SAND2014-19756C

Sandia

Exceptional service in the national interest @ National
Laboratories

Toward the Next Generation of Portable,

Scalable HPC Applications

I D E ‘ S Michael A. Heroux
Sandia National Laboratories

productivity

Jillino;

&%, U.S. DEPARTMENT OF VWA T

& o . ,\j

#@dg ENERG Y ,ﬂ” v"mﬂ Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
g Natlonal Nuclear Securlty Adminisiraton Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Laptops to

Leadership systems

Optimal Kernels to Optimal Solutions:

¢ Geometry, Meshin
y & Transforming Computational Analysis To

* Discretizations, Load Balancing. Support High Consequence Decisions

¢ Scalable Linear, Nonlinear, Eigen,
Transient, Optimization, UQ solvers. l Systems of systems
¢ Scalable I/0O, GPU, Manycore

Optimization under Uncertainty

Quantify Uncertainties/Systems Margins

Optimization of Design/System

¢+ 60 Packages.

¢ Other distributions: Accurate & Efficient Forward Analysis

¢ Cray LIBSCI Forward Analysis
¢ Public repo.

Robust Analysis with Parameter Sensitivities

Each stage requires greater performance and error control of prior stages:
Always will need: more accurate and scalable methods.
more sophisticated tools.

Sandia
I D EAS Interoperable Design of Extreme-scale) Yo

pPDdUCtiVity Application Software (IDEAS)

Enable increased scientific productivity, realizing the potential
of extreme- scale computing, through a new mterd:sclplmary
and agile approach to the scientific software]

Terrestrial ecosystem use cases tie IDEAS to modeling
and simulation goals in two Science Focus Area (SFA)
ey programs and both Next Generation Ecosystem

for Extreme-Scale Science Experiment (NGEE) programs in DOE Biologic and

, Environmental Research (BER).
Address confluence of trends in hardware G _

and increasing demands for predictive
multiscale, multiphysics simulations.
Respond to trend of continuous refactoring
with efficient agile software engineering
methodologles and improved software

ASCR/BER partnership ensures delivery of both crosscutting
methodologies and metrics with impact on real application and programs.

Interdisciplinary multi-lab team (ANL, LANL, LBNL, LLNL, ORNL, PNNL,
SNL)
ASCR Co-Leads: Mike Heroux (SNL) and Lois Curfman Mclnnes (ANL)
s for _ BER Lead: David Moulton (LANL)
Productiyi . Topic Leads: David Bernholdt (ORNL) and Hans Johansen (LBNL)
Integration and synergistic advances in three communities deliver 2

Software
Productivity

Scientific
Software

"freachand com® scientific productivity; outreach establishes a new holistic perspective for
the broader scientific community.

BACKGROUND & MOTIVATION

A Confluence of Trends) i,

®= Fundamental trends:
= Disruptive HW changes: Requires thorough alg/code refactoring.
= Demands for coupling: Multiphysics, multiscale.

= Challenges:
= Need 2 refactorings: 1+g, not 2-€. Really: Continuous change.
= Modest app development funding: No monolithic apps.
= Requirements are unfolding, evolving, not fully known a priori.

= QOpportunities:
= Better design and SW practices & tools are available.
= Better SW architectures: Toolkits, libraries, frameworks.

= Basic strategy: Focus on productivity.

The work ahead of us: Threads and vectors

Sandia
’11 National
Laboratories

MiniFE 1.4 vs 2.0 as Harbingers

Typical MPIl-only run:
o Balanced setup vs sols.Le\

First MIC run:

o Thread/vector sqQlver
o No-thread setup(\
V 2.0: Thread/vector

o Lots of work: —_—

m Data placement, const
[restrict declarations, avoid
shared writes, find race
conditions, ...

o Unique to each app
Opportunity: Look for new

crosscutting patterns,
libraries

MiniFE: Setup vs Solver Speedup

-Vec V 2.0/M|C-NoV V 2.0/MAC-Vec
Version/System

il Setup
Solve::SpMV

H Solve::DOT

i Solve::AXPY

(e.g., libs of data containers)

If | had eight hours to chop down a tree,
| would spend six sharpening my axe.

- Abraham Lincoln

PRODUCTIVITY

BETTER, FASTER, CHEAPER: PICK ALL THREE

Sandia
a
Laboratories

Software Productivity

for Extreme-Scale Science

Productivity Emphasis

January 13-14, 2014, Rockville, MD

 Scientific Productivity.

