
Photos placed in horizontal position
with even amount of white space

between photos and header

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Toward the Next Generation of Portable,
Scalable HPC Applications

Michael A. Heroux
Sandia National Laboratories

SAND2014-19756C

Optimal Kernels to Optimal Solutions:

 Geometry, Meshing

 Discretizations, Load Balancing.

 Scalable Linear, Nonlinear, Eigen,
Transient, Optimization, UQ solvers.

 Scalable I/O, GPU, Manycore

 60 Packages.

 Other distributions:

 Cray LIBSCI

 Public repo.

Laptops to

Leadership systems

Interoperable Design of Extreme-scale
Application Software (IDEAS)

Motivation
Enable increased scientific productivity, realizing the potential
of extreme- scale computing, through a new interdisciplinary
and agile approach to the scientific software ecosystem.

Objectives
Address confluence of trends in hardware

and increasing demands for predictive
multiscale, multiphysics simulations.

Respond to trend of continuous refactoring
with efficient agile software engineering
methodologies and improved software
design.

Approach
ASCR/BER partnership ensures delivery of both crosscutting

methodologies and metrics with impact on real application and programs.

Interdisciplinary multi-lab team (ANL, LANL, LBNL, LLNL, ORNL, PNNL,
SNL)

ASCR Co-Leads: Mike Heroux (SNL) and Lois Curfman McInnes (ANL)

BER Lead: David Moulton (LANL)

Topic Leads: David Bernholdt (ORNL) and Hans Johansen (LBNL)

Integration and synergistic advances in three communities deliver
scientific productivity; outreach establishes a new holistic perspective for
the broader scientific community.

Impact on Applications & Programs
Terrestrial ecosystem use cases tie IDEAS to modeling
and simulation goals in two Science Focus Area (SFA)
programs and both Next Generation Ecosystem
Experiment (NGEE) programs in DOE Biologic and
Environmental Research (BER).

Software
Productivity
for Extreme-

Scale
ScienceMethodologi

es for
Software

Productivity

Use Cases:
Terrestrial
Modeling

Extreme-Scale
Scientific
Software

Development Kit
(xSDK)

2

BACKGROUND & MOTIVATION

3

A Confluence of Trends

 Fundamental trends:
 Disruptive HW changes: Requires thorough alg/code refactoring.

 Demands for coupling: Multiphysics, multiscale.

 Challenges:
 Need 2 refactorings: 1+ε, not 2-ε. Really: Continuous change.

 Modest app development funding: No monolithic apps.

 Requirements are unfolding, evolving, not fully known a priori.

 Opportunities:
 Better design and SW practices & tools are available.

 Better SW architectures: Toolkits, libraries, frameworks.

 Basic strategy: Focus on productivity.

4

The work ahead of us: Threads and vectors
MiniFE 1.4 vs 2.0 as Harbingers

5.0 4.2 3.8 3.4
2.4 1.3 1.5 1.3

33.6

23.8
18.8 18.2

32.1

54.9

46.6

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

V 1.4/SB V 1.4/MIC-Vec V 2.0/MIC-NoV V 2.0/MIC-Vec

T
im

e
(s

e
c)

Version/System

MiniFE: Setup vs Solver Speedup

Setup

Solve::SpMV

Solve::DOT

Solve::AXPY

600.0

561

 Typical MPI-only run:
 Balanced setup vs solve

 First MIC run:
 Thread/vector solver

 No-thread setup

 V 2.0: Thread/vector
 Lots of work:

 Data placement, const
/restrict declarations, avoid
shared writes, find race
conditions, …

 Unique to each app

 Opportunity: Look for new
crosscutting patterns,
libraries
(e.g., libs of data containers)

5

PRODUCTIVITY
BETTER, FASTER, CHEAPER: PICK ALL THREE

6

If I had eight hours to chop down a tree,
I would spend six sharpening my axe.

- Abraham Lincoln

Productivity Emphasis

• Scientific Productivity.

• Many design choices ahead.

• Productivity emphasis:

– Metrics.

– Design choice process.

• Software ecosystems: Rational option

– Not enough time to build monolithic.

– Too many requirements.

– Not enough funding.

• Focus on actionable productivity metrics.

– Optometrist model: which is better?

– Global model: For “paradigm shifts”.

