capability will allow users who 
do not have the time, budget, and/or expertise for custom or proprietary models to 
quickly study this technology. For example, a CSP researcher could analyze the impact 
of the solar field design on ISCC plants. Second, this task advances the current work 
from a technical standpoint by considering the power cycle interaction with the solar 
field. Modeling this interaction advances understanding of the integrated system design 
and operation. For example, as the thermal power from the solar field fluctuates, the 
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steam pressure and mass flow rate in the Rankine cycle also fluctuates. This behavior 
leads to varying inlet conditions to the solar field, which must be captured to fully 
understand the system behavior. As documented above, we met the task milestones, 
summarized as: 1) develop an ISCC model with consultation from industry experts and 
submit a journal paper documenting the results and 2) include the ISCC model in SAM. 

Supercritical Carbon Dioxide Power Cycle Modeling 
Motivation 
Experimental and modeling research in the last decade has shown that supercritical 
CO2 (s-CO2) power cycles have the potential to improve thermal efficiency and 
economics for fossil, nuclear and concentrating solar power (CSP) plants, as well in 
waste heat recovery and marine systems. These closed-loop cycles take advantage of 
high density near the critical point to minimize compressor work and yield potentially 
higher cycle efficiency compared to superheated or supercritical steam cycles at hot 
temperatures likely for fossil, nuclear, and CSP. Additionally, these cycles are projected 
to have a smaller weight and volume, lower thermal mass, and less complex power 
block than Rankine cycles. The realization of these projections may also result in 
reduced installation, maintenance and operation cost of the system. 
Theoretical design-point studies in the literature have reinforced the potential efficiency 
gains and established rough operating condition estimates for the s-CO2 power cycle at 
temperatures relevant to CSP applications. However, the off-design performance of 
these cycles is critical to understanding the system level design and operation and 
ultimately quantifying annual performance. To address this modeling gap NREL 
subcontracted, with funding from DOE, a doctoral research project by Dyreby [13] to 
develop a robust design and off-design model of the simple and recompression cycles. 
This model uses turbomachinery off-design models validated with experimental data 
and conductance design and off-design models for the recuperators. These 
components are then combined in a cycle controller that solves for cycle performance 
and optimizes free parameters to maximize efficiency. The goal of this task was to 
integrate Dyreby’s models with SAM’s existing molten salt power tower model and 
thermal storage models to enable annual system simulations. 
Approach 
The simple and recompression cycle models used in this task are described in detail 
both in Dyreby’s thesis [13], a number of papers authored by Dyreby’s group, and our 
2014 continuation report. Dyreby coded these models in Fortran because SAM was in 
Fortran at the beginning of his project. First, we converted his models to C++ to 
integrate with SAM’s new framework and validated our version against his. We 
structured the model into C++ classes that allow us to access the model independently 
of CSP system models. Consequently, we can easily simulate the cycle model through 
our in-house scripting and visualization tools. 
Dyreby’s model focused on cycle design and off-design cycle control. For example, his 
research explores compressor speed control to optimize off-design behavior. As such, 
his model applied simplified assumptions for the primary heat exchanger and air cooler, 
and we needed to build detailed models for these components. We developed a 
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counter-flow heat exchanger model to calculate the design and off-design behavior of 
the molten-salt-to-CO2 heat exchanger. The user can specify the design by setting the 
approach temperature input in SAM. Next, we developed a cross-flow, multi-pass, open 
air to tubular CO2 air cooler. The user can specify the design of the air cooler by setting 
the approach temperature and fan parasitic load. The off-design air cooler calculates 
the fan parasitic load required to reach the approach temperature.  
Finally, we added the sCO2 cycle as a power cycle option for the molten salt power 
tower in SAM. One important difference between the sCO2 cycle and the typical CSP 
steam Rankine cycle is that the temperature gain in the sCO2 primary heat exchanger 
is significantly lower. Furthermore, because the sCO2 cycle model is a detailed first-
principles model, setting the HTF hot side temperature and cycle efficiency constrains 
the HTF cold side return temperature. Consequently, users need to careful that the cold 
side temperature they enter in the user interface is consistent with temperature 
calculated by the cycle design point model at the input cycle efficiency. If the values are 
significantly different, the user may need to consider updating the receiver design to 
change the HTF flow path. To guide the user with this comparison, we implemented a 
cycle design point function in the user interface. The use can select a button that returns 
the solved cycle design point as a function of the current inputs in the interface. The 
user can then compare the calculated to the user-specified HTF cold side return 
temperature. We describe this in more detail in the 2014 fourth quarter and 2015 first 
quarter reports. 
Results 
This model allows users to quickly analyze the impact of the s-CO2 power cycle on 
system performance and financial metrics. For example, the model can be used to 
refine solar field/receiver designs for a s-CO2 power cycle or understand the effect of 
receiver outlet temperature and power cycle efficiency on the LCOE of a molten salt 
power tower with a s-CO2 power cycle. This task also advances the current work by 
explicitly modeling the iterative interaction between the power cycle, solar field/receiver, 
thermal storage, and air cooler. Modeling this interaction is critical to understanding the 
off-design performance of a CSP plan with a s-CO2 power cycle. For instance, the 
temperature difference between the inlet and outlet of the primary heat exchanger can 
vary significantly depending on both design point efficiency and off-design operation. 
This behavior, in turn, affects the hot and cold side molten salt temperatures in the 
receiver and the energy density of thermal storage.  
The sCO2 power cycle continues to gain interest in the CSP, fossil, waste heat, and 
geothermal communities. This integrated cycle model is a powerful tool to begin 
understanding how this cycle affects system design and operation. We are involved in 
several ongoing projects that use and build upon this model, and we expect to 
incorporate improvements to the model in SAM. 
We have received feedback from various SAM users who are exploring this model. One 
current limitation they highlight is that the system model is significantly slower than the 
other SAM models. The longer simulations time are due to the sCO2 model optimizing a 
first-principles model multiple times per timestep. In order to facilitate faster simulations, 
NREL has a SuNLaMP task in FY16 to implement a pre-processor that solves that cycle 
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model over a range of expected operating conditions, and then uses interpolation 
routines to return performance results during the annual simulation. 

SolarPILOT Integration 
SolarPILOT was integrated into SAM via an API during the final year of the project. Our 
measure of success is multifold. First, we have made a number of improvements to 
SolarPILOT’s core functionality to enable rapid and flexible simulation capability to 
effectively replace the previous power tower design and characterization code 
(DELSOL3). Next, we have developed extensive documentation of SolarPILOT in an 
interface-linked help system that provides the user with clear descriptions of each input 
and configuration option. The documentation also provides usage guidance and 
formulation background.  
The milestone relating to SolarPILOT work involves comparing its design and 
characterization capabilities to DELSOL3 for an analogous case. This comparison has 
been completed and shows that the number of heliostats for the sample case agrees 
within 0.022% (target 10%) and the power delivered to the receiver agrees within 
0.192% (target 10%). Work in this task has resulted in the development of a journal 
submission, and the paper documenting the SolarPILOT software and progress made 
as part of the DOE-funded research in this project is discussed in Appendix A: 
SolarPILOT: A Tool for Power Tower Solar Field Layout and Characterization. The 
paper will be submitted to the high-impact peer-reviewed journal Solar Energy.  

User-defined Power Cycle Performance 
Motivation 
SAM models parabolic trough, linear Fresnel, and molten salt power tower 
configurations that employ a heat transfer fluid (HTF) to absorb solar irradiance and 
deliver it as thermal power to a thermodynamic power cycle that utilizes steam as the 
working fluid. This type of configuration is known as an “indirect HTF” configuration, as 
opposed to “direct HTF” configurations wherein the power cycle working fluid also 
passes through the receiver (e.g. direct steam power tower). SAM’s default indirect HTF 
power cycle model is a regression model developed from a detailed first-principles basis 
Rankine cycle model. This basis model calculates cycle performance over the expected 
cycle operating range by modeling each cycle component at off-design conditions. The 
model assumes that deviation in cycle performance at off-design conditions is 
independent of cycle design and only a function of deviation from the user specified 
design point [14]. This model generally has been a fast, flexible, and accurate tool for 
most conventional CSP power cycles. However, some users have requested the 
capability to model their own Rankine cycle design or to model newer concepts that 
pursue the aggressive SunShot targets.  
Approach 
Overview 
NREL has developed a user-defined power cycle option for SAM’s indirect HTF 
technology models to meet this growing demand to model diverse and custom cycles. 
This option presupposes that the user has a custom power cycle model that can be 
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used to generate cycle performance results over expected operating conditions. The 
methodology uses a structured design-of-experiments approach to guide and limit the 
number of custom power cycle simulations required. SAM provides data tables in its 
User Interface to store the user’s performance data. SAM uses this tabular data to build 
a power cycle regression model that considers single variable effects and two variable 
interactions. The following sections explain the user-defined power cycle option in more 
detail.   
Custom Power Cycle Model Requirements 
SAM’s indirect HTF component models use first-principles relationships to model the 
interaction between physical component design (e.g. receiver tube diameter, 
absorptivity, etc.), ambient conditions, and plant performance. Consequently, SAM’s 
component models for the receiver, storage, and power cycle must conserve mass and 
energy as well as track the HTF temperature as the HTF passes between components. 
In order to integrate custom power cycle data into the existing indirect HTF technology 
models, the custom power cycle model must accept as inputs the HTF temperature 
(𝑇𝑇𝐻𝐻𝐻𝐻𝐻𝐻,ℎ𝑜𝑜𝑜𝑜) and normalized mass flow rate (𝑚̇𝑚). Ambient temperature (𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎) also 
influences the performance of thermodynamics power cycles and is the third 
independent input required of the custom model. Conceptually, the custom model 
calculates the outputs in the form of Equation (1), where 𝑌𝑌 represents any model output 
(e.g. cycle electric power generated). Because the technology models depend on the 
relationship between temperatures, mass flow rate, and thermal power, it is crucial that 
the custom cycle model is assuming HTF properties corresponding to the HTF selected 
in the SAM user interface (UI). 

𝑌𝑌 = 𝑓𝑓(𝒎̇𝒎,𝑻𝑻𝑯𝑯𝑯𝑯𝑯𝑯,𝑻𝑻𝒂𝒂𝒂𝒂𝒂𝒂) (1)  

The custom model must return calculated metrics that define the cycle’s performance; 
at a minimum, SAM requires the thermal power delivered to the cycle from the HTF 
(𝑞̇𝑞𝐻𝐻𝐻𝐻𝐻𝐻) and cycle electric power generated (𝑊̇𝑊𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐). Given these values, SAM applies 
Equation (2) to calculate the HTF cold temperature returning to the receiver and/or 
thermal energy storage (𝑇𝑇𝐻𝐻𝐻𝐻𝐻𝐻,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐), where 𝑐𝑐𝑝𝑝 is the HTF specific heat at the average of 
the hot and cold temperatures. SAM also allows the user to optionally report calculated 
cooling parasitic load (𝑊̇𝑊𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) and cycle water use (𝑚̇𝑚𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤). Because the cooling 
parasitic load is optional, the user must be sure that it is consistent with the reported 
cycle electric power generated. Equation (3) shows the relationship between the cycle 
net power calculated in SAM’s regression model and the values reported from the 
user’s custom model. 

𝑇𝑇𝐻𝐻𝐻𝐻𝐻𝐻,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑇𝑇𝐻𝐻𝐻𝐻𝐻𝐻,ℎ𝑜𝑜𝑜𝑜 −
𝑞̇𝑞𝐻𝐻𝐻𝐻𝐻𝐻
𝑚̇𝑚 ∗ 𝑐𝑐𝑝𝑝

 (2)  

𝑊̇𝑊𝑛𝑛𝑛𝑛𝑛𝑛,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝑑𝑑 = 𝑊̇𝑊𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑊̇𝑊𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (3)  

Custom Cycle Design Point Performance 
Because the custom power cycle model must interface with the CSP system defined in 
SAM, it is important to maintain consistency between the design points in SAM and the 
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inputs and response of the custom cycle model. The SAM user interface contains user-
specified and calculated inputs that define the custom cycle inputs and outputs at 
design. That is, two of the cycle inputs at design, HTF hot temperature and ambient 
temperature, are defined on the user interface, while the normalized mass flow rate is 
defined as 1.0 by convention. Similarly, the design point cycle efficiency, electric power 
generation, cooling parasitic load, and cycle water use are also defined in the user 
interface. Consequently, when solved with the design inputs, the custom power cycle 
outputs should match the corresponding values in SAM. 
SAM’s regression model requires that the user report the custom cycle model outputs 
normalized relative to their design values. As such, the normalized outputs will equal 1.0 
at the design case. 
Sampling the Custom Power Cycle Model 
With a custom cycle model meeting the above requirements, the user must populate 
SAM’s data tables with cycle outputs. The goal of the data tables is to accurately 
capture the custom cycle performance over practical ranges for each of the three 
independent inputs (for example, the normalized HTF mass flow rate may float between 
0.3 and 1.1 during an annual simulation). One way to ensure that the tables represent 
the custom cycle over its expected operating conditions is to require the user to sample 
a dense mesh of input combinations. For example, if the user determines that 20 values 
accurately represent the range of possible values for each input, then the user would 
need to complete 8000 (i.e. 203) custom power cycle simulations. For many detailed 
process simulation software packages, this is a significant computational burden. 
Moreover, SAM would need to import all of the calculated data, and the regression 
model would need to expansively search through the data to find the correct 
interpolation region at any given set of inputs. 
To reduce the computational requirements, SAM uses a multi-level design-of-
experiments approach to limit the number of simulations required to represent the 
custom power cycle model by modeling single variable effects and two variable 
interactions. This approach requires that the user define low and high level values for 
each input, designated in Table 1 by − and + superscripts, respectively. The low level 
value should be less than the input’s design value (designated by the ∗ superscript) and 
greater than or equal to the lowest value of the input’s practical range. For example, if 
the practical range of the normalized HTF mass flow rate is from 0.3 and 1.1 and the 
design value is 1.0, then the low level of HTF mass flow rate could be 0.5 or 0.3, but not 
0.2. Similarly, the high level value should be greater than the input’s design value and 
less than or equal to the highest value of the input’s practical range. 
This approach requires nine parametric simulations of the custom cycle model: three for 
each input. First, the single variable (or main) effects are captured by a parametric 
analysis of the custom power cycle model over the practical range of the respective 
main input with the remaining two inputs at their design values, as shown by Parametric 
Analyses 2, 5, and 8 in Table 2. Next the interaction input for each main input is set to 
its low level, and the parametric analyses are rerun, as shown by Parametric Analyses 
1, 4, and 7. Finally, the interaction inputs are set to their high levels, and the process 
repeated, as shown by Parametric Analyses 3, 6, and 9. In this way, the interaction is 
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captured for each of the three possible combinations of two independent inputs. If the 
user selects 20 values to cover the practical range for each independent input, for 
example, then the approach outlined in Table 2 requires only 180 (i.e. 20*9) custom 
power cycle simulations. 