* Many design choices ahead.

* Productivity emphasis:
— Metrics.
— Design choice process.

» Software ecosystems: Rational option
— Not enough time to build monolithic.

Extreme-Scale Scientific Application

— Too many requirements. Software Productivity:
Harnessing the Full Capability of Extreme-Scale Computing

— Not enough funding.

* Focus on actionable productivity metrics.
— Optometrist model: which is better?
— Global model: For “paradigm shifts”.

~ LoisCurl). David Moulton (LANL),
‘Thomas Ndousse-Fetter (DOE/ASCR), Douglass Post (DOD), William Tang (PPPL)

Sandia
"1 National
Laboratories

PARALLEL PROGRAMMING &
PRODUCTIVITY

General Reality of Multicore
Parallelism

Sandia
|I1 National
Laboratories

= Best single shared memory parallel programming
environment:
= MPI.

= But:

= Two level parallelism (MPI+X) is generally more effective.

= But, the best option for X (if explored at all) is:
= MPI.

= Furthermore, for an (N; x N,) MPI+X decomposition:

“For a given number of core counts, the best performance is achieved with
the smallest possible N, for both hybrid [MPI+OpenMP] and MPI [MPI+MPI]
versions. As N, increases, the runtime also increases.”

Threading Multi-APl Usage: Needs to work

Sandia
|I1 National
Laboratories

OK

Not OK

phase.

* Problem: App uses all threads in one phase, library in another
* Intel Sandy Bridge:l NotOK 11.16 to 2.5 X slower than| OK
* |ntel Phi: NotOK |1.33 to 1.8 X slower than ok
 Implication:

— Libraries must pick an API.
— Or support many. Possible, but complicated.

Data Placement & Alignment)

= First Touch is not sufficient.
= Happens at initialization. Hard to locate, control.

= Really need placement as first class concept.

= Create object with specific layout.

= Create objects compatible with existing object.

= Lack of support limits MPI+OpenMP.
= OpenMP restricted to single UMA core set.

Nvidia GPUs)

= Supports mixed environments: All that it handles.
= Has good performance model support.

= Has flexible data placement model.

= C++ supportis good, waiting for lambdas.

= Severe environment, but results in general goodness.

Sandia

OpenMP 4.0, OpenACC) .

= Active, addressing highest priority requirements.
= |ncompatible, even conceptually.

= Best hope: Compiler recognizes both.

Sandia
'11 National
Laboratories

Scalable Multicore/Manycore Execution Very Challenging

= Features are coming, but slowly.
= Performance models coming too.

Happy to be a C++ developer.
= Fortran support always lags.
= Fortran features arrive a decade late.

= Missing piece: Restructured application (task-centric).

New Programming Models, O
Environments, Languages

= Can we use new:

= Environments: Yes.
= Models: Yes.
" Languages: NO.*

* Other app areas may be different.

Sandia
|I1 National

Laboratories

Yes: New Environments

= Clang/llvm — Great new stack.
= Enables innovations desired for decades.
= Switch in tools: e.g., gdb to lldb, trivial.
= Architected for new layers:
= Minor C++ syntax extensions.
= Additional compiler passes.
= Really, really need “flang compiler”.

= Google search: Did you mean: c/lang compiler

* The single biggest DOE/Science productivity requirement?
= Support for OpenMP 4.

= Or: We should plan our (slow-but-steady) Fortran exit plan.

https://www.google.com/search?safe=off&client=safari&rls=en&q=clang+compiler&spell=1&sa=X&ei=afnfU9SCMKb5iQK_kYCADQ&ved=0CBwQBSgA
https://www.google.com/search?safe=off&client=safari&rls=en&q=clang+compiler&spell=1&sa=X&ei=afnfU9SCMKb5iQK_kYCADQ&ved=0CBwQBSgA
https://www.google.com/search?safe=off&client=safari&rls=en&q=clang+compiler&spell=1&sa=X&ei=afnfU9SCMKb5iQK_kYCADQ&ved=0CBwQBSgA

Yes: New Models)t

= New models not new programming languages:

= SIMT — GPUs.

= SIMD - Old, but new for junior community members.

= MAP — parallel_for

= REDUCE — parallel_reduce.

