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Optimal Kernels to Optimal Solutions:

 Geometry, Meshing 

 Discretizations, Load Balancing.

 Scalable Linear, Nonlinear, Eigen, 
Transient, Optimization, UQ solvers.

 Scalable I/O, GPU, Manycore

 60 Packages.

 Other distributions:

 Cray LIBSCI

 Public repo.

Laptops to

Leadership systems



Interoperable Design of Extreme-scale 
Application Software (IDEAS)

Motivation
Enable increased scientific productivity, realizing the potential 
of extreme- scale computing, through a new interdisciplinary 
and agile approach to the scientific software ecosystem.

Objectives
Address confluence of trends in hardware 

and increasing demands for predictive 
multiscale, multiphysics simulations.

Respond to trend of continuous refactoring 
with efficient agile software engineering 
methodologies and improved software 
design.

Approach
ASCR/BER partnership ensures delivery of both crosscutting 

methodologies and metrics with impact on real application and programs.

Interdisciplinary multi-lab team (ANL, LANL, LBNL, LLNL, ORNL, PNNL, 
SNL)

ASCR Co-Leads: Mike Heroux (SNL) and Lois Curfman McInnes (ANL)

BER Lead:  David Moulton (LANL)

Topic Leads: David Bernholdt (ORNL) and Hans Johansen (LBNL)

Integration and synergistic advances in three communities deliver 
scientific productivity; outreach establishes a new holistic perspective for 
the broader scientific community.

Impact on Applications & Programs 
Terrestrial ecosystem use cases tie IDEAS to modeling 
and simulation goals in two Science Focus Area (SFA) 
programs and both Next Generation Ecosystem 
Experiment (NGEE) programs  in DOE Biologic and 
Environmental Research (BER).

Software 
Productivity 
for Extreme-

Scale 
ScienceMethodologi

es for 
Software

Productivity

Use Cases: 
Terrestrial 
Modeling

Extreme-Scale 
Scientific 
Software 

Development Kit 
(xSDK)
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BACKGROUND & MOTIVATION
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A Confluence of Trends

 Fundamental trends:
 Disruptive HW changes: Requires thorough alg/code refactoring.

 Demands for coupling: Multiphysics, multiscale.

 Challenges:
 Need 2 refactorings: 1+ε, not 2-ε. Really: Continuous change.

 Modest app development funding: No monolithic apps.

 Requirements are unfolding, evolving, not fully known a priori.

 Opportunities:
 Better design and SW practices & tools are available.

 Better SW architectures: Toolkits, libraries, frameworks.

 Basic strategy: Focus on productivity.
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The work ahead of us: Threads and vectors
MiniFE 1.4 vs 2.0 as Harbingers

5.0 4.2 3.8 3.4
2.4 1.3 1.5 1.3

33.6

23.8
18.8 18.2

32.1

54.9

46.6

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

V 1.4/SB V 1.4/MIC-Vec V 2.0/MIC-NoV V 2.0/MIC-Vec

T
im

e
(s

e
c)

Version/System

MiniFE: Setup vs Solver Speedup

Setup

Solve::SpMV

Solve::DOT

Solve::AXPY

600.0

561

 Typical MPI-only run:
 Balanced setup vs solve

 First MIC run:
 Thread/vector solver

 No-thread setup

 V 2.0: Thread/vector
 Lots of work:

 Data placement, const
/restrict declarations, avoid 
shared writes, find race 
conditions, …

 Unique to each app

 Opportunity: Look for new 
crosscutting patterns, 
libraries
(e.g., libs of data containers)
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PRODUCTIVITY
BETTER, FASTER, CHEAPER: PICK ALL THREE

6

If I had eight hours to chop down a tree, 
I would spend six sharpening my axe. 

- Abraham Lincoln



Productivity Emphasis

• Scientific Productivity.

• Many design choices ahead.

• Productivity emphasis:

– Metrics.

– Design choice process.

• Software ecosystems: Rational option

– Not enough time to build monolithic.

– Too many requirements.

– Not enough funding.

• Focus on actionable productivity metrics.

– Optometrist model: which is better?