Table 2: Custom Power Cycle Simulations Required to Populate SAM’s Data Tables 

SAM 
table 

Parametric 
Analysis # 

Number of 
Simulations 

Custom Model Inputs 
HTF Hot  Temp HTF Mass Flow Rate Ambient Temperature 

Ta
bl

e 
1 1 

𝑁𝑁𝑇𝑇𝐻𝐻𝐻𝐻𝐻𝐻,ℎ𝑜𝑜𝑜𝑜  
𝑇𝑇𝐻𝐻𝐻𝐻𝐻𝐻,ℎ𝑜𝑜𝑜𝑜
𝑖𝑖   

𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1. .𝑁𝑁𝑇𝑇𝐻𝐻𝐻𝐻𝐻𝐻,ℎ𝑜𝑜𝑜𝑜  

𝑚̇𝑚− 
𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎∗  2 𝑚̇𝑚∗ 

3 𝑚̇𝑚+ 

Ta
bl

e 
2 4 

𝑁𝑁𝑚̇𝑚 𝑇𝑇𝐻𝐻𝐻𝐻𝐻𝐻,ℎ𝑜𝑜𝑜𝑜
∗  𝑚̇𝑚𝑖𝑖 

𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1. .𝑁𝑁𝑚̇𝑚 
𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎−  

5 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎∗  
6 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎+  

Ta
bl

e 
3 7 

𝑁𝑁𝑇𝑇𝐻𝐻𝐻𝐻𝐻𝐻,𝑎𝑎𝑎𝑎𝑎𝑎  
𝑇𝑇𝐻𝐻𝐻𝐻𝐻𝐻,ℎ𝑜𝑜𝑜𝑜
−  

𝑚̇𝑚∗ 𝑇𝑇𝐻𝐻𝐻𝐻𝐻𝐻,ℎ𝑜𝑜𝑜𝑜
𝑖𝑖   

𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1. .𝑁𝑁𝑇𝑇𝐻𝐻𝐻𝐻𝐻𝐻,ℎ𝑜𝑜𝑜𝑜 8 𝑇𝑇𝐻𝐻𝐻𝐻𝐻𝐻,ℎ𝑜𝑜𝑜𝑜
∗  

9 𝑇𝑇𝐻𝐻𝐻𝐻𝐻𝐻,ℎ𝑜𝑜𝑜𝑜
+  

 
Populating Data Tables in SAM 
The user can simulate a custom power cycle model at the conditions in Table 2 to 
create data that SAM uses in its power cycle regression model. Next, the user must 
import that data to the data tables in the SAM User Interface. Rather than a unique table 
for each of the nine parametric analyses listed in Table 2, SAM groups into tables the 
parametric analyses that were calculated with the same main inputs. For example, 
analyses 1-3 were all calculated over the practical range of HTF hot temperatures. 
Consequently, the first column in the corresponding data table in SAM contains the HTF 
hot temperature, with the number of rows matching the number of values in the HTF hot 
temperature range. Then, the table provides three consecutive columns for each 
calculated output: one column for each level of the interaction input.  
Figure 2 shows an example of how data is applied from the parametric analyses in 
Table 2 to the SAM data table containing results from parametric analyses of the 
practical range for the HTF hot temperature. Note that the low and high levels for the 
interaction input, 𝑚̇𝑚, are user inputs above the table. The data table containing the HTF 
mass flow rate results uses parametric analyses 4-6, and the table containing the 
ambient temperature results uses parametric analyses 7-9. 
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Figure 2: Populating the HTF Temperature data table 

SAM’s Regression Model 
SAM uses the normalized performance data that the use enters in the data tables to 
calculate cycle performance by fitting the data to the regression model in Equation (4). 
The three inputs, represented here by 𝑻𝑻𝑯𝑯𝑯𝑯𝑯𝑯,𝒉𝒉𝒉𝒉𝒉𝒉, 𝒎̇𝒎, and 𝑻𝑻𝒂𝒂𝒂𝒂𝒂𝒂, are passed to the 
regression model from the other CSP component models, and as such should fall within 
but not directly coincide with the main inputs in the respective data tables. Equation (4) 
is solved for each of the four outputs, and its normalized output is multiplied to the 
corresponding design value to calculate the output’s absolute value. 

𝑌𝑌 = 1 + 𝑓𝑓𝑀𝑀𝑀𝑀,𝑇𝑇𝐻𝐻𝐻𝐻𝐻𝐻,ℎ𝑜𝑜𝑜𝑜�𝑻𝑻𝑯𝑯𝑯𝑯𝑯𝑯,𝒉𝒉𝒉𝒉𝒉𝒉�+ 𝑓𝑓𝑀𝑀𝑀𝑀,𝑚̇𝑚(𝒎̇𝒎) + 𝑓𝑓𝑀𝑀𝑀𝑀,𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎(𝑻𝑻𝒂𝒂𝒂𝒂𝒂𝒂) + 

𝑓𝑓𝐼𝐼𝐼𝐼𝐼𝐼,𝑚̇𝑚→𝑇𝑇𝐻𝐻𝐻𝐻𝐻𝐻,ℎ𝑜𝑜𝑜𝑜
± �𝑻𝑻𝑯𝑯𝑯𝑯𝑯𝑯,𝒉𝒉𝒉𝒉𝒉𝒉� ∗

(𝒎̇𝒎 − 𝑚̇𝑚∗)
(𝑚̇𝑚∗ −  𝑚̇𝑚±) + 𝑓𝑓𝐼𝐼𝐼𝐼𝐼𝐼,𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎→𝑚̇𝑚

± (𝒎̇𝒎) ∗
(𝑻𝑻𝒂𝒂𝒂𝒂𝒂𝒂 − 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎∗ )
�𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎

∗ − 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎
± �

+ 𝑓𝑓𝐼𝐼𝐼𝐼𝐼𝐼,𝑇𝑇𝐻𝐻𝐻𝐻𝐻𝐻,ℎ𝑜𝑜𝑜𝑜→𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎
± (𝑻𝑻𝒂𝒂𝒂𝒂𝒂𝒂) ∗

�𝑻𝑻𝑯𝑯𝑯𝑯𝑯𝑯,𝒉𝒉𝒉𝒉𝒉𝒉 − 𝑇𝑇𝐻𝐻𝐻𝐻𝐻𝐻,ℎ𝑜𝑜𝑜𝑜
∗ �

�𝑇𝑇𝐻𝐻𝐻𝐻𝐻𝐻,ℎ𝑜𝑜𝑜𝑜
∗ − 𝑇𝑇𝐻𝐻𝐻𝐻𝐻𝐻,ℎ𝑜𝑜𝑜𝑜

± �
 

(4)  

where: 

• the 𝑓𝑓𝑀𝑀𝑀𝑀,𝑖𝑖(𝒊𝒊) terms represent the main effect of input 𝑖𝑖, linearly interpolated from the 
corresponding lookup table at 𝒊𝒊 and the design value of the interaction input. 

• The superscript ± refers to either the lower or upper level of the interaction input, 
depending on whether the interaction input is less or greater than its design value, 
respectively. 

• the  𝑓𝑓𝐼𝐼𝐼𝐼𝐼𝐼,𝑗𝑗→𝑖𝑖
± (𝒊𝒊) terms represent the interaction effect of input 𝑗𝑗 on input 𝑖𝑖 and are 

calculated two times for each input (one for the upper and one for the lower level of 
the interaction input) from the data tables at the beginning of the a simulation for 
each value in the practical range of 𝑖𝑖 using Equation (5). When Equation (4) is 
applied during the annual CSP system simulation, these terms are calculated by 
linearly interpolating at 𝒊𝒊. 

𝑓𝑓𝐼𝐼𝐼𝐼𝐼𝐼,𝑗𝑗→𝑖𝑖
± (𝒊𝒊) = −�𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖(𝒊𝒊, 𝒋𝒋±)− 1.0 − 𝑓𝑓𝑀𝑀𝑀𝑀,𝑗𝑗(𝒋𝒋±)− 𝑓𝑓𝑀𝑀𝑀𝑀,𝑖𝑖(𝒊𝒊)� (5)  
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Summary 
The following steps define the high-level process to successfully run the user-defined 
power cycle option in SAM. 
1. Develop a custom power cycle model that accepts as inputs the HTF hot 

temperature, the normalized HTF mass flow rate (with respect to the design point 
mass flow rate), and the ambient temperature. Ensure that when applying the design 
point inputs, the calculated outputs match the corresponding values in SAM. 

2. For each of the three model inputs: 
a. Select a practical range covering expected cycle operating conditions over the 

course of the annual simulation. Create a sample of values within this range to 
accurately capture the cycle response over the operating range (i.e. select the 
number of values in the range). 

b. Select low and high levels required when the input is the interaction input. 
3. Complete the parametric analyses outlined in Table 2. 
4. Using Figure 2 as a guide, populate the data tables in SAM using the normalized 

custom cycle results from the parametric analyses. 
5. Run the SAM simulation. 
6. Repeat these steps if you modify SAM inputs that affect the custom model results 

(e.g. the HTF temperature at design is increased). 
FY15 Task Milestone 
We have completed the milestone to “include the user-defined power cycle option and 
documentation in an upcoming SAM release.” The user-defined power cycle option is 
available for the molten salt power tower, physical trough, and molten salt linear Fresnel 
models in SAM. A new SAM release containing the new models, improvements, and 
bug fixes for CSP, as well as updates from other technologies funded outside of DOE-
CSP is tentatively scheduled for January 2016. We also wrote documentation that 
includes sample Python code that generates tables that the user can import to the data 
tables in SAM. We will include this documentation in SAM as a reference for users. 

Storage Dispatch Optimization 
Motivation 
SAM’s valuation of energy from CSP plants with storage was inaccurate because it 
applied a simplistic dispatch model that did not reflect the actual operation strategies 
adopted by industry since the model was first developed. Instead SAM’s dispatch model 
relied on simple, static heuristics to generate electricity during high value periods. The 
dispatch optimization model improves the financial performance of the molten salt 
power tower model (e.g. PPA price, LCOE) by providing the flexibility to operate the 
plant, especially thermal storage and power cycle behavior, based on locational 
marginal price. Additionally, the new plant controller and numerical solver models that 
provide the underlying framework for the dispatch optimization routines improve the 
stability, predictability, and converge of the system level model. Finally, the model also 
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provides industry with a broadly-applicable mathematical methodology for optimizing the 
dispatch of plants with thermal storage. 
Modeling Framework Overview 
Figure 3 shows a flow diagram of the new modeling framework we’ve designed to 
optimize thermal energy storage dispatch and plant operation to maximize revenue. 
Conceptually, the dispatch optimization model is the highest level, or outer nest, of the 
framework, and its main objective is to specify to the controller the target turbine output, 
and component operation Booleans (i.e. is power cycle generation allowed) for a given 
timestep. The controller is the next level down, and it decides how to operate the 
system components in order to achieve the turbine output and component signals it 
received from the dispatch optimization model. After the controller choses an operating 
mode, it passes control to the numerical solver. The solver contains tailored algorithms 
for each operating mode that allow it to exhaustively search the solution space to either 
find close convergence of energy and mass balances or report to the controller that the 
operating mode is unfeasible. The controller then uses its hierarchy to select the next 
best operating mode. 
The division between the dispatch optimization and controller models is perhaps subtle 
and worth a brief discussion. The former could be designed to also select the operating 
mode, while the latter could be designed to also determine the component Booleans 
and target turbine output. The distinction is that the dispatch optimization model is 
effective precisely because it is adaptive and only constrained by the bounds of the 
solution space; it can report infinite combinations of signals to the controller. These 
calculations require significant computation, and therefore the model necessarily uses 
simplified proxy models. While the proxy models are generally accurate, they don’t 
approach the convergence tolerances required by the controller. As such, under certain 
forcing conditions, the dispatch model will predict an infeasible operating mode. 
The controller, on the other hand, is a static, heuristic model; it can only search for 
solutions over a fixed hierarchy. Because of these limited options, the computational 
effort required to find a solution is negligible. As such, its role is finding the optimal 
feasible operating conditions after the dispatch optimization model selects its signals. 
Consequently, it is most useful when the proxy models error such that the first selected 
operating mode is unfeasible and the hierarchy is required to find a viable solution. 
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Figure 3: Flow diagram showing the modeling framework that simulates annual plant performance with 
optimized dispatch. 