= Manytasking — Qthreads, HPX, even OpenMP.

= Strategy: Introduce at node level, then expand to inter-node.
= DSLs: Yes, but embedded or mini:

= TBB, thrust: embedded in C++.

= CUDA: Extension, OK (at least temporarily).

= forAlINodes — Conceptual iterator, self-documenting, polymorphic.

Sandia
|I1 National
Laboratories

No: New Languages

= Existing landscape:
= C++is our programming language.
= Cisasubset of C++.
= Fortran is still around, and an issue.
= Python, Perl, CMake, Matlab, etc. are great aides.
= New scripting languages OK, if broadly available.

= New HPC languages have uniformly failed: HPF, HPCS.

= Existing HPC language (Fortran) is an emaciated entity:
= Vendor implementations behind the standard, non-portable.
= CUDAFortran, OpenACC for Fortran: Special projects.
= OpenMP for Fortran is only viable parallel option.

Sandia
"1 National
Laboratories

TOWARD A NEW APPLICATION
ARCHITECTURE

Task-centric/Dataflow:) e,
A Productive Application Architecture

= Atomic Unit: Task

= Domain scientist writes code for a task.
= Task execution requirements:

= Tunable work size: Enough to efficiently use a core once scheduled.
= Vector/SIMT capabilities.

= Small thread-count SMP.

= Task data dependencies.
= Déja vu for apps developers: Feels a lot like MPI programming.
= Universal portability:

= Works within node, across nodes.

= Works across heterogeneous core types.

Task-centric/Dataflow vs. BSP/SPMD (Wi,

= Task-centric: Many tasks
= Async dispatch: Many in flight.
o BSP/SPMD: = Natural latency hiding.
o Halo exchange. -
o Local compute.
o Global collective.
o Halo exchange.

ST
A

San
TN
1]

Higher message injection rates.

YT
i,
[

" Ew,
"L\.‘;
i S

H

=TT
AL
i

i

= Better load balancing.

LT

i
i/

it
i

= Compatible with “classics”:
* Fortran, C, OpenMP.
= Used within a task.

= Natural resilience model:

= Every task has a parent (can
regenerate).

= Demonstrated concept:
= Co-Design centers, PSAAP2, others.

Movement to Task-centric/Dataflow is Disruptive:

Use Clean-slate strategies

Best path to task-centric/dataflow.

Stand up new framework:

* Minimal, representative
functionality.

* Make it scale.
Mine functionality from previous
app.
* May need to refactor a bit.
* May want to refactor
substantially.

Historical note:

* This was the successful approach
in 1990s migration from vector
multiprocessors (Cray) to
distributed memory clusters.

* In-place migration approach
provided early distributed
memory functionality. Failed
long-term scalability needs.

Current Full-featured App

Classic parallel app design.
Full modeling capabilities.
Scalable on classic systems.

Sandia
National
Laboratories

Distill minimal modeling
capabilities needed
to represent data
movement and
dependency patterns.

—>

Refactor and
migrate modeling
capabilities into
new framework.

“Clean Slate” App
Migration Strategy

New Minimal-feature App

“Clean slate” development.
New parallel app design.

Minimal modeling capabilities.

Scalable on future systems.

Utilize new design,
preserve
scalability.

Y

Future Full-featured App
New parallel app design.

- Full modeling abilities.

- Scalable on future systems.

Sandia
m National

Laboratories

Phased Migration to Task-
centric/Dataflow

>

* All Apps Looking for new Node-

level programming environments. 3
n . w
s Exploring standards, emerging: Inter-node/inter-device (distributed) 005’3"6’332;]‘172:"9 -
parallelism and resource management Processes ®
* OpenMP, pthreads. Hetwerc ot 8
o
e OpenMP 4, OpenACC. computational T
. nodes) g
* Exploring non-standard: g
Node-local control flow (serial) 5
* HPX (Parallex). &
S =Y T o e -/_\
e Brute force: : -
* Uintah framework. computational | Intra-node (manycore) parallelism e | |
node with and resource management -
° r .
Strategy manycore CPUs §=~
* Phase 1: On-node. and / or 2
. . GPGPU > — 8
Phase 2: Inter-node. Stateless, vectorizable, efficient g
computational kernels Stateless kernels g
run on each core @

Open Questions for Task-Centric/Dataflow Strategies (™ —N

= Functional vs. Data decomposition.