7

PARALLEL PROGRAMMING &
PRODUCTIVITY

8

General Reality of Multicore
Parallelism

 Best single shared memory parallel programming
environment:
 MPI.

 But:
 Two level parallelism (MPI+X) is generally more effective.

 But, the best option for X (if explored at all) is:
 MPI.

 Furthermore, for an (N1 x N2) MPI+X decomposition:
“For a given number of core counts, the best performance is achieved with
the smallest possible N2 for both hybrid [MPI+OpenMP] and MPI [MPI+MPI]
versions. As N2 increases, the runtime also increases.”

9

Threading Multi-API Usage: Needs to work

App
Threaded using
OpenMP

Library
Threaded using
OpenMP

• Problem: App uses all threads in one phase, library in another phase.

• Intel Sandy Bridge: 1.16 to 2.5 X slower than .

• Intel Phi: 1.33 to 1.8 X slower than .

• Implication:

– Libraries must pick an API.

– Or support many. Possible, but complicated.

App
Threaded using
OpenMP

Library
Threaded using
pthreads

OK

Not OK

Not OK OK

OKNot OK

10

Data Placement & Alignment

 First Touch is not sufficient.
 Happens at initialization. Hard to locate, control.

 Really need placement as first class concept.
 Create object with specific layout.

 Create objects compatible with existing object.

 Lack of support limits MPI+OpenMP.
 OpenMP restricted to single UMA core set.

11

Nvidia GPUs

 Supports mixed environments: All that it handles.

 Has good performance model support.

 Has flexible data placement model.

 C++ support is good, waiting for lambdas.

 Severe environment, but results in general goodness.

12

OpenMP 4.0, OpenACC

 Active, addressing highest priority requirements.

 Incompatible, even conceptually.

 Best hope: Compiler recognizes both.

13

Scalable Multicore/Manycore Execution Very Challenging

 Features are coming, but slowly.

 Performance models coming too.

 Happy to be a C++ developer.
 Fortran support always lags.

 Fortran features arrive a decade late.

 Missing piece: Restructured application (task-centric).

14

New Programming Models,
Environments, Languages
 Can we use new:

 Environments: Yes.

 Models: Yes.

 Languages: NO.*

* Other app areas may be different.

15

Yes: New Environments

 Clang/llvm – Great new stack.
 Enables innovations desired for decades.

 Switch in tools: e.g., gdb to lldb, trivial.

 Architected for new layers:

 Minor C++ syntax extensions.

 Additional compiler passes.

 Really, really need “flang compiler”.
 Google search: Did you mean: clang compiler

 The single biggest DOE/Science productivity requirement?

 Support for OpenMP 4.

 Or: We should plan our (slow-but-steady) Fortran exit plan.

16

https://www.google.com/search?safe=off&client=safari&rls=en&q=clang+compiler&spell=1&sa=X&ei=afnfU9SCMKb5iQK_kYCADQ&ved=0CBwQBSgA
https://www.google.com/search?safe=off&client=safari&rls=en&q=clang+compiler&spell=1&sa=X&ei=afnfU9SCMKb5iQK_kYCADQ&ved=0CBwQBSgA
https://www.google.com/search?safe=off&client=safari&rls=en&q=clang+compiler&spell=1&sa=X&ei=afnfU9SCMKb5iQK_kYCADQ&ved=0CBwQBSgA

Yes: New Models

 New models not new programming languages:
 SIMT – GPUs.

 SIMD – Old, but new for junior community members.

 MAP – parallel_for

 REDUCE – parallel_reduce.

 Manytasking – Qthreads, HPX, even OpenMP.

 Strategy: Introduce at node level, then expand to inter-node.

 DSLs: Yes, but embedded or mini:
 TBB, thrust: embedded in C++.

 CUDA: Extension, OK (at least temporarily).

 forAllNodes – Conceptual iterator, self-documenting, polymorphic.

17

No: New Languages

 Existing landscape:
 C++ is our programming language.

 C is a subset of C++.

 Fortran is still around, and an issue.

 Python, Perl, CMake, Matlab, etc. are great aides.

 New scripting languages OK, if broadly available.

 New HPC languages have uniformly failed: HPF, HPCS.

 Existing HPC language (Fortran) is an emaciated entity:
 Vendor implementations behind the standard, non-portable.

 CUDAFortran, OpenACC for Fortran: Special projects.

 OpenMP for Fortran is only viable parallel option.