The Hierarchical Controller and Numerical Solver 
Overview 
It is worth revisiting benefits of an improved controller and solver. Although the primary 
objective of including it in this task is to enable the dispatch optimization model, we 
initially planned it with the goal to improve the accuracy and convergence of SAM’s CSP 
indirect HTF technology models. Although in general the most important outcome of 
poor convergence is suboptimal representation of system performance, it’s helpful to 
group the sources of convergence failure into two broad categories: Operational and 
Numerical.  
Operational failure occurs when the controller cannot decide on the model’s final 
operating mode. For example, under certain conditions, the molten salt power tower 
model may be on the threshold of operating at any of the following modes: 1) charging 
storage and operating the power cycle at full power, 2) operating the power cycle at full 
power with idle storage, or 3) dispatching storage to achieve full power cycle output. 
Each mode can result in component performance that is different enough from the 
previous mode such that the controller logic selects another mode for the next iteration. 
The controller can become stuck in this pattern of constantly switching modes without 
iterating over the solution space of a single mode. The end result is that the 
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convergence at the end of that timestep is often poor and above typical limits. One 
potential mitigation strategy is a “mode sticking” approach which forces the controller to 
select a final mode after a fixed number of mode switching iterations. However, 
oftentimes this approach results in selection of a mode that cannot solve within the 
physical bounds of the components and results in Numerical convergence failures. 
Numerical failures are the failure to find the correct values of component inputs that 
result in a technology model solution that is both stable (component inputs that are 
dependent on outputs of other components are equal to those outputs) and obeys mass 
and energy conservation. For example, consider an operating mode wherein the 
receiver is charging thermal storage. The receiver inlet temperature is dependent on the 
storage performance, while the storage performance is dependent on the receiver 
performance. One solution strategy is to guess the receiver inlet temperature until the 
calculated receiver inlet temperature (by way of the receiver performance model and 
storage performance model) is within a close tolerance of the guess. The successive 
substitution solution strategy in TCS (similar to the solver in TRNSYS) can fail to reach 
convergence in cases where the component input fluctuates significantly depending on 
the performance of other components. This occurs most often when the receiver, 
storage, and power cycle are operating concurrently. When the receiver output mass 
flow rate is split between storage and the power cycle, the return temperature to the 
receiver can vary significantly between the storage exit temperature and the power 
cycle exit temperature. CSP systems employing the steam Rankine power cycle reach a 
reasonable convergence for most simulations, but are aided by a relatively constant 
power cycle HTF return temperature at most off-design conditions. The sCO2 cycle, as 
discussed in previous reports, may operate most efficiently at varying HTF return 
temperatures. However, the TCS solver fails if this temperature is allowed to float. 
Similarly, it is likely that some user-defined power cycle models also will exhibit this HTF 
return temperature behavior. 
We focused our controller/solver development on solving the convergence challenges 
described above. Operational convergence issues are mitigated through the 
implementation of a hierarchical controller. We have implemented the hierarchy such 
that it first selects the most preferred mode that is likely possible under the given 
conditions. Then the solver tries to reach convergence at that mode. If the solver does 
not convergence, it then sends the controller information that it uses to determine the 
next operating mode in the hierarchy to try. If the solver fails at an operating mode, only 
a less preferable operating mode can be selected. This strategy guarantees that an 
optimal operating mode is selected while simultaneously ensuring that mode switching 
is avoided. The final, least desirable (but always available) operating mode is shutting 
off all of the component models.   
In addition to the significant improvements to model convergence, we designed the 
controller to efficiently interface with the dispatch optimization model. To this end, we 
moved all component performance models to stand-alone C++ class based models. 
This framework allows the dispatch model to interact directly with each component 
model. For example, the dispatch model can call the molten salt power tower receiver 
model with guessed inputs for a few hours ahead of its present time step. The dispatch 
model could then use the results to make decisions about whether to dispatch or charge 
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storage at its present time step. This component model framework allows the dispatch 
model to request each component’s present operating state. (Component models exist 
in class-based structures in TCS, but those classes are closely integrated with the TCS 
framework. We could have achieved most of the functionality described in this 
paragraph within the TCS framework, but the result would have been suboptimal and 
complicated code that would have restricted or eliminated the other benefits of moving 
to the hierarchal controller/solver.) 
The hierarchal controller also realizes advantages over the current CSP modeling 
framework relative to simulation resolution. The controller calculates the exact time step 
required to achieve the receiver and then the power cycle startup. TCS, on the other 
hand, requires a fixed simulation time step. In the typical case of hourly time steps, the 
receiver would startup in TCS in less than one hour. Then, the receiver generates hot 
HTF the remaining portion of the hour. However, the receiver communicates with the 
power cycle and controller in power not energy units. Therefore, in order to balance 
energy over the entire time step, the output mass flow rate and corresponding thermal 
power is derated in TCS to account for the startup energy during the time step. The 
result is that the power cycle receives a small receiver power output over the entire time 
step and decides that it can’t operate at that level of part-load. In the flexible time step 
scenario, the power cycle receives the instantaneous power output, but only over the 
second portion of the hourly time step. The result is that, for a subhourly time step, the 
power cycle receives a power output that exceeds its minimum operation (part-load) 
fraction, and it can startup and generate electricity.  
Finally, we developed the component framework for the solver using pure-virtual parent 
classes for each component type. Essentially, the parent class serves as an API that 
allows child classes to be built for different variations of the component, given that each 
defined child class supplies methods for the virtual methods defined in the parent class. 
For example a collector-receiver parent class would contain a method that takes as 
inputs HTF temperature and defocus and returns as solved outputs the hot HTF 
temperature and mass flow rate. One child class may define a heliostat field and molten 
salt power tower, while another child class may define a parabolic trough collector-
receiver field. Analogously, there is a parent class for the power cycle that could define 
methods for child classes for the steam-Rankine and sCO2 power cycles. 
The Controller Hierarchy and Selecting an Initial Operating Mode 
The controller receives control signals from the dispatch optimization model or static 
inputs (Table 3), uses the current component operating states (Table 4-Table 6), and 
predicts component performance (Table 7). It then applies this information to its 
hierarchy to select the most preferred operating mode as the initial operating mode. The 
next section discusses the iteration process if the initial operating mode fails. The 
innovation of the hierarchy is that it captures the complex relationship between these 
inputs and the preferred operating mode, as well as the relationship between operating 
modes. 
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Table 3: Plant control signals passed to the controller from the Dispatch model or static user inputs. 

is_rec_su_ok Is the receiver allowed to start-up or stay on? 
is_pc_su_ok Is the power cycle allowed to start-up or stay on? 
is_pc_SB_ok Is the power cycle allowed to enter Standby mode? 
q_PC_target What is the preferred thermal power input to the power cycle? 

 

Table 4: Collector-receiver operating states 

_OFF Off: the HTF is not absorbing energy. The receiver is either drained or 
recirculating HTF, depending on the technology. 

_SU 
Starting-Up: the receiver is recirculating mass flow to safely heat its material 
to operating conditions. Start-up is complete when user-defined absorbed 
energy and start-up time requirements are met. 

_ON On: the receiver is producing hot HTF that must be used by thermal storage 
or the power cycle.  

_DF 
Defocus: the receiver is producing more hot HTF than the thermal storage 
and power cycle can accept. This mode defocuses the collectors until the 
receiver mass flow decreases to an acceptable rate. 

 
Table 5: Thermal energy storage operating states 

_OFF Off: thermal energy storage is idle. Thermal losses to the environment are 
still calculated and freeze protection is applied if necessary. 

_DC Discharge: thermal energy storage is discharging thermal power. 
_CH Charge: the receiver HTF output is charging thermal energy storage. 

_EMPTY Empty storage: thermal energy storage is completely discharged over the 
timestep. 

_FULL Fill storage: thermal energy storage is fully charged over the timestep. 
 

Table 6: Power cycle operating states and user-defined operational limits 

_OFF Off: the power cycle is not receiving mass flow from thermal storage or the 
receiver and requires startup energy before it can produce power. 

_SU 

Starting-Up: the power cycle is receiving mass flow from thermal storage 
or the receiver to safely heat its components to operating temperature. 
Start-up is complete when user-defined absorbed energy and start-up time 
requirements are met. 

_SB 

Standby: the power cycle is receiving enough mass flow from thermal 
storage or the receiver to stay at its operating temperature, but not enough 
to produce power. If during the next timestep the power cycle receives 
more mass flow, it can produce power without meeting cold start-up 
requirements. 

_TARGET Target thermal input: the power cycle requests the target (defined by 
dispatch model for each timestep) thermal input from the receiver and 
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thermal storage.  

_MAX Maximum thermal input: the power cycle is operating at its user-defined 
maximum thermal input. 

_MIN Minimum thermal input: the power cycle is operating at its user-defined 
minimum thermal input. 

_RM_HI 

Resource match – high: the power cycle allows flexible thermal input 
between its target and maximum values, such that its thermal input 
matches the thermal power available from the receiver and thermal 
storage. 

_RM_LO 

Resource match – low: the power cycle allows flexible thermal input 
between its target and minimum values, such that its thermal input 
matches the thermal power available from the receiver and thermal 
storage. 

q_PC_min Minimum allowable thermal power input to the power cycle to produce 
power 

q_PC_max Maximum allowable thermal power input to the power cycle 

q_PC_sb Minimum allowable thermal power input to the power cycle to maintain 
standby operation 

 
Table 7: Component performance estimates, completed at the beginning of each timestep 

q_CR_on Estimate of receiver thermal power output assuming steady state 
operation 

q_CR_su Estimate of receiver thermal power available for receiver startup 
q_TES_ch Maximum available thermal power thermal energy storage can accept 

q_TES_dc Maximum available thermal power thermal energy storage can 
discharge 

tol 

Relative value applied to estimated performance values that account for 
the uncertainty of the estimate. Applying the tolerance in decision point 
logic inequalities ensures that higher preference operating modes are 
not missed due to low performance estimates. 

 
The following four figures (Figure 4-Figure 7) show hierarchical controller flow diagrams. 
The following information explains important features of the diagrams: 

• Each timestep, the controller uses one of the hierarchies depending on operating 
states of the collector-receiver and power cycle. These entry criteria are 
described in the green shapes. 

• The controller navigates the hierarchy using decision point logic in the tan 
diamonds and the black arrows corresponding to whether the logic is true (YES) 
or false (NO). 

• Operating modes are listed in the blue rectangles. Red outlines of the boxes 
indicate that the timestep of the operating mode is calculated by the solver and 
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may be shorter than the baseline timestep set by the simulation kernel (e.g. 
collector-receiver startup). 

• Finally, the red dotted arrows show the few occasions when iteration on the 
operating model requires moving to a different branch on the hierarchy. This is 
discussed in more detail in the following section. 

 
Figure 4: Hierarchy for initial condition of the collector-receiver and power cycle both off or starting up. 

 
Figure 5: Hierarchy for initial condition of the collector-receiver on and power cycle off or starting up. 
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Figure 6: Hierarchy for initial conditions of the collector-receiver off or starting up and power cycle on or in 
standby.
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Figure 7: Hierarchy for initial condition of the collector-receiver on and power cycle on or in standby. Shading is intended to help differentiate 
difference branches.
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Operating Mode Iteration 
Figure 4 through Figure 7 shows hierarchies for different component operating state 
initial conditions. As shown in the figures, we’ve included a tolerance in the hierarchy 
decision point logic inequalities to ensure that higher preference operating modes are 
always tried in the case that performance is underestimated. For example, the logic may 
compare the estimated receiver output to the minimum power cycle operation fraction. 
The best outcome for this decision point is that the receiver can supply at least enough 
thermal power to meet this minimum fraction. Therefore, we add the tolerance to the 
receiver output and then compare that summation to the minimum fraction. If the 
summation is still less than the minimum fraction, we are comfortable that that preferred 
branch is not possible under those conditions. 
On the other hand, the summation including the tolerance in this example may be only 
marginally greater than the minimum fraction. In that case, when the preferred operating 
mode is selected, the numerical solver will determine that the mode cannot be solved 
within the constraints (in this example, the power cycle will not be able to operate at its 
minimum operation fraction). As a result, the solver needs to communicate to the 
controller that it failed to solve the selected operating mode, and then the controller 
needs to find the next best operating mode to try.  
Figure 8 shows an example of the process to find the optimal operating mode for two 
iterations. First, the controller selects the highest preference operating mode given the 
initial conditions and performance estimates: the collector receiver is on and the power 
cycle is operating at a level between its minimum and target operating fractions to 
match the collector receiver output. However, the solver determines that when the 
detailed collector receiver and power cycle performance models are evaluated as a 
system, the collector receiver cannot supply enough thermal power to the power cycle 
to operate at its minimum fraction. Then the solver communicates to the controller that 
this operating mode is not feasible. The controller hierarchy is updated such that the 
decision point that led to the failed operating mode is now hard-coded to avoid that 
operating mode. Therefore, the second iteration through the controller hierarchy 
bypasses the failed operating mode and selects the next highest preference operating 
mode – in this example the collector receiver is on while the power cycle operates in 
standby. If this mode fails, the solver will instruct the controller to avoid this operating 
mode as well, and the third iteration would advance to the “additional decision points…” 
where a new, lower preference operating mode would be selected. The final, lowest 
preference, operating mode is always shutting off each component. 
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Figure 8: Iterative interaction between the hierarchical controller and numerical solvers to find the correct 
operating mode. 

Finally, there are a few operating modes wherein a solver failure necessitates switching 
branches in the hierarchy. Figure 9 shows an example of the hierarchy where this 
switching could occur. Some set of inputs may result in the first decision point logic 
being marginally true when the tolerance is applied. In that case, assuming no thermal 
storage charging capacity and a maximum turbine fraction greater than the target, the 
controller will select mode CR_ON PC_RM_HI TES_OFF from the hierarchy. However, 
in this case when the solver attempts to solve this mode, it will not be able to match or 
exceed the target turbine fraction. This is because the logic in the first decision point in 
the diagram is incorrect, not due to the logic in the decision point directly upstream. 
Consequently, the first decision point is hardcoded false, and the next iteration 
branches off of the example shown. The red dotted line indicates that the operating 
mode interacts with the first decision point. 
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Figure 9: Example section from the hierarchy for the initial conditions of the collector-receiver on and the 
power cycle highlighting operating mode iteration that requires switch hierarchy branches. 

Time Series Results 
Annual results are discussed later in this report. Because one of the main goals of the 
controller and solver was to improve convergence, it is important to confirm that we 
achieved that outcome. Figure 10 shows the relative error of mass and energy balances 
for a plant configuration with four hours of thermal energy storage, a solar multiple of 
1.5, and a constant turbine fraction of 1.0. The energy balance in plot e) shows 
excellent energy conservation in both the TCS and new modeling framework. However, 
the mass conservation in plot a) shows that TCS tends to achieve poor mass balance 
convergence when the receiver, thermal storage, and power are all active. Inversely, 
TCS does not experience significant mass conservation errors for plant configurations 
with no storage.  

 
Figure 10: Sunny day comparison of mass and energy conservation relative errors for the plant configuration 
with four hours of thermal energy storage. 

Dispatch Optimization 
We have successfully implemented and demonstrated a dispatch optimization 
methodology in SAM. The new capability meets the targeted milestone by 
demonstrating improved revenue results (via PPA price reduction) for an optimized case 
versus the previous “block dispatch” case. The results of this work are presented in 
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detail in Appendix B: Concentrating Solar Power Energy Dispatch Optimization in 
a Detailed Annual Simulation Model. This paper will be submitted to the journal 
Applied Energy.  
Dispatch optimization relies on the premises that (a) future thermal energy generation 
from the solar field can be predicted with some accuracy, (b) a CSP plant can be 
operated according to a pre-specified production schedule, and (c) the behavior of a 
CSP plant over time can be approximated using a model comprised exclusively of 
constant, linear, and binary variables (a “mixed integer linear program” or MIP). In this 
project, we developed a simplified forecast model and a MIP that is evaluated by a 
solver to determine the optimal production schedule. The MIP takes as input the thermal 
energy production forecast from the solar field, the expected electricity sales price or 
tariff multiplier schedule, and plant sizing parameters. It simultaneously solves for the 
optimal electricity generation profile while treating as variables the charge state of 
thermal storage over time, the energy use by the power cycle, and energy use for 
system startup. The objective of the solver is to maximize expected revenue from the 
plant over the optimization time horizon, and revenue is modeled as the product of 
electricity production and a price multiplier for each hour in the horizon. 
Once the optimal electricity generation schedule is identified using the MIP solver, the 
corresponding target power cycle thermal consumption and operational states of the 
power cycle and receiver are passed to the simulation controller. The controller 
replicates the optimal profile as best as possible using the methodology described in 
previous sections. The dispatch optimization process determines the optimal schedule 
every 24 hours of the simulation and uses a look-ahead window of 48 hours (by default) 
to allow for day-to-day carryover of thermal storage. 
The effectiveness of dispatch optimization is demonstrated by considering four tariff 
schedules with differing daily price multiplier profiles. Each schedule seeks to 
emphasize a different aspect of CSP plant operation. We first considered the impact of 
dispatch optimization in comparison to the previous heuristic dispatch model with 
respect to power purchase agreement (PPA) price. This financial metric is a good 
indicator of overall plant profitability, whereas LCOE does not capture the impact of 
hourly revenue multipliers. The first analysis investigates the optimal sizing of thermal 
storage and solar multiple for a plant with optimized dispatch and a plant with heuristic 
dispatch. The results of this study show that dispatch optimization substantially reduces 
PPA price in all tariff scenarios. The reduction in PPA price ranges from 2.9% to 14.2%. 
The results also show that dispatch optimization can change the optimal sizing of the 
solar multiple and thermal storage systems. For example, one tariff schedule indicated a 
minimal PPA price at a solar multiple of 2.2 and TES size of 5 hours for the heuristic 
dispatch case and a solar multiple of 2.0 and TES size of 7 hours for the optimized 
dispatch case. This illustrates a counter-intuitive design relationship where solar 
multiple is reduced and TES sizing is enhanced because of dispatch optimization. 
Notably, this case corresponded to a reduction in PPA price of 14.2%. 
Finally, the tariff case studies illustrate the ability of dispatch optimization to reduce 
electricity generation variability during peak pricing hours. Heuristic dispatch algorithms 
create repetitive profiles based on simple rules, and the electricity generation may not 
correspond well with peak pricing. Optimized dispatch can reserve energy in storage 
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until the peak pricing periods – whether that peak occurs in the early morning, late 
afternoon, or another time of day – and generate electricity to maximize revenue. The 
analysis shows that peak period variability is small over the course of the year, and this 
implies the viability of CSP for serving peaking or ancillary services markets. We refer 
the reader to Appendix B for detailed discussion and presentation of the results. 
 