– Global model: For “paradigm shifts”.
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PARALLEL PROGRAMMING & 
PRODUCTIVITY
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General Reality of Multicore 
Parallelism

 Best single shared memory parallel programming 
environment: 
 MPI.

 But:
 Two level parallelism (MPI+X) is generally more effective.

 But, the best option for X (if explored at all) is:
 MPI.

 Furthermore, for an (N1 x N2) MPI+X decomposition:
“For a given number of core counts, the best performance is achieved with 
the smallest possible N2 for both hybrid [MPI+OpenMP] and MPI [MPI+MPI] 
versions. As N2 increases, the runtime also increases.”
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Threading Multi-API Usage: Needs to work

App
Threaded using
OpenMP

Library
Threaded using
OpenMP

• Problem: App uses all threads in one phase, library in another phase.

• Intel Sandy Bridge:                 1.16 to 2.5 X slower than           .

• Intel Phi:                                  1.33 to 1.8 X slower than           .

• Implication:

– Libraries must pick an API.

– Or support many.  Possible, but complicated.

App
Threaded using
OpenMP

Library
Threaded using
pthreads

OK

Not OK

Not OK OK

OKNot OK
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Data Placement & Alignment

 First Touch is not sufficient.
 Happens at initialization.  Hard to locate, control.

 Really need placement as first class concept.
 Create object with specific layout.

 Create objects compatible with existing object.

 Lack of support limits MPI+OpenMP.
 OpenMP restricted to single UMA core set.
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Nvidia GPUs

 Supports mixed environments: All that it handles.

 Has good performance model support.

 Has flexible data placement model.

 C++ support is good, waiting for lambdas.

 Severe environment, but results in general goodness.
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OpenMP 4.0, OpenACC

 Active, addressing highest priority requirements.

 Incompatible, even conceptually.

 Best hope: Compiler recognizes both.

13



Scalable Multicore/Manycore Execution Very Challenging

 Features are coming, but slowly.

 Performance models coming too.

 Happy to be a C++ developer.
 Fortran support always lags.

 Fortran features arrive a decade late.

 Missing piece: Restructured application (task-centric).

14



New Programming Models, 
Environments, Languages
 Can we use new:

 Environments: Yes.

 Models: Yes.

 Languages: NO.*

* Other app areas may be different.
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Yes: New Environments

 Clang/llvm – Great new stack.
 Enables innovations desired for decades.

 Switch in tools: e.g., gdb to lldb, trivial.

 Architected for new layers:

 Minor C++ syntax extensions.

 Additional compiler passes.

 Really, really need “flang compiler”.
 Google search: Did you mean: clang compiler

 The single biggest DOE/Science productivity requirement?

 Support for OpenMP 4.

 Or: We should plan our (slow-but-steady) Fortran exit plan.

16
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Yes: New Models

 New models not new programming languages:
 SIMT – GPUs.

 SIMD – Old, but new for junior community members.

 MAP – parallel_for

 REDUCE – parallel_reduce.

 Manytasking – Qthreads, HPX, even OpenMP.

 Strategy: Introduce at node level, then expand to inter-node.

 DSLs: Yes, but embedded or mini:
 TBB, thrust: embedded in C++.

 CUDA: Extension, OK (at least temporarily).

 forAllNodes – Conceptual iterator, self-documenting, polymorphic.
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No: New Languages

 Existing landscape:
 C++ is our programming language.

 C is a subset of C++.

 Fortran is still around, and an issue.

 Python, Perl, CMake, Matlab, etc.  are great aides.

 New scripting languages OK, if broadly available.

 New HPC languages have uniformly failed: HPF, HPCS.

 Existing HPC language (Fortran) is an emaciated entity:
 Vendor implementations behind the standard, non-portable.

 CUDAFortran, OpenACC for Fortran: Special projects.

 OpenMP for Fortran is only viable parallel option.

18



TOWARD A NEW APPLICATION 
ARCHITECTURE

19



Task-centric/Dataflow: 
A Productive Application Architecture

 Atomic Unit: Task
 Domain scientist writes code for a task.

 Task execution requirements:

 Tunable work size: Enough to efficiently use a core once scheduled.