= Qver-decomposition of spatial domain:
= Clearly useful, challenging to implement.

= Functional decomposition:
= Easier to implement. Challenging to execute efficiently (temporal locality).

= Dependency specification mechanism.
= How do apps specify inter-task dependencies?
= Futures (e.g., C++, HPX), data addresses (Legion), explicit (Uintah).

= Roles & Responsibilities: App vs Libs vs Runtime vs OS.
= |nterfaces between layers.
= Huge area of R&D for many years.

Sandia
"1 National
Laboratories

SW LIFECYCLE MODELS & PRODUCTIVITY

National

Common SW Development Scenario: Today (.

_

Provide specific capabilities
for user.

Immediate feedback on
usefulness.

Do so with reuse in mind.
Others can use your software
for compatible needs.

Provides requirements.
Provide validation testing
environment.

Immediate feedback on
correctness.

Sandia
r“‘ National
Laboratories

Common SW Development Scenario: Next Year

« Still works for original
user.
« Add new features for
other users.
* Untested

* Provide validation testing
environment, but only
partial coverage.

« Other features untested.

1 %g{ligir?al
Common SW Development Scenario: 5 Years @ i=..

Major refactoring.
Lost touch with original users.
New users features untested.

 Use old version of code.
« Many features untested.

Result: Not enough test coverage for confident refactoring.

Validation-Centric Approach (VCA): 7
Common Lifecycle Model for CSE Software

Laboratories

Central elements of validation-centric approach (VCA) lifecycle model

= Develop the software by testing against real early-adopter customer applications.
= Manually verify the behavior against applications or other test cases.

Advantages of the VCA lifecycle model:

= Assuming customer validation of code is easy (i.e. linear or nonlinear algebraic equation
solvers => compute the residual) ...

= Can be very fast to initially create new code.
= Works for the customer’s code right away.
Problems with the VCA lifecycle model:

= Does now work well when validation is hard (i.e. ODE/DAE solvers where no easy to
compute global measure of error exists).

= Re-validating against existing customer codes is expensive or is often lost (i.e. the
customer code becomes unavailable).

= Difficult and expensive to refactor: Re-running customer validation tests is too
expensive or such tests are too fragile or inflexible (e.g. binary compatibility tests).

VCA lifecycle model often leads to expensive or unmaintainable codes.

TriBITS Lifecycle Model 1.0 Document rlh) et

Laboratories

SANDIA REPORT

SAND2012-0581
Unlimited Raleasa
Printed February 2012

TriBITS Lifecycle Model

Version 1.0

A Lean/Agile Software Lifecycle Model for Research-based Com putational
Science and Engineering and Applied Mathemat ical Soft wane

Rescos A. B artlett
Michaal A. Herou
James M. Willenkbring

Porsa i ke
Eared i Mt Labenaenag
o by i, P Pl iz 871 25 ared L oo, i sl M 550

S i ol L i ¥

and o by Sandia G a whelyewned
st b iy ' Lo s Pl rlin Crperalion. e ha LS
Disgratrrmand ef Enrg v Palcral Mo Secunly A man straleen
urdar Centrad DE-A004-948 #2000

Agpoiasd I puls S rsic . Tur b o s reien unlmisd

() sandia National Laboratories

0 .

National
Laboratories

TriBITS: One Deliberate Approach to SE4CSE ;) s

Component-oriented SW Approach from Trilinos, CASL Projects, LifeV, ...
Goal: “Self-sustaining” software

TriBITS Lifecycle Maturity Levels
0: Exploratory
1: Research Stable

e Allow Exploratory Research to Remain Productive:

Minimal practices for basic research in early phases 2: Production Growth
3: Production Maintenance
e Enable Reproducible Research: Minimal software -1: Unspecified Maturity

quality aspects needed for producing credible
research, researchers will produce better research that will stand a better chance of being
published in quality journals that require reproducible research

e Improve Overall Development Productivity: Focus on the right SE practices at the right times,
and the right priorities for a given phase/maturity level, developers work more productively with
acceptable overhead

e Improve Production Software Quality: Focus on foundational issues first in early-phase
development, higher-quality software will be produced as other elements of software quality are
added

e Better Communicate Maturity Levels with Customers: Clearly define maturity levels so
customers and stakeholders will have the right expectations

ﬁ Ultimate Goal: Produce “self-sustaining” software products. ﬁ

Defined: Self-Sustaining Software i) R

Laboratories

= Open-source: The software has a sufficiently loose open-source license allowing the source code to
be arbitrarily modified and used and reused in a variety of contexts (including unrestricted usage in
commercial codes).