SAM User Interface Implementation and Default Case Comparison 
The dispatch optimization model requires new user interface inputs for the user to 
enable and configure the model. We also realized from developing the controller and 
solver that we could more clearly differentiate on the interface inputs to the system 
design, system components, and system control. This led to an overhaul of the molten 
salt power tower layout, including the following changes: 

• We created a System Design page that contains high level system inputs like hot 
and cold HTF design temperatures, solar multiple, power cycle output, and hours of 
thermal storage. These values are then displayed on the component pages to help 
inform component design. 

• Similarly, we created a System Control page that contains system level operation 
and control inputs like balance-of-plant parasitics, TOU schedules, turbine outlet 
fractions, and dispatch optimization configuration. 

• We removed the parasitics page and relocated those inputs to their respective 
component pages. 

Finally, we made a number of other changes to the molten salt power tower component 
performance models during the development of the controller and solver. Some of these 
changes were bug fixes; others were made to achieve better consistency with user 
expectations and input definitions. The annual net electric output for the default case, 
without dispatch optimization, is now roughly 3.5% greater than in the previous release. 
This increase is due to the following changes: 

• We moved the tower piping heat losses from a parasitic applied to the electric output 
to calculated thermal losses in the receiver energy balance model. This resulted in 
about 1.0% increase for the default case. 

• We are allowing the receiver and power cycle to startup in subhourly timesteps 
(using hourly weather data), as discussed in detail above. The result is about 0.5% 
increase for the default case. 

• Finally, the largest difference results from a change in how the TES volume is 
calculated. We are now assuming that 2-tank TES system can deliver at design the 
rated hours of storage after the tank fluid minimum height is considered. 
Consequently, when this input is increased, the tank volume increases. Our old 
approach sized the tanks without considering this input. So, for the default case, our 
new approach results in a larger tank that effectively adds more hours of storage 
relative to the previous version. 
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This model is now available in an NREL-internal release of SAM, with new Help 
features for the dispatch optimization features. NREL has distributed this version to 
Beta testers and is expecting feedback in December. Additionally, the paper describing 
the dispatch optimization methodology attached in the Appendix will be available to 
users upon publication. A new SAM release containing the new models, improvements, 
and bug fixes for CSP, as well as updates from other technologies funded outside of 
DOE-CSP is tentatively scheduled for January 2016. Given these results, NREL has 
completed Milestone 1 for this task: “A publicly available dispatch optimization model in 
SAM with corresponding documentation and a user’s manual detailing the methodology 
and sample results.”  
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Abstract

A new Solar Power tower Integrated Layout and Optimization Tool (SolarPILOT) is developed and demonstrated. The tool ad-
vances the analytical flux image Hermite series approximation used in DELSOL3 by applying it to individual heliostat images
rather than “zones”, allowing characterization of a wide variety of heliostat field layouts. A number of improvements to the analyt-
ical approximation method have been developed and implemented in SolarPILOT to improve model accuracy and computational
efficiency. Several of these methods are discussed in this paper, including a method for dynamic heliostat grouping to reduce the
expense of intercept factor evaluation, methods for approximating annual productivity with a subset of time steps throughout the
year, a polygon clipping method to accurately calculate inter-heliostat shadowing and blocking, methods for receiver and tower ge-
ometry optimization, and an trigonometric image transform algorithm that ensures analytical equation accuracy for small heliostats.
SolarPILOT also integrates the SolTrace Monte-Carlo ray tracing engine, providing improved receiver optical modeling capability,
a user-friendly front end for geometry definition, and side-by-side validation of the analytical algorithms.

Keywords: SolarPILOT, Power Tower, Heliostat Layout, Optical Characterization, Simulation Optimization

1. Introduction

Power tower systems (also known as “central receiver sys-
tems”) are optically complex, using thousands of individually-
tracking heliostats to reflect sunlight onto a stationary receiver
throughout the day and the year. The angular acceptance win-
dow for the reflected image from a heliostat is typically very
small, requiring tracking precision with an error distribution
standard deviation on the order of 1 mrad or less. In addition,
receiver operation typically requires that the incident flux den-
sity be maintained below a maximum value, and heliostat im-
ages must be strategically placed on the receiver to achieve a
practicable distribution [1, 2, 3] that extends the receiver ma-
terial lifetime and minimizes optical interception losses. The
redirection of sunlight by the heliostat field is also subject to
a series of losses that depend on the heliostat’s position rela-
tive to the receiver, the position and orientation of neighbor-
ing heliostats, the position and apparent shape of the solar disc,
the particulate content in the atmosphere, the geometry of the
heliostat, optical errors in the heliostat, and the heliostat field
operation strategy. Many of these losses are dynamic in time
and must be modeled over a range of conditions in order to
adequately characterize the likely performance of a plant, as
shown previously by the authors and others [4]. Consequently,
computer software has been used to generate solar field ge-
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ometry and characterize its performance since the late 1970’s
[5, 6, 7, 8].

The history of available codes extending from first-
generation tools through current solutions is well-documented
[9, 10]. A number of power tower tools have been developed
to support the various stages of analysis necessary to charac-
terize system performance. Codes such as the University of
Houston Codes (UHC - also known as the RCELL suite) [8],
DELSOL3 [11], TieSOL [12], and HFLCAL [13] can be used
to generate solar field geometry programmatically. Other codes
such as MIRVAL [6], HELIOS [14], STRAL [15], Tonatiuh
[16], and SolTrace [17] are capable of detailed field characteri-
zation but are not designed to quickly generate and optimize so-
lar field geometry1. Finally, given a particular geometry, several
codes are capable of characterizing the annual performance of
tower systems, including Solergy [18], System Advisor Model
(SAM) [19], and the TRNSYS STEC library [20]. Because
these various tools emphasize different aspects of power tower
solar field design or characterization, each must be used delib-
erately within the scope of the problem that it addresses.

1.1. Modeling approaches

The aforementioned tools characterize optical perfor-
mance using one of two general approaches: analytical (or
semi-analytical) approximation or Monte-Carlo Ray-Tracing
(MCRT). The basis for analytical methods lies in modeling a

1DLR has developed an extension for MIRVAL that facilitates automated
field layout [10]
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reflected image with a closed-form density function. Most sim-
ply, an image can be approximated using a Gauss-normal dis-
tribution with standard error deviation defined in one or two
dimensions.

Multiple physical effects – each with their own error distri-
bution – can impact the overall image error distribution. One
approach for modeling multiple error factors is to simply con-
volve the various error sources as independent normal distribu-
tions into a single normal distribution described by a standard
deviation in each dimension. This approach limits the shapes
of the reflected images that can be modeled, but may be ap-
propriate for heliostats with certain optical properties. A more
nuanced approach utilizes the truncated Hermite polynomial se-
ries to describe the image shape in two dimensions [7, 5]. This
method accommodates non-normal sun shape distributions and
can accurately represent flux patterns for flat, focused, or canted
heliostats at a variety of tracking angles. This method is the ba-
sis for DELSOL3 and UHC/RCELL. The primary advantages
of this approach are its computational efficiency in compari-
son with ray-tracing methods, flexibility in describing complex
flux shapes with continuous functions using relatively few ex-
pansion coefficients, and its corresponding ability to accurately
determine intercepted power on the receiver using integration
by quadrature.

One limitation of the Hermite method is that directional in-
formation is not preserved in the analytical approach. This
makes analysis of multiple reflections or beam-spread within a
cavity receiver non-trivial [21, 22]. Furthermore, unlike MCRT,
shadowing and blocking must be handled independently of
flux image calculations, and accounting for partial shadow-
ing/blocking exclusions in the final image shape is not straight-
forward.

The MCRT approach is widely used in optical analysis as it
offers easy implementation, flexibility in the geometry that can
be modeled, preservation of directional information through
multiple reflections, and a clear physical analog. Codes such
as SolTrace, MIRVAL, and Tonatiuh offer solutions for power
tower modeling that can account for the various error sources
and shapes, and can characterize non-ideal reflector surfaces as
obtained by high-resolution surface slope measurements (e.g.
VSHOT [23]). The primary disadvantage of MCRT approaches
is their relatively long run times. This is especially true for
power tower heliostat fields where ray intersections are possible
over a large number of geometrical entities and many rays are
required to obtain convergence. However, Izygon (2011) and
others have developed an innovative hardware solution using
graphical processing units (GPUs) that enables massive paral-
lelization, greatly improving run time [12] but often requiring
additional graphics processing hardware.

With these considerations in mind, the Hermite analytical ap-
proach has traditionally been used in optimization tools where
many simulations are required to determine an optimal system
configuration. For example, the DELSOL3 code was imple-
mented in System Advisor Model [24] and was capable of first
generating an approximately optimal solar field layout, tower
height, and receiver size, then characterizing the solar field effi-
ciency and receiver flux profile over a range of solar positions in

less than ten seconds using a standard laptop computer. In com-
parison, a single run in SolTrace for a power tower system with
5,000 heliostats and a peak flux uncertainty of 1.1% (1 × 106

rays) requires just under two hours on a standard laptop com-
puter running 4 parallel threads. By integrating the analytical
and MCRT engines, SolarPILOT provides rapid layout capabil-
ities with more flexible MCRT characterization options.

2. Tool description

SolarPILOT provides layout, characterization, parametric
simulation, plotting, and optimization capabilities via a graph-
ical user interface (Figure 1. Limited functionality is also cur-
rently available through a C++ Application Programming In-
terface (API). SolarPILOT has been integrated into SAM via
the API, and now serves as the power tower characterization
engine. An important aspect of SolarPILOT is the integration
of both analytical and raytrace methods in the software. The
following sections describe the methodologies in more detail.

2.1. Analytical methods
SolarPILOT extends the Hermite method implemented in

DELSOL3 by applying the optical model to individual he-
liostats to simulate whole-field performance. This higher-
resolution approach differs from DELSOL3 in its treatment of
individual heliostats, rather than a coarse cylindrical coordinate
zonal grid. The implementation of the Hermite model for indi-
vidual heliostat images requires several enhancements to main-
tain computational speed and accuracy. Specifically, this tool
implements a novel method for dynamic heliostat grouping to
reduce the expense of intercept factor evaluation, methods for
approximating annual productivity with a subset of time steps
throughout the year, a polygon clipping method to accurately
calculate inter-heliostat shadowing and blocking, methods for
receiver and tower geometry optimization, and an trigonometric
image transform algorithm that maintains intercept factor accu-
racy for small heliostat images. Each of these improvements
enable SolarPILOT to perform accurate and efficient compu-
tation, and they are discussed in more detail in the following
subsections.

2.1.1. Review of the DELSOL3 Analytical Method
DELSOL3 approximates each zone as a single large heliostat

in a radial-stagger arrangement, and performance is evaluated
at the center point of the zone. Shadowing and blocking are
also calculated at this point, assuming a regular distribution of
surrounding heliostats also in the radial-stagger arrangement.
The code adjusts for “slip planes” (discontinuities in the solar
field layout) by reducing the shadowing/blocking loss propor-
tionally to the number of heliostats removed at the slip plane
boundary [11]. These assumptions work well for regular, sym-
metric heliostat fields with a large number of heliostats in a
radial-stagger layout. However, current field layout techniques
often differ from this historical approach, and alternative solu-
tions offer improved efficiency, reduced land area, exclusions
for culturally sensitive areas or topographic features, and ac-
commodation for uneven land as exemplified by [25, 26, 27].
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Figure 1: SolarPILOT graphical interface showing a selected region of the heliostat field after an afternoon simulation with shadowing efficiency data overlay.

The computational speed advantage for the Hermite series
approximation lies in its application of characterization coeffi-
cients that do not all require recalculation for each heliostat or
simulation. The analytical form of the flux image as it appears
on the receiver plane is shown in Eq. refeq:1 , taken from [5].

F(x, y) =
1

2αxαy
exp

−1
2

(
x
αx

)2

−
1
2

(
y
αy

)2 (1)

·


I∑

i=0

J−i∑
j=0

Ai, jHi

(
x
αx

)
H j

(
y
αy

)
1

i! j!


The equation assumes that the image can be modeled primar-

ily as two-dimensional normal distribution, but the flux image
shape at any position (x, y) is scaled by evaluating a series ex-
pansion with Hermite polynomial terms Hi(x), H j(y), and Ai, j.
The components of the coefficients are evaluated for a given sun
shape, mirror geometry, optical error contributions, and relative
position to the tower. These individual terms are evaluated only
when they change during the simulation, so a flux profile can
be quickly developed for heliostats of identical geometry once
the initial coefficient analysis is complete. The distribution is
normalized by two coefficients – αx and αy, which represent
the standard deviation of the image distribution in the x and y
directions relative to the image plane.