 Vector/SIMT capabilities.

 Small thread-count SMP.

 Task data dependencies.

 Déjà vu for apps developers: Feels a lot like MPI programming.

 Universal portability: 

 Works within node, across nodes.

 Works across heterogeneous core types.



Task-centric/Dataflow vs. BSP/SPMD

21

 Task-centric:  Many tasks
 Async dispatch: Many in flight.

 Natural latency hiding.

 Higher message injection rates.

 Better load balancing.

 Compatible with “classics”:

 Fortran, C, OpenMP.

 Used within a task.

 Natural resilience model:

 Every task has a parent (can 
regenerate).

 Demonstrated concept:

 Co-Design centers, PSAAP2, others.

 BSP/SPMD:

 Halo exchange.

 Local compute.

 Global collective.

 Halo exchange.

…

…

…
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Movement to Task-centric/Dataflow is Disruptive:
Use Clean-slate strategies

• Best path to task-centric/dataflow.

• Stand up new framework:

• Minimal, representative
functionality.

• Make it scale.

• Mine functionality from previous 
app.

• May need to refactor a bit.

• May want to refactor 
substantially.

• Historical note:

• This was the successful approach 
in 1990s migration from vector 
multiprocessors (Cray) to 
distributed memory clusters.

• In-place migration approach 
provided early distributed 
memory functionality.  Failed 
long-term scalability needs.

22



Phased Migration to Task-
centric/Dataflow

• All Apps Looking for new Node-
level programming environments.

• Exploring standards, emerging:

• OpenMP, pthreads.

• OpenMP 4, OpenACC.

• Exploring non-standard:

• HPX (Parallex).

• Legion.

• Brute force:

• Uintah framework.

• Strategy:

• Phase 1: On-node.

• Phase 2: Inter-node.

23
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Open Questions for Task-Centric/Dataflow Strategies

 Functional vs. Data decomposition.
 Over-decomposition of spatial domain:

 Clearly useful, challenging to implement.

 Functional decomposition: 

 Easier to implement. Challenging to execute efficiently (temporal locality).

 Dependency specification mechanism.
 How do apps specify inter-task dependencies?

 Futures (e.g., C++, HPX), data addresses (Legion), explicit (Uintah).

 Roles & Responsibilities: App vs Libs vs Runtime vs OS.

 Interfaces between layers.

 Huge area of R&D for many years.

2424



SW LIFECYCLE MODELS & PRODUCTIVITY
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Common SW Development Scenario: Today

Important 
User

Your New 
Software

• Provide specific capabilities 
for user.

• Immediate feedback on 
usefulness.

• Do so with reuse in mind.
• Others can use your software 

for compatible needs.

• Provides requirements.
• Provide validation testing 

environment.
• Immediate feedback on 

correctness.
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Common SW Development Scenario: Next Year

Important 
User

Your Software 
with New 
Features

• Still works for original 
user.

• Add new features for 
other users.

• Untested

• Provide validation testing 
environment, but only 
partial coverage.

• Other features untested.
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Common SW Development Scenario: 5 Years

Important 
User

Your Software 
Refactored

• Major refactoring.
• Lost touch with original users.
• New users features untested.

• Use old version of code.
• Many features untested.

Result: Not enough test coverage for confident refactoring.

28



Validation-Centric Approach (VCA):
Common Lifecycle Model for CSE Software
Central elements of validation-centric approach (VCA) lifecycle model

 Develop the software by testing against real early-adopter customer applications.

 Manually verify the behavior against applications or other test cases.

Advantages of the VCA lifecycle model:

 Assuming customer validation of code is easy (i.e. linear or nonlinear algebraic equation 
solvers => compute the residual) …

 Can be very fast to initially create new code.

 Works for the customer’s code right away.

Problems with the VCA lifecycle model:

 Does now work well when validation is hard (i.e. ODE/DAE solvers where no easy to 
compute global measure of error exists).

 Re-validating against existing customer codes is expensive or is often lost (i.e. the 
customer code becomes unavailable).