= Core domain distillation document: The software is accompanied with a short focused high-level
document describing the purpose of the software and its core domain model.

= Exceptionally well testing: The current functionality of the software and its behavior is rigorously
defined and protected with strong automated unit and verification tests.

= Clean structure and code: The internal code structure and interfaces are clean and consistent.

= Minimal controlled internal and external dependencies: The software has well structured internal
dependencies and minimal external upstream software dependencies and those dependencies are
carefully managed.

" Properties apply recursively to upstream software: All of the dependent external upstream software
are also themselves self-sustaining software.

= All properties are preserved under maintenance: All maintenance of the software preserves all of
these properties of self-sustaining software (by applying Agile/Emergent Design and Continuous
Refactoring and other good Lean/Agile software development practices).

ﬁ Example: Reference LAPACK Implementation ﬁ

TriBITS (-) vs. Validation-Centric Approach (-@ i

Laboratories
ﬁnitand Verificatiow \ Acceptance Testing A Portability

—
— - = -

> oo, i])
Research Product|on Production Research rPro duction1 Production Research Production Pr_oductlon
Stable Growth Maintenance Stable Growth Maintenance Stable Growth Maintenance

A Code and Design Clarity \ Documentation and Tutorials_

N

A Space/Time Performance

] .
Research Production Production Research 'Production ' Production
Stable Growth Maintenance Stable Growth Maintenance

\ 4

| |
Research rProduction1 Production
Stable Growth Maintenance

\ 4

Research rProduction1 Production
Stable Growth Maintenance

. . il L |
Research rProductlon1 Production Research Production Production
Stable Growth Maintenance

Stable Growth Maintenance
TI

Sandia
|I1 National
Laboratories

TriBITS(-) vs. Pure Lean/Agile Approach (--)

(nitand Verificatiow A Acceptance Testing A Portability

l l
| | -z | L .
Research Production Production Research IPI’OdUCtionI Production - Research Production Production
i . Stable Growth Maintenance
Stable Growth Maintenance Stable Growth Maintenance
A Code and Design Clarity A Documentation and Tutorials A Space/Time Performance
I I > . I > I I >
Research Production Production Research Production = Production Research Production Production
Stable Growth Maintenance Stable Growth Maintenance Stable Growth Maintenance
ser Input Checking and Feedback . Backward compatibility Cost per new feature
I I > | | > f f >
Research Production Production Research Production Production Research’ Production’ Production
Stable Growth Maintenance Stable Growth Maintenance Stable Growth Maintenance

Time

End of Life? i) Natona

Laboratories

Long-term maintenance and end of life issues for Self-Sustaining Software:
= User community can help to maintain it (e.g., LAPACK).

= |f the original development team is disbanded, users can take parts they are
using and maintain it long term.

= Can stop being built and tested if not being currently used.

= However, if needed again, software can be resurrected, and continue to be
maintained.

NOTE: Distributed version control using tools like Git greatly help in reducing risk
and sustaining long lifetime.

Addressing existing Legacy Softwared .

= One definition of “Legacy Software”: Software that is too far from away from

being Self-Sustaining Software, i.e:
= (QOpen-source
Core domain distillation document
Exceptionally well testing
Clean structure and code
Minimal controlled internal and external dependencies
Properties apply recursively to upstream software

= Question: What about all the existing “Legacy” Software that we have to
continue to develop and maintain? How does this lifecycle model apply to such
software?

= Answer: Grandfather them into the TriBITS Lifecycle Model by applying the
Legacy Software Change Algorithm.

Grandfathering of Existing Packages i) Natona

Laboratories

Agile Legacy Software Change Algorithm:
1. Identify Change Points

2. Break Dependencies

3. Cover with Unit Tests

4. Add New Functionality with Test Driven Development (TDD) ﬂGHKI NG
5. Refactor to removed duplication, clean up, etc. EFFECTIVELY
WITH

Grandfathered Lifecycle Phases: LEGACY CODE
1. Grandfathered Research Stable (GRS) Code Mchaol C. Foathors
2. Grandfathered Production Growth (GPG) Code

3. Grandfathered Production Maintenance (GPM) Cost per new feature
Code

NOTE: After enough iterations of the
Legacy Software Change Algorithm the
software may approach Self-Sustaining

software and be able to remove the Logacy | Grandfathered | Production
“Grandfathered” prefix. Code Maeueton Maintenance

Test Driven Development

= Write tests first:

= Guarantees that tests will be written.