DELSOL3 evaluates the fraction of the heliostat image that
is intercepted by the receiver (intercept or spillage efficiency)
using a numerical integration method known as Gauss-Hermite
quadrature [5]. Each heliostat image is modeled using a 2D
Gauss-Hermite polynomial for which no analytical integral ex-
ists, but the integral can be approximated by evaluating the flux
density expression at various points in the distribution. By care-
fully choosing the location of these points to coincide with ab-
scissa in the polynomial expression, relatively few points are
required to calculate the integral. DELSOL3 uses this algo-

rithm along with a weighting function for each point (that has
also been derived analytically) to determine the intercept factor
for each image with only 16 points. The integral bounds coin-
cide with the extents of the receiver, and the evaluation points
lie in between these extents.

2.1.2. Shadowing and Blocking
SolarPILOT calculates shadowing and blocking using a vec-

tor projection and clipping method. Neighboring heliostats are
tested for potential interference by projecting vectors from the
heliostat corners along the direction of either the tower (block-
ing) or sun position (shadowing). If a projected vector inter-
cepts an adjacent heliostat, blocking or shadowing are enforced
according to the position of the interception. This method as-
sumes that neighboring heliostats lie in parallel planes – a good
assumption for all but very small solar fields. This assump-
tion results in the simplification that shadowed or blocked re-
gions are rectangular. Overlap of shadowing and blocking is
neglected, so the blocking/shadowing efficiency is conservative.

The shadowing and blocking algorithm is as follows:
i. Each heliostat H is assigned a list of neighbors (see §2.1.3)

that may block or shadow ( “interfere” with) the heliostat.
An interfering heliostat is subsequently denoted as K.

ii. A vector aiming at subject of interference (the receiver for
blocking or the sun position for shadowing) is calculated
for the interfering heliostat îK.

iii. Heliostats are tested for the possibility of interference:
a. The first test requires that the interfering heliostat K

is within view of the interfered heliostat H. The dot
product is calculated between the heliostat normal
vector and the interfering heliostat subject vector.

v = n̂H · îK (2)

If the dot product is non-positive, K cannot interfere
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with H and the loss is zero.
b. The maximum interference length is calculated for

heliostat H based on the position in space of each
heliostat PH and PK, the heliostat structure height hH,
the interfering heliostat tracking vector t̂K, and the
zenith angle of the heliostat tracking vector φt,K.

Lint =
PK,k − PH,z + hH sin φtK

t̂K,k

√
t̂2
K,i + t̂2

K, j

+ hH t̂K,k (3)

If the distance separating the two heliostats in ques-
tion is greater than Lint, the heliostats cannot interfere
and the loss is zero. Lint is limited to 100 × hH dur-
ing very low sun elevation angles to limit the number
of potential interfering heliostats and the associated
computational requirement.

iv. The interference vector îK is projected from the two top
corners of K onto a plane containing H. The plane inter-
section points are tested for containment within H.

v. The interfered region area is calculated based on the in-
tersection position of îK within H. The total interference
efficiency is equal to the complement of the interference
area divided by the total heliostat area.

2.1.3. Dynamic Heliostat Grouping
Power tower solar fields contain thousands or tens-of-

thousands of individual heliostats. Often, performance of
neighboring heliostats is very similar, and one heliostat can be
used to represent the performance of a small group of neigh-
boring heliostats. The most accurate optical performance cal-
culations consider each heliostat individually (SolarPILOT de-
fault behavior), and the least accurate consider all heliostats in
a group to have identical performance, including shadowing,
blocking, intercept factor, atmospheric attenuation, and cosine
losses (DELSOL3 behavior). Accuracy improves as the zone
size approaches the domain of a single heliostat.

Accuracy can also improve by considering heliostat loss
mechanisms separately and only approximating those losses
that are computationally expensive to calculate. For example,
cosine loss is one of the most significant losses but its compu-
tational expense is trivial, so each heliostat can be considered
individually. Optical intercept factor (the amount of light cap-
tured by the receiver from any heliostat image) is equally sig-
nificant but is comparatively much more expensive to calculate.
Therefore, we have adopted a mixed approach of calculating
simple losses such as cosine, attenuation, etc., individually and
the expensive intercept factor loss using a zonal approximation.

These so-called optical zones include groups of neighboring
similarly performing heliostats. The challenge with the zonal
approach is that the intercept factor can depend strongly on po-
sition, and change in intercept factor is nonlinear as a func-
tion of radial and circumferential position. Consider Figure 2
showing intercept factor as a function of radial position for a
particular representative field geometry. The intercept factor
stays constant until the image begins to spill off the receiver
near 250m radius. The intercept factor then drops precipitously
but eventually stabilizes as distance from the tower increases.

Figure 2: Intercept factor of a 4 × 4m heliostat on a 10 × 10m receiver as a
function of radial distance. The heliostat focal length is 100m and total optical
error is 5 mrad.

Figure 3: Optical intercept grouping mesh for a north-facing receiver. Each
element corresponds to a maximum variation of 5% optical intercept factor.

Both radial and circumferential position can impact intercept
factor, especially for receivers with a planar aperture (flat plate
or cavity receivers). The rate of change of intercept factor as
a function of radius r and azimuthal heliostat position can be
determined for planar and cylindrical receivers. The higher the
magnitude of these derivatives, the more quickly the intercept
factor changes with position, and the smaller the group of he-
liostats that can be represented by a single calculation.

View factor is the limiting case of intercept factor that is, in-
tercept factor cannot exceed the view factor between a heliostat
and a receiver of infinite size. In order to maximize intercept
efficiency calculation accuracy, zones should be most densely
concentrated in the areas with the highest derivative value in the
lower rightmost plot. Conversely, areas that show little change
in intercept efficiency can be grouped together in increasingly
large number with minimal impact on accuracy.

SolarPILOT implements the concept of variable mesh den-
sity and applied it to the derivative of optical intercept. The
procedure is as follows:

i. Break a field into a rough set of large zones (mesh ele-
ments). Each element may span 45 and 2 tower heights
(radially), for example.

ii. Evaluate each element at the centroid location to deter-
mine the derivative of intercept factor and view factor with
respect to radius and azimuth angle .

iii. If the change in intercept factor across the zone exceeds a
user-specified tolerance, split the zone into two sub-zones.

iv. Evaluate sub-zones and split if necessary, ad infinitum
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The resulting mesh will contain elements appropriately sized
such that all heliostats falling within the element share an inter-
cept factor value within the given tolerance. Figure 3 shows an
example of an optical mesh for a north-based field. The highest
gradient in intercept factor is concentrated near regions of high
flux incidence angle. Note that not all zones contain heliostats.
Empty zones do not penalize algorithm performance as they are
simply not considered during performance calculations.

Mapping heliostats to optical zones. The meshing model dis-
cussed above allows definition an efficient and meaningful opti-
cal mesh based on local intercept factor derivatives. This mesh
is nonregular, and each element may have different radial and
azimuthal extents. Therefore, no simple transformation exists
between heliostat position in Cartesian coordinates and zone
location. In fact, it is computationally nontrivial to determine
which zone a heliostat should belong to. In the worst case,
one would have to run through the entire list of mesh elements
once for each heliostat to define groupings, requiring exponen-
tial computational effort.

To get around this problem, we have devised a binary ele-
ment tree that guarantees that a small number of computations
ncmax are required to locate a heliostat within some tolerance δ.
The computational expense for the binary element tree is loga-
rithmic, with the worst case being:

ncmax ≤ 2
⌈
log(2)−1 max

{
log

(
∆r
δr

)
, log

(
∆β

δβ

)}⌉
(4)

In order to demonstrate the computational efficiency of this
method, the following example is provided. A typical field will
have a radial extent of ∆r = rmax−rmin = (8−1)htower = 7 ·htower

where rmax and rmin equal the minimum and maximum helio-
stat extents radially normalized by the tower height htower. A
heliostat’s radial position can uniquely described with coordi-
nate tolerance of δr = 0.01 · htower since this corresponds to a
distance less than the minimum heliostat spacing for a typical
field. In the azimuthal direction, the heliostat separation at rmax

is ∆β = 2πhtower · rmax, and we use δr = δβ. The number of
computations required to locate a point in the field for this ex-
ample is no more than ncmax = 20. The total number to locate
each of the Nh heliostats is then proportional to Nh · 20, which
is a vast improvement over N2

h for the worst exponential case.
The binary element tree works by dividing the coordinate

space into halves radially and azimuthally. Each half is then
divided again and again until the size of the zone is sufficiently
small. Divisions are done alternatingly between radial and az-
imuthal directions. The decision to select the inner/outer (or
clockwise/counter-clockwise) half is determined with an inte-
ger value. Inner/ccw values are denoted with ’0’ and outer/cw
with ’1’ – hence the binary structure.

The number of characters the identifying key is determined
by the required resolution (size) of the zone. Larger zones re-
quire fewer characters to uniquely identify them, while smaller
zones require more. This procedure lends itself to mesh struc-
tures with variable element size, which is an important feature
for SolarPILOT implementation.

Each heliostat is assigned a binary coordinate tag that
uniquely identifies its location using the same binary proce-
dure. Any heliostat that falls within a particular zone will begin
with the same binary character string as the zone itself, enabling
quick association of heliostat-to-zone.

The binary mesh tree is recursive such that each element in-
dependently can decide whether to split or remain intact. The
algorithm also allows unidirectional splitting if the required tol-
erance has been met in only one direction. That is, if the mesh
reaches sufficient resolution regarding derivatives in the radial
direction, additional splits are permitted in the azimuthal direc-
tion only while the radial extent remains unchanged. Once the
mesh has been defined in the first element after a split, the algo-
rithm calls again to define the mesh in the remaining half. The
resulting data structure resembles a tree, with the largest ele-
ments branching into many sub-elements which can branch fur-
ther. A similar but distinct k-t binary tree method is described
in [28]. Only “terminal” elements that is, elements that contain
no sub-elements – are permitted to accept heliostats into their
group. This ensures the uniqueness of each element.

2.1.4. Efficient Annual Performance Prediction
SolarPILOT selects the heliostat positions to include in the

final layout by estimating the annual performance of each he-
liostat in the field, then ranking their performance and select-
ing the most productive heliostats first. Although heliostat field
systems are optically complex, their performance over time is
reasonably tracked as a linear summation. That is, for approxi-
mately similar sun positions (and thus optical efficiencies), the
power delivered by the field is the summation of the set of solar
resource values times the field area times the average optical ef-
ficiency. Because it is often computationally expensive to eval-
uate field optical performance, it is often impractical to deter-
mine annual field performance by simulating all daytime hours
in the year. Instead, a subset of hours can be simulated and the
annual approximation projected from that sample. SolarPILOT
includes several methods and tuning parameters to configure
the annual performance estimate simulation set. These are:

Single simulation point. The field performance is evaluated at
a single sun position and solar resource. Each heliostat’s per-
formance is characterized by a single production value.

Annual simulation. Every daytime hour of the year is simu-
lated, and each heliostat’s performance is characterized by the
accumulation of all hours in the year. This option – while thor-
ough – is computationally expensive and most often unneces-
sary.

Limited annual simulation. A subset of days and hours of those
days are chosen at regularly spaced intervals throughout the
year for simulation. At each hour, corresponding weather data
is used to determine heliostat field productivity. Each heliostat
is characterized by the set of productivity values generated in
the simulation. A sufficiently large number of days must be
used to achieve convergence, and the number depends on the
seasonal and daily weather variability. Convergence is typically
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achieved with 12 simulation days at an hourly or bi-hourly res-
olution.

Representative profiles. This option mimics the Limited an-
nual simulation, but generates averaged weather profiles for the
selected days rather than using specific weather days from a
weather file. This option demonstrates convergence with 4 sim-
ulation days and bi-hourly resolution and is observed to be the
most effective option.

Annual efficiency map. SolarPILOT can also generate a lookup
table of optical efficiency as a function of solar position,
then run an annual simulation drawing from the lookup ta-
ble rather than generating performance data from the first-
principles model.

In addition to climate effects, local markets can shape the
temporal value of power production. Some utilities such as
Southern California-Edison, San Diego Gas & Electric, and Pa-
cific Gas & Electric provide payments to electricity producers
based on time-of-day and day-of-the-year that reflect increased
demand during certain time periods. A plant optimized for rev-
enue would consider increasing power production during the
most profitable hours of the year at the expense of overall elec-
tricity production. SolarPILOT allows specification of temporal
revenue weighting factors that are considered during layout.

2.1.5. Field layout methodology
SolarPILOT is designed to generate heliostat field layouts

with individual heliostat coordinates unlike the zonal approach
in DELSOL3. Several layout options are possible, including
permutations on the radial-stagger layout and a “corn field” lay-
out. The code is easily extendible to generate alternative layout
patterns, and heliostat coordinates can be imported and simu-
lated by the user. The layout procedure is as follows:

i. Generate all possible heliostat positions within the land
boundaries.

ii. Place heliostats at the positions according to the heliostat
geometry template rules (if applicable).

iii. Simulate the performance of all heliostats at the field de-
sign simulation time step(s) specified by the user, using
weather data if applicable.

iv. Sort heliostats by performance-to-cost ratio.
v. Simulate solar field performance at the design point solar

position and DNI. The single design point may be noon on
the summer solstice, noon on the equinox (spring), noon
on the winter solstice, solar zenith, or a user-specified sun
position.

vi. Select the first N heliostats that generate sufficient power
to meet the design-point thermal power requirement.

Land boundaries can be specified point-wise as a set of poly-
gons. Each polygon can represent an “inclusion” area or region
of exclusion. Land bounds may also be specified as minimum
and maximum radial limits that either scale with tower height
or are fixed distances. Heliostat positions are generated within
the entire land boundary considering all of the constraint types
that are in use. Figure 4 shows a heliostat field built within a
non-circular boundary.

Figure 4: Land-restricted layout with land boundaries overlaid in the top right
corner. The available land area is defined by a single inclusion area and two
exclusion regions.

2.1.6. Intercept Factor for Small Images
One challenge with adapting the Hermite approximation

method to individual heliostats is the relative small size of the
heliostat image compared to the receiver surface. The Gaussian
quadrature method for integrating the flux density equation and
determining the intercept factor uses a grid of 16 points to eval-
uate the density equation. A problem arises when the heliostat
image is significantly smaller than the quadrature grid. If the
image is much smaller than the apparent receiver size (e.g. 1
m2 heliostats on a 10× 10m receiver), the image can effectively
evade detection by the integral algorithm and yield a very low
intercept factor when the entire image is – in fact – contained
well within the extents of the receiver. This problem can be
corrected by scaling the quadrature grid to better match the size
of the heliostat image. Unfortunately, exact knowledge of the
image size requires a full evaluation of the Gauss-Hermite func-
tion over the receiver domain, and executing such a computa-
tionally intensive evaluation negates the appeal of the analytical
form. However, the image size can be reasonably approximated
as a simple Gauss-normal distribution with standard deviation
(σx, σy) describing the elliptical shape of the image. The lim-
its of the integral are then some constant factor times the stan-
dard deviation. With a sufficiently high factor chosen (but suf-
ficiently low to avoid the numerical issue described above), the
quadrature grid can be scaled to fit within the new limits and
the integral can be performed.