18

TOWARD A NEW APPLICATION
ARCHITECTURE

19

Task-centric/Dataflow:
A Productive Application Architecture

 Atomic Unit: Task
 Domain scientist writes code for a task.

 Task execution requirements:

 Tunable work size: Enough to efficiently use a core once scheduled.

 Vector/SIMT capabilities.

 Small thread-count SMP.

 Task data dependencies.

 Déjà vu for apps developers: Feels a lot like MPI programming.

 Universal portability:

 Works within node, across nodes.

 Works across heterogeneous core types.

Task-centric/Dataflow vs. BSP/SPMD

21

 Task-centric: Many tasks
 Async dispatch: Many in flight.

 Natural latency hiding.

 Higher message injection rates.

 Better load balancing.

 Compatible with “classics”:

 Fortran, C, OpenMP.

 Used within a task.

 Natural resilience model:

 Every task has a parent (can
regenerate).

 Demonstrated concept:

 Co-Design centers, PSAAP2, others.

 BSP/SPMD:

 Halo exchange.

 Local compute.

 Global collective.

 Halo exchange.

…

…

…

21

Movement to Task-centric/Dataflow is Disruptive:
Use Clean-slate strategies

• Best path to task-centric/dataflow.

• Stand up new framework:

• Minimal, representative
functionality.

• Make it scale.

• Mine functionality from previous
app.

• May need to refactor a bit.

• May want to refactor
substantially.

• Historical note:

• This was the successful approach
in 1990s migration from vector
multiprocessors (Cray) to
distributed memory clusters.

• In-place migration approach
provided early distributed
memory functionality. Failed
long-term scalability needs.

22

Phased Migration to Task-
centric/Dataflow

• All Apps Looking for new Node-
level programming environments.

• Exploring standards, emerging:

• OpenMP, pthreads.

• OpenMP 4, OpenACC.

• Exploring non-standard:

• HPX (Parallex).

• Legion.

• Brute force:

• Uintah framework.

• Strategy:

• Phase 1: On-node.

• Phase 2: Inter-node.

23

23

Open Questions for Task-Centric/Dataflow Strategies

 Functional vs. Data decomposition.
 Over-decomposition of spatial domain:

 Clearly useful, challenging to implement.

 Functional decomposition:

 Easier to implement. Challenging to execute efficiently (temporal locality).

 Dependency specification mechanism.
 How do apps specify inter-task dependencies?

 Futures (e.g., C++, HPX), data addresses (Legion), explicit (Uintah).

 Roles & Responsibilities: App vs Libs vs Runtime vs OS.

 Interfaces between layers.

 Huge area of R&D for many years.

2424

SW LIFECYCLE MODELS & PRODUCTIVITY

25

Common SW Development Scenario: Today

Important
User

Your New
Software

• Provide specific capabilities
for user.

• Immediate feedback on
usefulness.

• Do so with reuse in mind.
• Others can use your software

for compatible needs.

• Provides requirements.
• Provide validation testing

environment.
• Immediate feedback on

correctness.

26

Common SW Development Scenario: Next Year

Important
User

Your Software
with New
Features

• Still works for original
user.

• Add new features for
other users.

• Untested

• Provide validation testing
environment, but only
partial coverage.

• Other features untested.

27

Common SW Development Scenario: 5 Years

Important
User

Your Software
Refactored

• Major refactoring.
• Lost touch with original users.
• New users features untested.

• Use old version of code.
• Many features untested.

Result: Not enough test coverage for confident refactoring.

28

Validation-Centric Approach (VCA):
Common Lifecycle Model for CSE Software
Central elements of validation-centric approach (VCA) lifecycle model

 Develop the software by testing against real early-adopter customer applications.

 Manually verify the behavior against applications or other test cases.

Advantages of the VCA lifecycle model:

 Assuming customer validation of code is easy (i.e. linear or nonlinear algebraic equation
solvers => compute the residual) …

 Can be very fast to initially create new code.

 Works for the customer’s code right away.

Problems with the VCA lifecycle model:

 Does now work well when validation is hard (i.e. ODE/DAE solvers where no easy to
compute global measure of error exists).

 Re-validating against existing customer codes is expensive or is often lost (i.e. the
customer code becomes unavailable).

 Difficult and expensive to refactor: Re-running customer validation tests is too
expensive or such tests are too fragile or inflexible (e.g. binary compatibility tests).

