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Our Vision: Validated Model-Based Lifecycle Engineering
for Packaging Design
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Polymer Thermoset Cure Stress Topics

1. Constitutive formalism for predicting cure stress: Simplified Potential Energy Clock (SPEC)
Cure Model

2. Experimental characterization during cure and parameterizing the SPEC Cure Model

Validating SPEC stress predictions for a curing thermoset

4. Designing an optimum cure schedule
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Predicting Cure Stress: Parameterizing the Simplified
Potential Energy (SPEC) Cure Model

g:{AKJ.dsfv(t*—s*)%(s)-A(Ka)jdsfv(t*—s )—(s) AKp jdsf (t*—s )—(s) 1

¢ de
+2AG ! dsf (t*—s *)?(sﬁ K, 1, —K_a, AT -K_}, Ax] 1+2 l dSGw(S)—Z;EV (s)

cure shrinkage terms changing reference state term

Material time is computed by using a shift factor, a

* * dW ~ N
t —s = | —— d I =—C,|—=
; J awy o 9@ 1LCZ+NJ

The shift factor is a function of temperature, volume, deformation and reaction histories

* _o*x d_T . * _oXx %
{[ T(t) - ref] J-ds f(t*—s )dS (s) }+C3{Il(t)ref J-ds f(t*—s )dS (s) }

0
d s) d u
+C4{j ." dsdu f(t*—s* t*_u*) é‘dev( ) : édev( )

d
. ! ds du }+ Cs(x(1)) {[X(t) X |- ! ds fl(t*—s*)d—);(s) }

J.M. Caruthers, et al., Polymer, 2004, 45, 4577
D.B. Adolf, et al., Polymer, 2004, 45, 4599
D.B. Adolf, et al., J. Rheol., 2007, 51, 517
D.B. Adolf, et al., Polymer, 2009, 50, 4257
J.M. Kropka, et al., SAND2013-8681




Predicting Cure Stress: Parameterizing the SPEC Cure Model
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Predicting Cure Stress: Validation Tests

The Simple Test
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Good agreement between predictions and data,
with known variations in boundary conditions
during the test accounting for the spread in the data

This capability will enable the design of cure schedules to minimize stress

J.M. Kropka, et al., SAND2013-8681




Predicting Cure Stress: Validation Tests

Geometry: Thin Disk on Cylinder
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Thin disk deflection gives structural response during cure

thttp://www.sandia.gov/polymer-properties/828 _DEA_GMB.html

abnes urens Ysiq uiyl



Desighing an Optimum Cure Schedule

Temperature

——Isothermal
= =Temperature Ramps and Holds

|

Finish cure at high enough temperature
to complete the reaction

/
/
/
" Heat after gelation to balance cure
\ shrinkage with thermal expansion and
" minimize stress developed

r ———————— =l

I \ .

I gelation
I

Cure at intermediate temperature while
material in liquid state to prevent potential
exothermic heating for fast reactions

- | ¢&— keep temperature low to prevent potential
exothermic heating or filler settling

Time

Isothermal reaction at a high temperature may be the fastest method to achieve complete
cure, but other factors may drive the time-temperature profile in a different direction




Isothermal Cure

: Structural responses quite
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Failure can occur during cure...can it be avoided by minimizing stress?

thttp://www.sandia.gov/polymer-properties/828 _DEA_GMB.html




Cure with Temperature Ramps and Holds

Geometry: Thin Disk on Cylinder
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No cracking/debonding observed and less disk deflection for larger post-
gelation thermal ramp (thermal expansion offsetting cure shrinkage)




Role of Temperature Ramp Rate

Geometry: Thin Disk on Cylinder
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Faster temperature ramps result in less lid deflection at end of cure and cooldown

Is this due to a larger CTE for the partially-cured material? A history dependence due to the evolving reference state?



Summary

Constitutive formalism to predict stress evolution during polymer thermoset cure developed
and validated for “rubbery” cure

Simplified geometry structural tests (“Thin Disk on Cylinder”), in addition to serving as a
model validation tool, prove useful to examine cure stress dependence on cure schedule
parameters even when a validated cure model may not be available

Looking Forward

Parameterizing/modifying the constitutive formalism for “more complicated” materials like
the 828/DEA/GMB shown in experiments here is under way

Further validation of the constitutive formalism to predict stress evolution when vitrification
occurs during cure is needed
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