This process is straightforward for cylindrical receivers.
Each heliostat aimpoint lies at some vertical position along the
center-axis of the receiver as it appears to that heliostat. In ef-
fect, the heliostat image – while vertically displaced from the
receiver centerline – is always centered horizontally on the ap-
parent rectangle of the receiver. The image is elongated in the
vertical direction in proportion to the cosine of the angle be-
tween the receiver surface normal and the incident image vector
(heliostats closer to the tower are distended more so than dis-
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Figure 5: Heliostat image on the receiver plane in three position scenarios.
Bounding-box image extents are shown for each case, indicating the depen-
dence of “scaled receiver” size on the heliostat’s receiver view.

tant heliostats). Importantly, the heliostat images are not sig-
nificantly skewed or rotated in the horizontal direction because
the incident vectors from each heliostat have no azimuthal com-
ponent, only vertical displacement. The consequence of these
observations is that the quadrature grid can be scaled in a very
simple manner:

wquad = min 4σx, rrec] (5)
hquad = hrec (6)

The quadrature grid width is the minimum of four times the
x-direction image size and the receiver radius rrec, while the
quadrature height hquad is always left as the receiver height hrec.
This approach was implemented in the original DELSOL3 code
and has proven to be adequate.

The cavity/flat-plate receiver case is somewhat more diffi-
cult. With the view angles between each heliostat and the re-
ceiver surface varying significantly over the extent of the helio-
stat field, the quadrature grid size cannot be scaled according
to σx, σy alone. The issue is illustrated in Figure 5. The first
case (left) shows a heliostat image projected onto the receiver
plane. The quadrature limit of the image is drawn at 5σx, 5σy,
and dotted tangent lines indicate the revised integration width
for the grid. The same image projected from different points in
the field result in widely differing quadrature limits as shown
in the remaining cases (center, right). Furthermore, the differ-
ence between image and receiver coordinate systems is quite
pronounced. These complications apparently prevented any
practical quadrature scaling method from being implemented
in DELSOL3, and the resulting behavior could be severe, as il-
lustrated in Figure 6. Figure 6a shows the resulting “optimal”
layout positions for a large flat-plate receiver with small he-
liostats. The unexpected gap corresponds to images that are
small enough and oriented in such a way as to be overlooked by
the integration algorithm. The layout shown in Figure 6b uses
the corrected scaling algorithm.

The corrected scaling algorithm follows a simple procedure:
i. Given the position and orientation of the heliostat and re-

ceiver, the receiver corner points are translated into the co-
ordinate system of the heliostat image plane. The “image
plane” is a theoretical plane that is normal to the vector
following the reflected heliostat image.

ii. The quadrature grid must be scaled while maintaining

its original receiver coordinate system. The slope of the
quadrature grid bounds is equal to the slope of the receiver
bounds when projected onto the image plane. The slopes
are calculated using the translated receiver corner point co-
ordinates in step (i).

iii. The quadrature limit is determined by locating the inter-
section point between the ellipse of the projected image
and a tangent line of slope equal to that calculated in step
(ii). (See dotted lines in Figure 5.)

iv. The radius of the ellipse at the two tangent points give the
quadrature width and height in the image plane coordinate
system.

v. The final quadrature width and height are calculated by
translating the width and height from step (iv) back into
the receiver plane coordinate system.

The key calculation in this process is the expression relating
the ellipse radius to the slope of a tangent line. In particular, we
wish to express the radius of the ellipse as a function of tangent
line slope. The equation of an ellipse with width and height
σx, σy is shown in Eq. 7:(

x
σx

)2

+

(
y
σy

)2

= 1 (7)

The derivative dx/dy is:

dy
dx

=
−σyx

σx
√
σ2

x − x2
(8)

Equation 8 can be solved for x, substituted into the radius
equation r =

√
x2 + y2, and rearranged to express radius as a

function of tangent slope as shown in Eq. 9.

r =

√√√√√√√σ4
xσ

2
y + (σ2

x + (σ3
x − 1)σ2

y)
(

dy
dx

)2

σ3
x

(
σxσy +

(
dy
dx

)2
) (9)

This relationship provides a closed-form calculation of the
required quadrature width given receiver corner coordinates
projected onto the heliostat image plane.

2.2. SolTrace integration

SolTrace is a MCRT code designed for solar applications
[17]. Incoming solar radiation can be characterized in any va-
riety of shapes, and the code handles optical error distributions
and multiple reflections. SolarPILOT has integrated SolTrace
directly through an application programming interface (API)
that calls to SolTrace’s core tracing functions. The primary
strength of SolTrace is characterizing the performance of well-
defined geometry, and typical use involves definition of geome-
try including tracking angles externally or in the built-in script-
ing language. As SolarPILOT is designed for power tower sys-
tem layout, it serves as an interface for geometry definition,
rapidly generating the required system geometry for SolTrace
runs. The combination of analytical and MCRT tools means So-
larPILOT can quickly calculate optimized heliostat aim points
using analytical characteristics, then generate a detailed MCRT
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(a) Layout before correction (b) Layout after correction

Figure 6: Illustration of the impact of quadrature scaling on the heliostat field layout.

flux profile using SolTrace. This capability is especially use-
ful for cavity-type receivers that analytical methods cannot ad-
equately characterize because of complex view factors and mul-
tiple reflections.

While SolTrace offers several key advantages compared to
analytical methods such as multiple-reflection characterization
and the capability to analyze more complex geometries, it does
not provide detailed optical loss information broken down by
loss mechanism. The reported results from a SolTrace run con-
sist of the number of intersected rays on all modeled surfaces.
Information on what proportion of the optical loss is due to co-
sine, atmospheric attenuation, spillage, etc, is not directly cal-
culated. Therefore, the best use of MCRT techniques is in con-
junction with an analytical approach that provides insight into
loss mechanisms.

3. Model Verification

SolarPILOT was developed as an extension to DELSOL3.
Therefore, the performance of SolarPILOT is compared to
DELSOL3 to verify the correct implementation of the new
model. Because SolarPILOT includes several improvements
over DELSOL3 in field layout techniques, characterization ac-
curacy, and other features previously discussed, the comparison
study matches thermal power delivered at design at the base of
the tower (i.e. after reflective, convective & emissive, and pip-
ing losses) and inspects the various loss components modeled
by each software package. The case study models a large, cylin-
drical, molten salt receiver with large multi-paneled heliostats.
The field layout is radial-stagger, and all input parameters are
matched as closely as possible to define analogous cases. Table
1 shows a summary of input parameters for each case.

The single-point simulation comparison shown in Table 1 in-
dicates excellent agreement across the range of modeled phys-
ical effects. Performance is also compared at a matrix of sun
positions. The discrepancy between total optical efficiency of

Table 1: Parameters for the comparison case study and simulation results.

Parameter Units DELSOL3 SolarPILOT
Thermal power output MWt 669.9
Reference DNI W/m2 950
Heliostat area m2 144.4
Heliostat total refl. % 89.1
Tower height m 203.3
Receiver height m 20.41
Receiver diameter m 17.67
Receiver absorptance % 0.94
Azimuthal spacing factor - n/a 1.96
Slip plane reset limit - 4/3 1.31
Design weather model - Meinel mod. TMY3 data
Max. field radius ·htower 7.5 9.0
Reference design time - Equinox, solar noon
Compared simulation time - Solstice, solar noon
Result Units DELSOL3 SolarPILOT
Number of heliostats - 8,947 8,945
Power incident on rec. MWt 767.93 766.87
Power at receiver base MWt 680.77 679.46
Cosine efficiency % 80.3 80.6
Blocking efficiency % 99.3 99.0
Shadowing efficiency % 100.0 100.0
Atmospheric transmit. % 91.6 91.2
Heliostat reflection % 89.1 89.1
Intercept efficiency % 96.3 96.0
Absorption efficiency % 94.0 94.0
Thermal efficiency % 94.65 94.60
Total efficiency % 58.8 58.8

the solar field (DELSOL3 subtracting SolarPILOT) is shown in
Figure 7. These results show good agreement throughout the
range of sun positions, but error increases substantially at very
low sun elevation angles. The reason for this disagreement is
not fully clear, but possible causes include differences in shad-
owing and blocking calculations or potential inaccuracy in the
image shape model as applied to single heliostats at severe re-
flection angles. Irregardless, the heliostat field typically will not
operate at low sun positions because of shadowing and blocking
effects, and solar resource is typically very low at times when
the sun is near the horizon, so the effect of the inaccuracy is
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Figure 7: The difference in calculated optical efficiency between DELSOL3 and
SolarPILOT as a function of sun position for the case shown in Table 1. The
difference shown is DELSOL fractional efficiency minus SolarPILOT fractional
efficiency at each evaluated sun position.

minimal on annual energy production.

4. Conclusions

A new model for calculating solar field layouts and perfor-
mance characteristics for power tower systems is developed
and described. The tool employs both an analytical Hermite
polynomial expansion flux mapping technique and MCRT with
SolTrace. SolarPILOT is intended for use as a third-party vali-
dation tool for existing private industry models, a research and
screening tool, and a platform for development of new model-
ing or design techniques. The tool models a variety of solar
field, heliostat, receiver geometries, and optical scenarios. One
primary strength of SolarPILOT is its extension of the analyti-
cal flux technique from DELSOL3 onto individual heliostats.
This allows a more flexible design process, including possi-
ble asymmetry, topography variation, and geometry variation
within the heliostat field.

SolarPILOT has been integrated into NREL’s SAM software
as the power tower design and characterization engine. This
integration is via an API, and future work on the software will
involve improvement to the API for general use.

Nomenclature

API Application Programming Interface
MCRT Monte-Carlo Ray-Tracing
SAM System Advisor Model
SolarPILOT Solar Power tower Integrated Layout and

Optimization Tool
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Abstract

A model for thermal energy storage dispatch optimization is formulated and implemented in the National Renewable Energy
Laboratory’s System Advisor Model (SAM). The dispatch optimization model considers future expected performance on a daily
basis and develops an operating strategy to maximize plant revenue over the next-day time horizon. While a simplified energy
production forecast model is used to pose the optimization problem, the resulting optimized operating strategy is executed by the
detailed techno-economic simulation code for which SAM has been historically used. This paper discusses the various sub-models
used in this process, provides the optimization model formulation and solution techniques, and presents comparative results for
a system with and without dispatch optimization. The results indicate that the efficacy of dispatch optimization is significantly
beneficial, but varies with plant capacity factor and electricity markets. Several aspects of plant design and operation that are
external to this study will also likely benefit from dispatch optimization (for example, a reduction in the number of turbine start-
stop cycles over time).

Keywords: Dispatch Optimization, Concentrating Solar Power, CSP, Energy Storage, System Control, Simulation, System
Advisor Model, SAM, Mixed-Integer Linear Programming, MILP

1. Background

Concentrating Solar Power (CSP) systems are often capable
of efficiently storing thermal energy generated during daylight
hours for use in generating electricity when sunlight is not avail-
able. Thermal energy storage (TES) technologies can vary [1],
but a mature TES technology utilizing high-temperature molten
salt as the storage media has been successfully implemented in
CSP tower systems [2, 3] and in parabolic trough systems [4]
in an “indirect” manner through use of an intermediate oil-to-
molten salt heat exchanger. The sizing of the TES system is
determined during the design process, and the optimal TES size
is a function of the desired plant capacity factor, the sizing of
the solar field and power cycle subsystems, plant location, and
project economics, among other factors. Thermal energy stor-
age sizing can also depend on the intended operational scheme
of the plant. For example, a plant that intends to operate pri-
marily during high-revenue morning or afternoon periods but
reduce production during daylight hours will require more TES
capacity than a plant with an identical capacity factor that will
generate power during daylight hours. As CSP plants target
dispatch during high-revenue periods rather than focus on min-
imizing the average cost of energy, dispatch optimization is of

∗Corresponding author
Email addresses: michael.wagner@nrel.gov (Michael J. Wagner),

anewman@mines.edu (Alexandra Newman), rbraun@mines.edu (Robert
Braun)

URL: www.nrel.gov/csp (Michael J. Wagner)

increased importance. The intelligent dispatch of stored energy
can greatly enhance the value of electricity by providing firm
capacity, ancillary services, and by generating electricity dur-
ing time periods where electricity rates are especially high [5].

1.1. Related Work

The primary challenge of developing a dispatch optimization
model for CSP technologies is the conflicting tradeoff between
performance simulation accuracy and tractability of the Mixed
Integer (Linear) Program (MIP). Performance simulation soft-
ware for CSP is complex and relies on non-linear engineering
relationships to accurately predict plant performance. Models
at the component and subsystem level derive expected perfor-
mance from first-principles and empirical observation of the
heat transfer, thermodynamic, and mechanical behaviors of the
system. Although several software packages exist that are ca-
pable of executing simulation of CSP systems [6, 7], the math-
ematical structure of the simulation is often inexpressible as a
system of explicit, simultaneous equations and is rather more
of a mathematical “black box”. This feature makes the opti-
mization process more difficult and interdicts the possibility of
knowing whether any particular configuration is truly the opti-
mal solution. Black-box simulations are even more difficult to
optimize since the expense of generating solution space deriva-
tives is non-trivial (“derivative-free” problems). On the other
hand, systems of equations that are exclusively comprised of
linear and integer terms (that is, each term has a single variable
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that is either continuous, integral, or binary) have special math-
ematical characteristics that allow more efficient determination
of the optimality of a particular solution. A broad and effective
class of solvers and modeling languages exist for MIP’s (e.g.
[8, 9]) that make problems with many thousands of variables
and constraints tractable.

It is sometimes possible to approximately represent nonlin-
ear or derivative-free problems using a MIP formulation. How-
ever, this typically requires the introduction of a large number
of additional variables and equations (or constraints) relating
those variables into the formulation. As the problem grows in
complexity and dimensionality, the amount of time required to
identify the optimal solution also grows. For a CSP dispatch
optimization problem, each hourly time step throughout the
year has a number of independent variables associated with so-
lar field generation, power cycle generation, the energy state of
components in the system, operational modes, and others. Each
variable is also independent in time. The variables are related
by constraints describing sequence of operations, limitations on
the value of a variable given the value of another variable, and
so on. Each constraint relating one hour to another is separate
such that the total number of constraints is proportional to the
total number of variables in the problem. It is clear, then, that an
annual hourly simulation treated within a single formulation is
a tremendously large problem that may be intractable for many
MIP solvers.