 Difficult and expensive to refactor:  Re-running customer validation tests is too 
expensive or such tests are too fragile or inflexible (e.g. binary compatibility tests).

VCA lifecycle model often leads to expensive or unmaintainable codes.
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TriBITS Lifecycle Model 1.0 Document
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TriBITS: One Deliberate Approach to SE4CSE
Component-oriented SW Approach from Trilinos, CASL Projects, LifeV, …
Goal: “Self-sustaining” software

• Allow Exploratory Research to Remain Productive: 
Minimal practices for basic research in early phases

• Enable Reproducible Research: Minimal software 
quality aspects needed for producing credible 
research, researchers will produce better research that will stand a better chance of being 
published in quality journals that require reproducible research

• Improve Overall Development Productivity: Focus on the right SE practices at the right times, 
and the right priorities for a given phase/maturity level, developers work more productively with 
acceptable overhead

• Improve Production Software Quality: Focus on foundational issues first in early-phase 
development, higher-quality software will be produced as other elements of software quality are 
added

• Better Communicate Maturity Levels with Customers: Clearly define maturity levels so 
customers and stakeholders will have the right expectations

TriBITS Lifecycle Maturity Levels

0:  Exploratory 

1:  Research Stable

2:  Production Growth

3:  Production Maintenance 

-1: Unspecified Maturity

G
o
a
ls

 
.
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Ultimate Goal: Produce “self-sustaining” software products.



Defined: Self-Sustaining Software

 Open-source: The software has a sufficiently loose open-source license allowing the source code to 
be arbitrarily modified and used and reused in a variety of contexts (including unrestricted usage in 
commercial codes).

 Core domain distillation document: The software is accompanied with a short focused high-level 
document describing the purpose of the software and its core domain model.

 Exceptionally well testing: The current functionality of the software and its behavior is rigorously 
defined and protected with strong automated unit and verification tests.

 Clean structure and code: The internal code structure and interfaces are clean and consistent.

 Minimal controlled internal and external dependencies: The software has well structured internal 
dependencies and minimal external upstream software dependencies and those dependencies are 
carefully managed.

 Properties apply recursively to upstream software: All of the dependent external upstream software 
are also themselves self-sustaining software.

 All properties are preserved under maintenance: All maintenance of the software preserves all of 
these properties of self-sustaining software (by applying Agile/Emergent Design and Continuous 
Refactoring and other good Lean/Agile software development practices).

Example: Reference LAPACK Implementation
3
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TriBITS (−) vs. Valida�on-Centric Approach (--)

Research
Stable

Production
Growth

Production
Maintenance

Unit and Verification Testing

Research
Stable

Production
Growth

Production
Maintenance

Acceptance Testing

Research
Stable

Production
Growth

Production
Maintenance

Code and Design Clarity

Research
Stable

Production
Growth

Production
Maintenance

Documentation and Tutorials

Research
Stable

Production
Growth

Production
Maintenance

User Input Checking and Feedback

Research
Stable

Production
Growth

Production
Maintenance

Backward compatibility

Research
Stable

Production
Growth

Production
Maintenance

Portability

Research
Stable

Production
Growth

Production
Maintenance

Space/Time Performance

Cost per new feature

Research
Stable

Production
Growth

Production
Maintenance

Time
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TriBITS(−) vs. Pure Lean/Agile Approach (--)

Research
Stable

Production
Growth

Production
Maintenance

Unit and Verification Testing

Research
Stable

Production
Growth

Production
Maintenance

Acceptance Testing

Research
Stable

Production
Growth

Production
Maintenance

Code and Design Clarity

Research
Stable

Production
Growth

Production
Maintenance

Documentation and Tutorials

Research
Stable

Production
Growth

Production
Maintenance

User Input Checking and Feedback

Research
Stable

Production
Growth

Production
Maintenance

Backward compatibility

Research
Stable

Production
Growth

Production
Maintenance

Portability

Research
Stable

Production
Growth

Production
Maintenance

Space/Time Performance

Cost per new feature

Research
Stable

Production
Growth

Production
Maintenance

Time
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End of Life?

Long-term maintenance and end of life issues for Self-Sustaining Software:

 User community can help to maintain it (e.g., LAPACK).