VCA lifecycle model often leads to expensive or unmaintainable codes.

29

TriBITS Lifecycle Model 1.0 Document

30

TriBITS: One Deliberate Approach to SE4CSE
Component-oriented SW Approach from Trilinos, CASL Projects, LifeV, …
Goal: “Self-sustaining” software

• Allow Exploratory Research to Remain Productive:
Minimal practices for basic research in early phases

• Enable Reproducible Research: Minimal software
quality aspects needed for producing credible
research, researchers will produce better research that will stand a better chance of being
published in quality journals that require reproducible research

• Improve Overall Development Productivity: Focus on the right SE practices at the right times,
and the right priorities for a given phase/maturity level, developers work more productively with
acceptable overhead

• Improve Production Software Quality: Focus on foundational issues first in early-phase
development, higher-quality software will be produced as other elements of software quality are
added

• Better Communicate Maturity Levels with Customers: Clearly define maturity levels so
customers and stakeholders will have the right expectations

TriBITS Lifecycle Maturity Levels

0: Exploratory

1: Research Stable

2: Production Growth

3: Production Maintenance

-1: Unspecified Maturity

G
o
a
ls

.

31
Ultimate Goal: Produce “self-sustaining” software products.

Defined: Self-Sustaining Software

 Open-source: The software has a sufficiently loose open-source license allowing the source code to
be arbitrarily modified and used and reused in a variety of contexts (including unrestricted usage in
commercial codes).

 Core domain distillation document: The software is accompanied with a short focused high-level
document describing the purpose of the software and its core domain model.

 Exceptionally well testing: The current functionality of the software and its behavior is rigorously
defined and protected with strong automated unit and verification tests.

 Clean structure and code: The internal code structure and interfaces are clean and consistent.

 Minimal controlled internal and external dependencies: The software has well structured internal
dependencies and minimal external upstream software dependencies and those dependencies are
carefully managed.

 Properties apply recursively to upstream software: All of the dependent external upstream software
are also themselves self-sustaining software.

 All properties are preserved under maintenance: All maintenance of the software preserves all of
these properties of self-sustaining software (by applying Agile/Emergent Design and Continuous
Refactoring and other good Lean/Agile software development practices).

Example: Reference LAPACK Implementation
3
2

TriBITS (−) vs. Valida�on-Centric Approach (--)

Research
Stable

Production
Growth

Production
Maintenance

Unit and Verification Testing

Research
Stable

Production
Growth

Production
Maintenance

Acceptance Testing

Research
Stable

Production
Growth

Production
Maintenance

Code and Design Clarity

Research
Stable

Production
Growth

Production
Maintenance

Documentation and Tutorials

Research
Stable

Production
Growth

Production
Maintenance

User Input Checking and Feedback

Research
Stable

Production
Growth

Production
Maintenance

Backward compatibility

Research
Stable

Production
Growth

Production
Maintenance

Portability

Research
Stable

Production
Growth

Production
Maintenance

Space/Time Performance

Cost per new feature

Research
Stable

Production
Growth

Production
Maintenance

Time
3333

TriBITS(−) vs. Pure Lean/Agile Approach (--)

Research
Stable

Production
Growth

Production
Maintenance

Unit and Verification Testing

Research
Stable

Production
Growth

Production
Maintenance

Acceptance Testing

Research
Stable

Production
Growth

Production
Maintenance

Code and Design Clarity

Research
Stable

Production
Growth

Production
Maintenance

Documentation and Tutorials

Research
Stable

Production
Growth

Production
Maintenance

User Input Checking and Feedback

Research
Stable

Production
Growth

Production
Maintenance

Backward compatibility

Research
Stable

Production
Growth

Production
Maintenance

Portability

Research
Stable

Production
Growth

Production
Maintenance

Space/Time Performance

Cost per new feature

Research
Stable

Production
Growth

Production
Maintenance

Time
3434

End of Life?

Long-term maintenance and end of life issues for Self-Sustaining Software:

 User community can help to maintain it (e.g., LAPACK).

 If the original development team is disbanded, users can take parts they are
using and maintain it long term.

 Can stop being built and tested if not being currently used.

 However, if needed again, software can be resurrected, and continue to be
maintained.

NOTE: Distributed version control using tools like Git greatly help in reducing risk
and sustaining long lifetime.