This difficulty can be assuaged by reducing the scope of the
problem or by employing heuristic models. The previous ap-
proach implemented in NREL’s System Advisor Model (SAM)
[10] uses a simple heuristic that allows the user to specify re-
quirements that must be met before thermal storage can be dis-
patched. These conditions do not consider expected resource
availability or market pricing, but determine the operational
state of the power cycle based on the current charge state of
TES and the hour of the day. The heuristic approach can im-
prove plant production during high-value hours as exemplified
by SAM or Guédez et al. [11], but can ultimately decrease the
utilization of the solar field throughout the year because of TES
over-charge situations.

A natural approach for simplifying the problem while still
implementing MIP techniques is outlined by Madaeni et al.
[12]. The authors use SAM to generate an hourly thermal power
production profile throughout the year. The profile is consid-
ered as fixed input to the MIP model originally outlined in [13]
and factors in the simulated performance of the solar field, but
omits interactions with thermal storage and the power cycle.
The latter subsystems are modeled as part of the MIP formu-
lation such that the charge state of TES and electricity produc-
tion from the cycle are calculated outputs from the optimiza-
tion model. This approach improves tractability by utilizing
a detailed model to generate fixed input while utilizing a sim-
plified energy balance model to characterize TES charge and
power cycle generation. Furthermore, Madaeni et al. employ
a rolling time horizon for optimization. A 48-hour time hori-
zon is optimized every 24 hours, allowing day-to-day holdover
while revisiting the optimal schedule on a daily basis. The ap-
proach used in the current work follows the format presented

in [12] to a large degree. Importantly, the current work uses
the optimized schedule only to control the detailed simulation,
whereas the Madaeni et al. work uses the results from the MIP
as the actual estimate of plant production throughout the year.

1.2. Goals of the current work

Dispatch optimization is of interest for improving the prof-
itability of existing or planned CSP facilities, but it is also of
great interest to policymakers and researchers who seek to bet-
ter understand the projected performance of CSP systems under
various deployment and grid operations scenarios. This is well
established by [5, 12, 13] and others, but their work consid-
ers the dispatchability of CSP systems from the perspective of
grid integration. In this paradigm, CSP systems are designed at
an energy-flow and system sizing level to best understand the
suitability of CSP for meeting grid and market demands. The
current work undertakes dispatch optimization from a technol-
ogy design and operations perspective, seeking to understand
the impact of using CSP as a dispatchable generator on subsys-
tem and component performance. Accordingly, this work fills
the gap between prescriptive grid-level models on the one hand
that indicate desired technology performance subject to high-
level operational requirements (e.g. plant start up, maximum
energy generation, etc.) and descriptive performance simula-
tions on the other hand whose primary concern is to synthe-
size expected plant productivity and financial return over time
given specific component or subsystem thermo-mechanical per-
formance models.

Estimates of CSP technology performance are ascertained
using complex engineering and financial simulation software
such as SAM. NREL developed SAM to simulate the techno-
economic performance of renewable technologies including
CSP, wind, geothermal, photovoltaic, biomass, solar hot wa-
ter, and generic systems1. Each technology can be paired with
a financial model to evaluate the financial performance of a
project within particular market, incentive, and cost environ-
ments. SAM estimates CSP plant productivity and financial
return by simulating the detailed behavior of plant subsystems
and components over time – accounting for weather variability,
operational states, the transient energy state of the system, and
plant operations requirements. A single annual “macro simu-
lation” consists of thousands of sequential “micro-simulations”
within a time series, and the plant behavior at any given time
step may depend on the state of the system in the previous time
step(s). A Molten Salt Power Tower (MSPT) model is included
in SAM with the configuration illustrated in Figure 1.

In the current work, we have developed a new MIP formula-
tion that is implemented within the detailed SAM annual-hourly
performance simulation model. The MIP solves a simplified,
approximated problem that considers the dispatch of thermal
storage and operation of the solar field and power cycle subsys-
tems on an hourly basis over a forecast horizon. By default, the
optimization horizon is 48 hours (this can be changed by the

1SAM is free to download and use, and the tools developed in the current
work are freely available at the SAM website [14]
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Figure 1: Molten Salt Power Tower system configuration that is modeled in
NREL’s SAM. The system consists of a heliostat field, molten salt receiver,
direct TES system, steam generation system, Rankine power cycle, and heat
rejection system.

user), and the dispatch schedule is re-optimized every 24 hours.
The additional 24 hours in the optimization window provides
sufficient information to allow energy to carry over in storage
from day to day. The exact implementation of the model within
the simulation environment is described in detail in Subsection
2.1 below.

Direct implementation of the MIP within the simulation
model has several advantages. Most importantly, our approach
uses the simplified dispatch optimization problem to guide the
simulation plant controller over the course of the optimized day.
This guidance streamlines the number of suitable operational
modes that the controller can choose from. Ultimately, the per-
formance output from the model is the result of the detailed
performance calculation engine rather than output from the ap-
proximate MIP model.

This approach allows investigation of detailed plant perfor-
mance issues that may arise from optimized scheduling that
are too complex to be easily represented in a simplified MIP
model. For example, the thermal stress associated with fre-
quent thermal cycling of power generation equipment may lead
to an increase in the frequency of required maintenance [15].
A detailed model can capture these thermo-mechanical im-
pacts when the plant control is influenced by optimized dispatch
scheduling.

2. Modeling Approach

In this work, we establish the dispatch schedule that maxi-
mizes revenue from electricity sales on a daily basis with an
optimization time horizon of 48 hours (mirroring [12]). The
time horizon duration selected for this analysis was determined
based on computation time required to identify the optimal
dispatch schedule and the diminishing returns of an extended
window. The time series model is hourly due largely to the
widespread availability of hourly data and due to SAM’s de-
fault approach of modeling systems at an hourly resolution.

The plant dispatch schedule is primarily concerned with de-
termining when and to what extent the power cycle (turbine,
generator, condenser, and associated equipment) will operate.
During operation, the power cycle consumes stored thermal en-
ergy from the TES system. The solar field generates thermal
energy that is subsequently stored in the TES system, and en-
ergy generation is affected by the optical and thermal efficiency
of the solar field, by the intensity of the available solar resource,
and by the operational state of the solar field.

Before the power cycle can produce electricity, start-up re-
quirements must be satisfied, including both a minimum start-
up period duration and a minimum energy state requirement. In
the latter case, the power cycle equipment cools during shut-
down periods and must overcome the system’s thermal iner-
tia to begin generating steam that powers the turbine. In the
case of the start-up duration requirement, power cycle equip-
ment is sensitive to the rate of heating and can’t move from a
cool shutdown state to a heated operational state too quickly.
Equipment manufacturers require a minimum start-up duration
to avoid thermal stress and mechanical failure risks otherwise
present during rapid temperature ramp-up. Both the energy and
duration start-up requirements must be met before the cycle can
begin producing power. This is implemented as a constraint
on the maximum energy delivered for start-up during any given
time period. Although the duration of start-up must take at least
a minimum number of time steps, longer start-up durations are
allowed in practice based on energy availability, and the model
must provide this flexibility.

Two start-up scenarios are possible for the power cycle.
Firstly, “cold” start-up occurs when the power cycle has shut
down for any period of time and seeks to restart. Secondly,
“hot” start-up occurs when the power cycle has been in standby
mode and seeks to restart. Cold restart requires an additional
energy contribution, whereas hot restart can happen immedi-
ately (from the perspective of the hourly model).

Standby is a mode of operation where a small (but non-
trivial) amount of thermal energy is consumed during each time
period to maintain the power cycle equipment in a hot state,
ready to quickly ramp up for electricity generation. However,
no electricity is produced in standby mode. Consequently,
maintaining the power cycle in standby mode is of value if
multiple start-up cycles are anticipated over a relatively short
time span, or if the energy or time penalty for start-up is suffi-
ciently high to justify the small rate of energy consumption by
the power cycle.

The receiver must likewise proceed through a start-up period
before producing useful thermal energy. Receiver operation is
less complicated than the power cycle in that energy produc-
tion is virtually always desirable and always coincides with the
availability of the solar resource. The receiver must satisfy both
minimum energy state and minimum start-up duration require-
ments, but receiver standby operation is not typical in practice
nor modeled in this context. Receiver and power cycle start-
up sequences are not necessarily coordinated, so both systems
may operate independently with shared interest only in the en-
ergy state of the TES system. In some cases, the receiver must
curtail energy generation to avoid over-charging thermal stor-
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age (thus wasting solar energy), and the power cycle can only
generate power when the charge state of TES is non-zero.

2.1. Model Implementation

The implementation of the dispatch optimization model
within SAM is illustrated in Figure 2. The SAM interface
provides both input pages and output display. The user se-
lects the technology and financial model, then modifies the in-
put pages to emulate their technology configuration of interest.
Upon completing the technology and simulation setup process,
SAM simulates the technology and financial performance. To
accomplish this task, information is sent from the interface to
the SAM Simulation Core (SSC) where data matrices and in-
put/output arrays are managed. Next, the MSPT technology
model is invoked. This technology module contains detailed
performance calculators for determining weather data and the
performance of the collector and receiver, power block, and
TES systems. The MSPT module also configures the data con-
nections between these interdependent subsystem calculators.
A CSP controller determines the best operational mode given
the current state of the entire system and ambient/solar condi-
tions. The CSP solver ensures that all of the interconnected
inputs and outputs among the calculators agree with respect to
the thermodynamic state of the system.

Figure 2 delineates recent contributions to the model.
Namely, a production forecast model, a MIP formulation, and
implementation of the formulation within a MIP solver are now
part of the simulation model. As SAM executes the MSPT sim-
ulation, the production forecast model, MIP, and solver are pe-
riodically called to determine the optimal dispatch schedule for
the upcoming 24 hour period. Each of these models are dis-
cussed in more detail.

Forecast Model. The performance projection model uses sim-
plified, light-weight algorithms to “look ahead” in the simu-
lation and forecast the thermal energy production during the
upcoming optimization time horizon. This projection is based
on expected weather data, approximate thermal and optical effi-
ciency during the projection period, and an assumption of nor-
mal plant operation. The simplified models use performance
curves that are generated from a sensitivity analysis using the
detailed performance models when the simulation is first exe-
cuted.

Engineering Performance Model. The engineering perfor-
mance model (the SAM MSPT controller, solver, and de-
tailed calculators) evaluates plant behavior and productivity
over time using computationally expensive algorithms. This
model makes operational decisions using the optimized dis-
patch profile generated by the Forecast Model. Performance
can deviate between the Forecast Model and the engineering
performance model, so the Forecast Model profile serves as an
operational target only.

MIP Mathematical Formulation. The mixed integer problem
model represents the performance and operation of the plant
in the upcoming time horizon using the Forecast Model and

various operational constraints represented in a form convenient
for optimization.

3. Mathematical Formulation

3.1. Parameters and Sets

The following MIP takes as fixed parameters the Forecast
Model output and parameters relating to the initial operational
state of the system at the beginning of each optimization time
horizon. These input parameters include the collector and re-
ceiver energy generation profile, the expected cycle conversion
efficiency profile as a function of ambient temperature only, and
the energy price or tariff profile. Initialization parameters are
used to set variable values at t = 0. A number of additional
parameters define operational limits, start-up requirements, and
problem formulation parameters. These items are presented in
Table 1.

Table 1: Parameters and sets used in the model.

Symb. Units Description
Sets

T
Set of all time steps in the optimization time horizon
T = |T |

Vector Parameters
Qin

t kWt Energy generated by the solar field, t ∈ T
Pt ¢/kWt-hr Electricity sales price, t ∈ T
ηamb

t - Cycle efficiency adjustment factor, t ∈ T
Scalar Parameters

τ hr Frequency of optimization problem execution
T Cardinality of time step set |T |
Eu kWt-hr Max energy storage quantity
Er kWt-hr Required energy consumed to start receiver
Ec kWt-hr Required energy consumed to start cycle
Qu kWt Max thermal power input to cycle
Ql kWt Min operational thermal power input to cycle
Qru kWt Max power used per period for receiver start-up
Qrl kWt Min operational power delivered by receiver
Qc kWt Max power used per period for cycle start-up
Qb kWt Standby thermal power consumption per period
Lr kWe/kWt Receiver pumping power per unit power produced
∆ hr Time step duration
M A sufficiently large number

Variable initialization parameters
s0 kWt-hr Initial thermal energy storage charge
ursu

0 kWt-hr Initial receiver start up charge state
ucsu

0 kWt-hr Initial power cycle start up charge state
y0 - Initial power cycle operational state
ycsb

0 - Initial power cycle standby state

3.2. Variables

The MIP variables include both continuous and binary items.
The variables describe energy (thermal kWt − hr or electric
kWe − hr) states and power flows (thermal kWt or electric kWe)
in the system. Continuous variables “x” and “u” describe power
and energy information relating to the receiver, power cycle,
and TES. Charge state and power flow terms are captured in
the model. Binary variables “y” are used to enforce operational
modes and sequencing such that start-up must occur before nor-
mal operation, for example. All variables are subscripted with
time t, indicating that each variable may assume a different
value with time. Variables are presented in Table 2.
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Figure 2: Information flow in the SAM MSPT model. Current work focuses on the Production Forecast, MIP Formulation, and MIP solver.

Table 2: Variables used in the model.

Symb. Units Description
Continuous

xt kWt Cycle thermal power consumption at time t
xr

t kWt Power delivered by the r̆eceiver at time t
xrsu

t kWt Receiver start-up energy consumption at time t
ursu

t kWt-hr Receiver start-up energy inventory at time t
ucsu

t kWt-hr Cycle start-up energy inventory at time t
st kWt-hr TES reserve quantity at time t (auxiliary variable)

Binary

yr
t

1 if receiver is generating “usable” thermal power at time
t; 0 otherwise

yrsu
t 1 if receiver is starting up at time t; 0 otherwise

ycsu
t 1 if cycle is starting up at time t; 0 otherwise

ycsb
t 1 if cycle is in standby mode at time t; 0 otherwise

yt
1 if cycle is generating electric power at time t; 0
otherwise

3.3. Objective Function

The objective function quantifies electricity sales during the
optimization time horizon. The objective is to maximize the
product of productive cycle energy consumption, the price of
energy, and the efficiency at which energy can be converted
during each time period. Parasitic losses associated with op-
eration of the receiver HTF pump are subtracted from energy
generation from the cycle.

Maximize
∑
t∈T

Pt(ηamb
t xt − Lr(xr

t + xrsu
t )) (1)

3.4. Constraints

The relationships among the variables and between variables
and parameters are established with a set of simultaneous con-
straining equations. The constraints are each presented below
topically with a brief description.