 If the original development team is disbanded, users can take parts they are 
using and maintain it long term.

 Can stop being built and tested if not being currently used.

 However, if needed again, software can be resurrected, and continue to be 
maintained.

NOTE: Distributed version control using tools like Git greatly help in reducing risk 
and sustaining long lifetime.
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Addressing existing Legacy Software

 One definition of “Legacy Software”: Software that is too far from away from 
being Self-Sustaining Software, i.e:
 Open-source
 Core domain distillation document
 Exceptionally well testing
 Clean structure and code
 Minimal controlled internal and external dependencies
 Properties apply recursively to upstream software

 Question: What about all the existing “Legacy” Software that we have to 
continue to develop and maintain?  How does this lifecycle model apply to such 
software?

 Answer: Grandfather them into the TriBITS Lifecycle Model by applying the 
Legacy Software Change Algorithm.
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Grandfathering of Existing Packages

Agile Legacy Software Change Algorithm:

1. Identify Change Points

2. Break Dependencies

3. Cover with Unit Tests

4. Add New Functionality with Test Driven Development (TDD)

5. Refactor to removed duplication, clean up, etc.

Grandfathered Lifecycle Phases:

1. Grandfathered Research Stable (GRS) Code

2. Grandfathered Production Growth (GPG) Code

3. Grandfathered Production Maintenance (GPM) 
Code

NOTE: After enough iterations of the 
Legacy Software Change Algorithm the 
software may approach Self-Sustaining 
software and be able to remove the 
“Grandfathered” prefix.

Cost per new feature

Legacy
Code

Grandfathered
Production

Maintenance

Production
Maintenance
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 Write tests first:
 Guarantees that tests will be written.

 Debugs the API: First attempt to use SW as intended.

 Use tests during development:
 All tests fail at first.

 Pass incrementally as SW written.

 Measure of progress.

 Use tests forever more:
 Regression.

 Backward compatibility.

 Aggressive refactoring.

 Single most important activity:
 Assures long, happy life for your product.

Test Driven Development
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COMMODITY SOFTWARE 
DEVELOPMENT PLATFORMS
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Day 1 of Package Life
New Package Starting in the Trilinos Project

 Git: Each package is self-contained in Trilinos/package/ directory.

 Bugzilla: Each package has its own Bugzilla product.

 Mailman: Each Trilinos package, including Trilinos itself, has four mail 
lists:
 package-checkins@software.sandia.gov

 CVS commit emails. “Finger on the pulse” list.

 package-developers@software.sandia.gov
 Mailing list for developers.

 package-users@software.sandia.gov
 Issues for package users.

 package-announce@software.sandia.gov
 Releases and other announcements specific to the package.

 New_package (optional): Customizable boilerplate for 
 CMake/Doxygen/Python/TestHarness/Website
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Day 1 of Package Life on GitHub & Atlassian

 Private Git -> Public Git: Each package is self-contained, clonable.

 Bugzilla -> Issue tracking: Integrated, Issue listings, Milestones & 
labels, Commit keywords. Pull requests.

 Mail lists -> Forums: More diverse, interactive.

 New_package -> Stubbed out project.

 Atlassian: Even more advanced but costly.
 Dev Tools: Git, mercurial, other tools.

 Jira: Issue tracking.

 Confluence: Collaboration, communication.
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SW Development Platforms 
are Commodity

 Projects can start from Day 1 with high-quality environment, 
global visibility.

 Need to re-state the Trilinos value propositions from first 
principles.

42



Trilinos Community Membership Value Proposition

 Established Tools, Processes.
 Huge boost in getting started.

 Challenge when toolsets change.

 High quality, complementary components.
 Ready-made interactions.

 Insulation from architecture details.

 Improved Personal Experience.
 Personal tool & process choices defined, common.

 Improved Team Experience.
 Ready-made collaboration tools & processors.

 Checklists.

Re-assessing this aspect:
Trilinos Community 2.0
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Trilinos Community 2.0

 GitHub, Atlassian:
 Open source SW development, tools platforms.

 Workflows for high-quality community SW product development.

