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Predict Stress/Strain and Understand Impact on Performance 

J.M. Caruthers, et al., Polymer, 2004, 45, 4577 
D.B. Adolf, et al., Polymer, 2004, 45, 4599 
D.B. Adolf, et al., Polymer, 2009, 50, 4257 



Polymer Thermoset Cure Stress Topics 

1. Constitutive formalism for predicting cure stress: Simplified Potential Energy Clock (SPEC) 
Cure Model 

2. Experimental characterization during cure and parameterizing the SPEC Cure Model 
3. Validating SPEC stress predictions for a curing thermoset 
4. Designing an optimum cure schedule 



Predicting Cure Stress: Parameterizing the Simplified 
Potential Energy (SPEC) Cure Model 
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Material time is computed by using a shift factor, a 

The shift factor is a function of temperature, volume, deformation and reaction histories 

J.M. Caruthers, et al., Polymer, 2004, 45, 4577 
D.B. Adolf, et al., Polymer, 2004, 45, 4599 
D.B. Adolf, et al., J. Rheol., 2007, 51, 517 
D.B. Adolf, et al., Polymer, 2009, 50, 4257 
J.M. Kropka, et al., SAND2013-8681 
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Predicting Cure Stress: Parameterizing the SPEC Cure Model 
Volumetric Cure Shrinkage 

Evolution of Equilibrium Shear 
Modulus During Cure 

Reaction Kinetics 

Evolution of Glass Transition Temperature During Cure 
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828/T403 Reaction Parameters 

Parameter Value 

Ea 13.8 kcal/mole 

ko 2.17x105 s-1 

b 0.17 

m 0.33 

n 1.37 

w 5x10-3 

β 1.3 

 

ε cure = β∞x( ) I
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Parameter Value 

C3 900 C 

α∞ 500 ppm/C 

C5a 10 C 

C5b 0.97 

C5c -105 C 

C5d 1.0088 

C5e 0.73 
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Parameter Value 

xgel 0.62 
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J.M. Kropka, et al., SAND2013-8681 
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Predicting Cure Stress: Validation Tests 
Rubbery Cure Results 

epoxy 
steel 

4 mm 

1 mm 

F(t) 
reference height 

Good agreement between predictions and data, 
with known variations in boundary conditions 
during the test accounting for the spread in the data 

This capability will enable the design of cure schedules to minimize stress 

J.M. Kropka, et al., SAND2013-8681 

The Simple Test 

828/T403 
T=100C 



20

30

40

50

60

70

80

90

-0.002

-0.0015

-0.001

-0.0005

0

0 5 10 15 20 25 30 35 40

Chamber
Mold
Encapsulant

Sample1
Sample2

Te
m

pe
ra

tu
re

 (o C
)

Thin D
isk Strain G

auge

Time (hours)

Predicting Cure Stress: Validation Tests 
Geometry: Thin Disk on Cylinder 

mold 
temperature 

cooldown from 
preheat conditions 

gelation 
828/GMB/DEA1 

Thin disk deflection gives structural response during cure 

reaction 
slows and 
thermal 
expansion 
dominates 

contraction 
upon 
cooldown 

final 
reaction 
stage 

slight exothermic 
heating 

encapsulant 
temperature 

1http://www.sandia.gov/polymer-properties/828_DEA_GMB.html 



Designing an Optimum Cure Schedule 
Isothermal
Temperature Ramps and Holds
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Time

Isothermal reaction at a high temperature may be the fastest method to achieve complete 
cure, but other factors may drive the time-temperature profile in a different direction 

Cure at intermediate temperature while 
material in liquid state to prevent potential 
exothermic heating for fast reactions 

keep temperature low to prevent potential 
exothermic heating or filler settling 

gelation 

Heat after gelation to balance cure 
shrinkage with thermal expansion and 
minimize stress developed 

Finish cure at high enough temperature 
to complete the reaction 



Isothermal Cure 
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Failure can occur during cure…can it be avoided by minimizing stress? 

Geometry: Thin Disk on Cylinder Structural Response 

Temperature Profile 
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Exothermic heating 
observed, even with a 
slow polymerization 
reactions 

thin disk 

Structural responses quite 
similar despite differences 
in thermal profile 

828/DEA/GMB1 

828/DEA/GMB1 

1http://www.sandia.gov/polymer-properties/828_DEA_GMB.html 
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Cure with Temperature Ramps and Holds 

No cracking/debonding observed and less disk deflection for larger post-
gelation thermal ramp (thermal expansion offsetting cure shrinkage) 

Geometry: Thin Disk on Cylinder 

Temperature Profile 

Structural Response 
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1http://www.sandia.gov/polymer-properties/828_DEA_GMB.html 
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Role of Temperature Ramp Rate 

Faster temperature ramps result in less lid deflection at end of cure and cooldown 

Geometry: Thin Disk on Cylinder 

Structural Response 

Temperature Profile 

while variation existed in 
gel time, all samples gelled 
prior to thermal ramp 

initiation of thermal 
ramp at t=36 hours 

most cure shrinkage 
during T=71C hold 

expansion during 
T=71C hold? 

828/DEA/GMB1 

828/DEA/GMB1 

Is this due to a larger CTE for the partially-cured material?  A history dependence due to the evolving reference state? 



Summary 

• Constitutive formalism to predict stress evolution during polymer thermoset cure developed 
and validated for “rubbery” cure 

• Simplified geometry structural tests (“Thin Disk on Cylinder”), in addition to serving as a 
model validation tool, prove useful to examine cure stress dependence on cure schedule 
parameters even when a validated cure model may not be available  

Looking Forward 
• Parameterizing/modifying the constitutive formalism for “more complicated” materials like 

the 828/DEA/GMB shown in experiments here is under way 
• Further validation of the constitutive formalism to predict stress evolution when vitrification 

occurs during cure is needed 
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