3.4.1. Receiver start-up
Receiver start-up constraints include:

ursu
t ≤ ursu

t−1 + xrsu
t ∀t ∈ T (2)

xrsu
t ≤ Qruyrsu

t ∀t ∈ T (3)
yrsu

t ≤MQin
t ∀t ∈ T (4)

ursu
t ≤ Eryrsu

t ∀t ∈ T (5)

yr
t ≤

ursu
t

Er + yr
t−1 ∀t ∈ T (6)

xr
t + xrsu

t ≤ Qin
t ∀t ∈ T (7)

xr
t ≤ Qin

t yr
t ∀t ∈ T (8)

xr
t ≥ Qrlyr

t ∀t ∈ T (9)
yrsu

t + yr
t−1 ≤ 1 ∀t ≥ 2 ∈ T (10)

yr
t ≤MQin

t ∀t ∈ T (11)

The receiver start-up and energy generation process is con-
trolled with two binary indexed variables. These variables en-
able thermal power production (yr

t ) and thermal power con-
sumption for receiver start-up (yrsu

t ). When the receiver is in
power producing mode, the quantity of useful thermal energy
generated is tracked by the continuous variables xr

t . The rate of
thermal power consumption for receiver start-up is given by a
parameter Qru, and is accounted for when receiver start-up is
active (yrsu

t = 1).
First we consider receiver start-up inventory and the crite-

ria that must be satisfied in order for the receiver to produce
useful power. Constraint 2 tracks start-up energy “inventory”
from time step to time step. An inequality is used rather than
an equality to simplify the constraint set. Inventory is naturally
maximized by the problem. Constraint 3 ensures that the actual
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energy used for receiver start-up is less than the ramp rate limit.
Constraint 4 prevents receiver start-up from occur in time peri-
ods with trivial solar resource. Inventory can only be nonzero
in time steps where the receiver is starting up by constraint 5.
Constraint 6 ensures receiver production operation is allowed
only when start-up has been completed or when the receiver
was previously operating. The total power produced by the re-
ceiver must account for both the available energy Qin

t and any
start-up energy consumption as required by constraint 7. The
receiver can only generate thermal power when the receiver is
in power producing mode by constraint 8. The receiver energy
generation must satisfy a minimum threshold. Constraint 9 is
enforced because of minimum pump turn-down ratios and heat
transfer requirements in the receiver. Constraint 10 ensures that
the receiver start-up mode does not persist while the receiver
is operating in power producing mode by disallowing start-up
in the time step following normal power production operation.
Constraint 11 ensures that the receiver power production mode
does not persist when no energy is available to the receiver.

3.4.2. Power Cycle start-up
Power cycle start-up largely mirrors receiver start-up and is

recapitulated briefly below. Power cycle start-up constraints in-
clude:

ucsu
t ≤ ucsu

t−1 + Qcycsu
t ∀t ∈ T (12)

ucsu
t ≤Mycsu

t ∀t ∈ T (13)

yt ≤
ucsu

t

Ec + yt−1 + ycsb
t−1 ∀t ∈ T (14)

xt + Qcycsu
t ≤ Qu ∀t ∈ T (15)

xt ≤ Quyt ∀t ∈ T (16)
xt + Qcycsu

t ≥ Qlyt ∀t ∈ T (17)
ycsu

t + yt−1 ≤ 1 ∀t ≥ 2 ∈ T (18)
ycsb

t ≤ yt−1 + ycsb
t ∀t ∈ T (19)

ycsu
t + ycsb

t ≤ 1 ∀t ∈ T (20)
yt + ycsb

t ≤ 1 ∀t ∈ T (21)

Several complications are introduced in the cycle operation
and start-up process as a result of “standby” operation mode.
Standby mode consumes energy without producing electric
power in order to maintain the power cycle at a high energy
state. No start-up penalty is enforced when beginning normal
operation from standby mode.

Constraint 12 tracks start-up energy inventory, and constraint
13 ensures nonzero inventory. Constraint 14 allows normal cy-
cle operation only when start-up has been completed, when the
cycle was previously operating, or when the cycle has been in
standby mode. Constraint 15 limits cycle energy consumption
during start-up, and constraint 16 enforces a maximum produc-
tion limit. When operating, the cycle must produce a minimum
amount of power. This is often referred to as the “turn-down
ratio” limit. The minimum quantity can be adjusted if the cycle
happens to also be starting up in a give time step, and this is han-
dled in constraint 17. Start-up mode persistence is prevented in
constraint 18. Cycle standby mode can be entered when the cy-
cle was previous producing power. Standby mode can persist,

but must form a contiguous span as shown in constraint 19. Fi-
nally, standby and start-up modes can’t coincide (constraint 20),
nor can standby and power producing mode (constraint 21).

3.4.3. Energy Balance
Several additional constraints are enforced:

st − st−1 = ∆ · [xr
t − (Qcycsu

t + Qbycsb
t + xt)]

∀t ∈ T (22)
st ≤ Eu ∀t (23)
st ≥ (−2 + yrsu

t+1 + yt + ycsb
t + yt+1)

·
max
[
0,Qin

t+1 − Er/∆
]

Qin
t+1

Qu∆

∀t ≤ T − 1 ∈ T (24)

Energy in, out, and stored in the TES system must balance as
shown in constraint 22. the balance includes energy and power
terms, hence power terms are multiplied by the time step to en-
sure unit compatibility. Constraint 23 ensures that energy in
storage is less than the upper limit. Constraint 24 deals with an
artifact arising from the difference between the modeling time
resolution (hourly) and the amount of time required to start the
plant, which may not be in units of whole hours. If the power
cycle is running or in standby in time step t and in time step
t+1, and if the receiver starts up in time t+1, then the minimum
charge level in TES in time t must be sufficient to carry opera-
tion through the receiver start-up period. Note that yt + ycsb

t ≤ 1
is enforced elsewhere.

4. Dispatch Optimization Case Study

To demonstrate the dispatch optimization methodology im-
plemented in SAM, the Power Purchase Agreement (PPA) price
is calculated for a range of plant solar multiples and TES sizes.
The solar multiple in this study is defined as the ratio between
the thermal generation from the solar field under design condi-
tions to the thermal energy consumption required by the power
cycle at design conditions. As the solar multiple increases, the
amount of thermal storage also typically must be increased.

The PPA price is an indicator of the baseline price of en-
ergy that an electricity buyer (e.g. a utility) will agree to pay
a power producer. The PPA price is a useful surrogate for the
profitability of a project in that it accounts for the variability
in electricity value with time of day and time of year. As it is
applied in SAM, the PPA price is multiplied by the hour-by-
hour time of use (tariff) rate to determine the value of electric-
ity generated by the plant over time. SAM calculates the PPA
price assuming a target Internal Rate of Return (IRR) (11% in
the current study) and an annual escalation rate of 1%. For this
reason – and somewhat counterintuitively – a low PPA price is
desirable. From the perspective of a power producer, a low PPA
price with a fixed IRR indicates that a larger share of markets
are accessible for electricity sales. A low calculated PPA price
also enables an increase to project IRR should the actual PPA
price be higher than the calculated price.
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4.1. Analysis approach

The demonstration considers four market scenarios, three of
which have been adopted from Guédez et al.. The fourth mar-
ket scenario is the “generic summer peak” tariff schedule used
as the SAM default for the MSPT model. The three Guédez
et al. tariff schedules are shown in Figure 3. These schedules
are adopted from the South Africa Department of Energy’s Re-
newable Energy Independent Power Producer Program, which
has put forward three market scenarios to highlight the impor-
tance of market or tariff factors on renewable deployment.

Figure 3: Market pricing scenarios presented by Guédez et al. [11]. These tariff
schedules are implemented to determine the impact of dispatch optimization on
system sizing.

The two-tier tariff market incentivizes daytime production
with an evening spike. The pool-price tariff introduces an ad-
ditional morning spike and weights incentives seasonally. The
fixed daytime tariff allows sales during daytime hours, but is
unique its binary incentives – no revenue is gained from second-
tier operation. Finally, the SAM generic peak schedule com-
bines features from the two-tier tariff and the pool price tariff.

Each market scenario is evaluated in SAM using the MSPT
model presented above. A summary of key design parameters
is provided in Table 3.

For this analysis, SAM is configured to automatically deter-
mine the best heliostat field layout given the specified solar mul-
tiple and other design parameters. This is accomplished using
a nonlinear derivative free optimization scheme that improves
the estimated present value of the plant by varying tower height,
receiver height, and receiver diameter. The layout optimization
is executed for each unique solar multiple using the BOBYQA
search algorithm [16] from the NLOpt library [17] which is im-
plemented in SAM.

Table 3: Case study plant design and control parameters

Parameter Units Value
Gross electrical output MWe 115
Cycle design efficiency % 41.2
Cycle design thermal input MWt 278.1
Cycle maximum output MWe 120.75
Cycle minimum output MWe 28.75
Cycle start-up energy MWt-hr 57.5
Cycle start-up time hr 0.5
Cycle standby consumption MWt 23
Receiver max. output (relative*) - 1.2
Receiver min. output (relative) - 0.25
Receiver start-up energy (relative) - 0.25
Receiver start-up time (relative) - 0.2
Receiver HTF temperature ◦C 574
Heat rejection technology - Air cooled
Heliostat size m2 144.4
Maximum receiver flux kW/m2 1,000
Hours of TES hr 1 . . . 18
Solar multiple - 0.8 . . . 3

*Relative to receiver thermal input design point.

4.2. Results

The results of the PPA analysis are shown in Figure 4. Con-
tour lines indicate constant PPA price, and the best PPA price
for each scenario is plotted and labeled on each figure. Each
market scenario includes a plot of PPA price with heuristic dis-
patch control (top plot of each quadrant) and PPA price with
the dispatch optimization model developed as part of this work
(bottom plot of each quadrant).

Several observations arise from the data. Firstly, the PPA
price is generally lower in the dispatch optimization cases. This
is true for both the lowest single PPA value and throughout the
solution space. Looking specifically at the lowest PPA price in
each scenario, heavily weighted schedules (pool price and two-
tier) lead to more substantial PPA price reductions. The best-
case reduction for each case is shown in Table 4. This find-
ing indicates that dispatch optimization is an essential aspect
of plant operation for “peaker” markets that provide relatively
short time windows of high-value energy pricing. We also ob-
serve that systems operating in less heavily weighted market
structures still benefit significantly from dispatch optimization.

Table 4: Reduction in PPA price at the optimal point for each case

Case Heur. Disp. Rel.
SAM default 10.37 10.08 2.9%
Fixed daytime 13.36 12.94 3.1%
Pool price 9.71 8.83 9.1%
Two-tier 9.04 7.76 14.2%
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(a) SAM default case (summer peak) (b) Fixed daytime tariff

(c) Pool price tariff (d) Two-tier tariff

Figure 4: Analysis results for tariff scenarios presented in Figure 3. The power purchase agreement price (PPA) is plotted as a function of solar multiple and hours
of thermal energy storage. Each case is presented for the heuristic model and for the dispatch optimization model. The optimal sizing for each case is shown. The
heliostat field layout was optimized for each solar multiple by SAM.

Secondly, dispatch optimization alters the size of TES and
the solar multiple at which PPA price is minimized. This im-
plies that dispatch optimization should not be relegated to only
operational analyses, but rather should be part of the screening
and design process. Table 5 describes the change in sizing be-

tween the heuristic and optimized dispatch cases for the four
tariff scenarios.

An important feature of dispatch optimization is the appar-
ent reduction in production variability during high-value time
periods. This behavior is illustrated in Figure 5 for the Pool
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Table 5: Location of minimum PPA price for each scenario.

Solar multiple Hours TES
Case Heur. Disp. Heur. Disp.
SAM default 2.8 2.8 13 14
Fixed daytime 1.8 2.0 4 6
Pool price 2.4 2.4 8 10
Two-tier 2.2 2.0 5 7

Price tariff case. Plots 5a and 5b show the charge state of TES
over the course of the day for each day of the year. Each traced
line on the plot corresponds to the charge state profile for a
particular day. Plot 5a shows the charge profile for heuristic
dispatch, and plot 5b shows the profile for optimized dispatch.
Also shown on the plot are the tariff multiplier schedules for
summer (red) and winter (blue) that determine the revenue as-
sociated with generation during a particular hour of the day.

Dispatch optimization substantially changes the daily opera-
tional profile for the Pool Price case, and this behavior is rep-
resentative of the other cases studied. Where heuristic dispatch
allowed TES to discharge in the evening and late night hours,
optimized dispatch typically reserves some quantity of TES to
allow morning start-up. The TES profiles show that heuristic
dispatch is much more operationally repetitive in comparison to
optimized dispatch. This implies that optimized dispatch pro-
cedures account for externalities aside from the current charge
state of TES and the electricity production target. Namely, the
optimized procedure accounts for expected resource availabil-
ity and future pricing to determine when TES should be used.

Plots 5c and 5d show the distribution of electricity genera-
tion for each hour of the day over the course of the year. Each
box-whisker plot describes the variability in electricity genera-
tion for each day at the specified hour. The box limits indicate
the extents of the 1st and 3rd quartiles. The whiskers corre-
spond to twice the inner quartile range. Points that lie outside
of this limit are plotted individually and are considered distri-
bution outliers – though physically, each point represents the
electricity generation from a particular hour in the simulation.

Plot 5c shows that electricity production is highly variable
in the early morning, evening, and nighttime hours (tall boxes)
and is less variable during daytime hours (narrow boxes). The
variability in electricity generation is inversely related to solar
resource availability – an intuitive observation. However, pro-
duction is highly variable during peak revenue hours as shown
by the tariff multipliers. Plot 5d shows the optimized dispatch
case. Most notably, the dispatch optimization reduces electric-
ity generation variability during peak revenue hours. Both the
morning and evening tariff peaks demonstrate reliable genera-
tion throughout the year.

5. Conclusions

We develop and implement a MIP model to optimize the TES
dispatch schedule for a molten salt power tower plant. In con-
trast to existing work, the MIP model is constructed within the
SAM simulation environment and is used to guide the CSP
simulation controller as plant performance is evaluated over

an annual-hourly simulation. Because SAM’s detailed perfor-
mance model generates the simulation output, the accuracy and
validity of the output data are not compromised by the approx-
imate nature of the MIP formulation.

A case study demonstrating the methodology shows that a
plant operating in one of several distinct tariff markets will ben-
efit financially from dispatch optimization. Markets with heav-
ily weighted pricing schemes or narrow windows of high rev-
enue are of special interest, as PPA price for the optimally sized
plant can improve by 10-15%. The case study also demon-
strated that dispatch optimization is an important factor in both
the operational scheme of the plant, but also the initial design.

The current dispatch optimization capabilities in SAM pro-
vide an opportunity for future work investigating how compo-
nent and subsystem performance is affected by the demands of
maximizing revenue under various market schedules. Specifi-
cally, future work will begin to incorporate forecast uncertainty,
component operations and maintenance requirements and asso-
ciated costs, and other aspects of plant operation that cannot be
captured exclusively in a MIP model.
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