= Debugs the API: First attempt to use SW as intended.

= Use tests during development:
= All tests fail at first.
= Pass incrementally as SW written.
= Measure of progress.

= Use tests forever more:
= Regression.
= Backward compatibility.
= Aggressive refactoring.
= Single most important activity:

= Assures long, happy life for your product.

Sandia
National
Laboratories

Sandia
"1 National
Laboratories

COMMODITY SOFTWARE
DEVELOPMENT PLATFORMS

Day 1 of Package Life QL

New Package Starting in the Trilinos Project

= Git: Each package is self-contained in Trilinos/package/ directory.
= Bugzilla: Each package has its own Bugzilla product.

= Mailman: Each Trilinos package, including Trilinos itself, has four mail
lists:
= package-checkins@software.sandia.gov
= CVS commit emails. “Finger on the pulse” list.
= package-developers@software.sandia.gov
= Mailing list for developers.
= package-users@software.sandia.gov
= |ssues for package users.
= package-announce@software.sandia.gov
= Releases and other announcements specific to the package.

= New_package (optional): Customizable boilerplate for
= CMake/Doxygen/Python/TestHarness/Website

Sandia
National
Laboratories

Day 1 of Package Life on GitHub & Atlassian ™ B

= Private Git -> Public Git: Each package is self-contained, clonable.

= Bugzilla -> Issue tracking: Integrated, Issue listings, Milestones &
labels, Commit keywords. Pull requests.

= Mail lists -> Forums: More diverse, interactive.
= New_package -> Stubbed out project.

= Atlassian: Even more advanced but costly.
= Dev Tools: Git, mercurial, other tools.
= Jira: Issue tracking.
= Confluence: Collaboration, communication.

SW Development Platforms
are Commodity

Sandia
'11 National

Laboratories

= Projects can start from Day 1 with high-quality environment,
global visibility.

= Need to re-state the Trilinos value propositions from first
principles.

Sandia
|I1 National
Laboratories

Trilinos Community Membership Value Proposition

Established Tools, Processes. —
Re-assessing this aspect:
= Huge boost in getting started. — € Trilinos Community 2.0

= Challenge when toolsets change.

—

High quality, complementary components.
= Ready-made interactions.
= |nsulation from architecture details.

= |mproved Personal Experience.

= Personal tool & process choices defined, common.

= |mproved Team Experience.
= Ready-made collaboration tools & processors.
= Checklists.

Trilinos Community 2.0)

= GitHub, Atlassian:

= Open source SW development, tools platforms.
= Workflows for high-quality community SW product development.

= Trilinos value proposition:
" |ncluded these same things, but must re-evaluate.
= Must address packages that want GitHub presence.
= Must (IMO) move Trilinos itself to GitHub.

= New types of Trilinos packages (evolving):

= |nternal: Available only with Trilinos (traditional definition).
= Exported: Developed in Trilinos repository, available externally.

= |Imported: Developed outside of Trilinos, available internally.

Trilinos Community 2.0)

= Case studies:
= TriBITS: Was an internal package, now external.

DTK: Has always been external.
KokkosCore: Is internal. Needs to be available externally.

= |ssues to Resolve:

Package inclusion policies: Define for each package type.
Quality criteria: Contract between Trilinos and packages.
Workflows: Development, testing, documentation, etc.

Trilinos on GitHub: Evaluate.

Trilinos Value Proposition: Re-articulate Trilinos Strategic Goals
implications.