 Trilinos value proposition:
 Included these same things, but must re-evaluate.

 Must address packages that want GitHub presence.

 Must (IMO) move Trilinos itself to GitHub.

 New types of Trilinos packages (evolving):
 Internal: Available only with Trilinos (traditional definition).

 Exported: Developed in Trilinos repository, available externally.

 Imported: Developed outside of Trilinos, available internally.
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Trilinos Community 2.0

 Case studies:
 TriBITS: Was an internal package, now external.

 DTK: Has always been external.

 KokkosCore: Is internal.  Needs to be available externally.

 Issues to Resolve:
 Package inclusion policies: Define for each package type.

 Quality criteria: Contract between Trilinos and packages.

 Workflows: Development, testing, documentation, etc.

 Trilinos on GitHub: Evaluate.

 Trilinos Value Proposition: Re-articulate Trilinos Strategic Goals 
implications. 
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IDEAS: A NEW DOE PRODUCTIVITY-FOCUSED 
PROJECT
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Use Cases: Multiscale, Multiphysics
Representation of Watershed Dynamics

 Use Case 1: Hydrological and biogeochemical 
cycling in the Colorado River System.

 Use Case 2: Thermal hydrology and carbon 
cycling in tundra at the Barrow 
Environmental Observatory.

 Leverage and complement existing SBR and 
TES programs:
 LBNL and PNNL SFAs.
 NGEE Arctic and Tropics.

 General approach:
 Leverage existing open source application 

codes. 
 Improve software development practices. 
 Targeted refactoring of interfaces, data 

structures, and key components to facilitate 
interoperability. 

 Modernize management of multiphysics
integration and multiscale coupling.
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Extreme-Scale 
Scientific 
Software 
Ecosystem

Libraries
• Solvers, etc.
• Interoperable.

Frameworks & tools
• Doc generators.
• Test, build framework.

Extreme-Scale Scientific Software Development Kit (xSDK)

SW engineering
• Productivity tools.
• Models, processes.

Domain components
• Reacting flow, etc.
• Reusable.

Documentation content
• Source markup.
• Embedded examples.

Testing content
• Unit tests.
• Test fixtures.

Build content
• Rules.
• Parameters.

Library interfaces
• Parameter lists.
• Interface adapters.
• Function calls.

Shared data objects
• Meshes.
• Matrices, vectors.

Native code & data objects
• Single use code.
• Coordinated component use.
• Application specific.

Extreme-scale Science Applications

Domain component interfaces
• Data mediator interactions. 
• Hierarchical organization.
• Multiscale/multiphysics coupling.
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Methodologies: 
SW Productivity Metrics

 Define processes to define metrics.
 Starting point: Goals, questions, metrics (GQM).

 Define goals, ID questions to answer, define progress metrics.

 GQM Example:
 Goal: xSDK Interoperability.

 Question: Can IDEAS xSDK components & libs link?

 Metric: Number of namespace collisions.

 Cultivate effective use of metrics:
 Use metrics to drive and track use case progress.

 Promote use of metrics via Outreach.

Source: The GQM Method: A Practical Guide 
for Quality Improvement of SW Development, 
Solingen and Berghout.
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Software Engineering and HPC: 
Efficiency vs Other Quality Metrics

Source:
Code Complete
Steve McConnell
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Summary

 Disruptions: 
 Disruptive architecture changes force disruptive software refactoring.

 Capabilities Drive Ability to Couple physics and scales, need for modularity.

 A Productivity Focus is promising:
 Walking back to first principles, iterating forward.

 Provides guidance in time of disruptive changes.

 Programming: 
 Current SMP environments are not adequate (OMP, etc.)

 New programming models, environments are OK, but no new languages.

 Manytasking: Shows promise as “universal approach” to future app design.

 Enables use of classic languages and environment.

 Requires significant runtime system, API investments.

 Community Changes:
 SW Lifecycles: Explicit models bring rigor, foster communication.

 Commodity development platforms: Enable world-wide, high-quality collaborative development.

 DOE focus on Productivity: IDEAS Project, goal of an Extreme-scale Scientific SW Ecosystem.
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