Sandia
"1 National
Laboratories

IDEAS: A NEW DOE PRODUCTIVITY-FOCUSED
PROJECT

ID EAS Institutional Leads (Pictured) (i)

productivity Full Team List

J. David Moulton
Tim Scheibe
Carl Steefel

Glenn Hammond

| Mike Heroux
' Ulrike Meier Yang
Jed Brown
Irina Demeshko
Kirsten Kleese van Dam

Reed Maxwell

Scott Painter

Ethan Coon Sherry Li
) ASCR: M. Heroux and L.C. Mclnnes D ie] Osei-Kuffuor
Xiaofan Yang BER: J. D. Moulton aniel Usel-Ruliu
Vijay Mahadevan
Barry Smith

Hans Johansen
Lois Curfman Mclnnes
Ross Bartlett
Todd Gamblin*
Andy Salinger*
Jason Sarich

David Bernholdt

Katie Antypas*
Jim Willenbring Lisa Childers*
Pat McCormick Otreact arg comm®™ Judith Hill*

47

Use Cases: Multiscale, Multiphysics

h

Representation of Watershed Dynamics

= Use Case 1: Hydrological and biogeochemical
cycling in the Colorado River System.

= Use Case 2: Thermal hydrology and carbon
cycling in tundra at the Barrow
Environmental Observatory.

= Leverage and complement existing SBR and

TES programs:
= |BNL and PNNL SFAs. .
= NGEE Arctic and Tropics. | o

= General approach:

= Leverage existing open source application
codes.

= |mprove software development practices.

= Targeted refactoring of interfaces, data
structures, and key components to facilitate
mteroperablllty

= Modernize management of multiphysics I
integration and multiscale coupling.

5

§§§g§§§E§€E

4

Sandia
National
Laboratories

Y wlm_r"

BMILES

a 2 4 E E KILOMETERS

.

L

Extreme-scale Science Applications

]

hysics coupling. | * Application specific.

.

’

s

as

Native code & data objects
* Single use code.
Coordinated component use.

Shared data objects Documentation content
* Meshes. * Source markup.
Matrices, vectors. * Embedded examples.

Library interfaces Testing conten

* Parameter lists. * Unit tests.

* Interface adapters. | * Test fixtures.
Function calls.

Build content
* Rules.
* Parameters.

Sandia
National
Laboratories

Extreme-Scale
Scientific
Software
Ecosystem

hy
I
H
I
I
Il

r
1
1
1
1
1
1
1
1

y \

A

Extreme-Scale Scientific Software Development Kit (xSDK)

4

1
I
1
I
1
I
L

_ o e s peym—
Methodologies: Q,I;im el fo e
SW Productivity Metrics § _ e W e [
> Collected Data
Planning Data collection

Source: The GQM Method: A Practical Gu
for Quality Improvement of SW Developme

Solingen and Berghout.

= Define processes to define metrics.

= Starting point: Goals, questions, metrics (GQM).
= Define goals, ID questions to answer, define progress metrics.

= GQM Example:
= Goal: xSDK Interoperability.

= Question: Can IDEAS xSDK components & libs link?

= Metric: Number of namespace collisions.

= Cultivate effective use of metrics:
= Use metrics to drive and track use case progress.

= Promote use of metrics via Outreach.

Software Engineering and HPC:) i,
Efficiency vs Other Quality Metrics

Laboratories

How focusing .
Source:
on the factor g Sl s ;E‘ X E Code Complete
below affects S|E|£|Z| &S| 8| Z | Steve McConnell
the factor to ElS|e|S| I &2]3
the right S|S|T|2|E|1Z|<|2
Correctness 4 t1 t *
Usability 1‘ 1‘ *
C Efficiency v R AR2AR AR _=>
Reliability 1 (1 t *
Integrity *)
Adaptability v 4 t
Accuracy t v/ 4 V(4| ¥ Helps it 4
Robustness * t * * * t * t Hurts it + —

Summary) e,

= Disruptions:
= Disruptive architecture changes force disruptive software refactoring.
= Capabilities Drive Ability to Couple physics and scales, need for modularity.

= A Productivity Focus is promising:
= Walking back to first principles, iterating forward.
= Provides guidance in time of disruptive changes.
= Programming:
= Current SMP environments are not adequate (OMP, etc.)
= New programming models, environments are OK, but no new languages.
= Manytasking: Shows promise as “universal approach” to future app design.
= Enables use of classic languages and environment.
= Requires significant runtime system, APl investments.
= Community Changes:
= SW Lifecycles: Explicit models bring rigor, foster communication.
= Commodity development platforms: Enable world-wide, high-quality collaborative development.
= DOE focus on Productivity: IDEAS Project, goal of an Extreme-scale Scientific SW Ecosystem.