35

Addressing existing Legacy Software

 One definition of “Legacy Software”: Software that is too far from away from
being Self-Sustaining Software, i.e:
 Open-source
 Core domain distillation document
 Exceptionally well testing
 Clean structure and code
 Minimal controlled internal and external dependencies
 Properties apply recursively to upstream software

 Question: What about all the existing “Legacy” Software that we have to
continue to develop and maintain? How does this lifecycle model apply to such
software?

 Answer: Grandfather them into the TriBITS Lifecycle Model by applying the
Legacy Software Change Algorithm.

36

Grandfathering of Existing Packages

Agile Legacy Software Change Algorithm:

1. Identify Change Points

2. Break Dependencies

3. Cover with Unit Tests

4. Add New Functionality with Test Driven Development (TDD)

5. Refactor to removed duplication, clean up, etc.

Grandfathered Lifecycle Phases:

1. Grandfathered Research Stable (GRS) Code

2. Grandfathered Production Growth (GPG) Code

3. Grandfathered Production Maintenance (GPM)
Code

NOTE: After enough iterations of the
Legacy Software Change Algorithm the
software may approach Self-Sustaining
software and be able to remove the
“Grandfathered” prefix.

Cost per new feature

Legacy
Code

Grandfathered
Production

Maintenance

Production
Maintenance

37

 Write tests first:
 Guarantees that tests will be written.

 Debugs the API: First attempt to use SW as intended.

 Use tests during development:
 All tests fail at first.

 Pass incrementally as SW written.

 Measure of progress.

 Use tests forever more:
 Regression.

 Backward compatibility.

 Aggressive refactoring.

 Single most important activity:
 Assures long, happy life for your product.

Test Driven Development

38

COMMODITY SOFTWARE
DEVELOPMENT PLATFORMS

39

Day 1 of Package Life
New Package Starting in the Trilinos Project

 Git: Each package is self-contained in Trilinos/package/ directory.

 Bugzilla: Each package has its own Bugzilla product.

 Mailman: Each Trilinos package, including Trilinos itself, has four mail
lists:
 package-checkins@software.sandia.gov

 CVS commit emails. “Finger on the pulse” list.

 package-developers@software.sandia.gov
 Mailing list for developers.

 package-users@software.sandia.gov
 Issues for package users.

 package-announce@software.sandia.gov
 Releases and other announcements specific to the package.

 New_package (optional): Customizable boilerplate for
 CMake/Doxygen/Python/TestHarness/Website

40

Day 1 of Package Life on GitHub & Atlassian

 Private Git -> Public Git: Each package is self-contained, clonable.

 Bugzilla -> Issue tracking: Integrated, Issue listings, Milestones &
labels, Commit keywords. Pull requests.

 Mail lists -> Forums: More diverse, interactive.

 New_package -> Stubbed out project.

 Atlassian: Even more advanced but costly.
 Dev Tools: Git, mercurial, other tools.

 Jira: Issue tracking.

 Confluence: Collaboration, communication.

41

SW Development Platforms
are Commodity

 Projects can start from Day 1 with high-quality environment,
global visibility.

 Need to re-state the Trilinos value propositions from first
principles.

42

Trilinos Community Membership Value Proposition

 Established Tools, Processes.
 Huge boost in getting started.

 Challenge when toolsets change.

 High quality, complementary components.
 Ready-made interactions.

 Insulation from architecture details.

 Improved Personal Experience.
 Personal tool & process choices defined, common.

 Improved Team Experience.
 Ready-made collaboration tools & processors.

 Checklists.

Re-assessing this aspect:
Trilinos Community 2.0

43

Trilinos Community 2.0

 GitHub, Atlassian:
 Open source SW development, tools platforms.

 Workflows for high-quality community SW product development.

 Trilinos value proposition:
 Included these same things, but must re-evaluate.

 Must address packages that want GitHub presence.

 Must (IMO) move Trilinos itself to GitHub.

 New types of Trilinos packages (evolving):
 Internal: Available only with Trilinos (traditional definition).

 Exported: Developed in Trilinos repository, available externally.

 Imported: Developed outside of Trilinos, available internally.

44

Trilinos Community 2.0

 Case studies:
 TriBITS: Was an internal package, now external.

 DTK: Has always been external.

 KokkosCore: Is internal. Needs to be available externally.

 Issues to Resolve:
 Package inclusion policies: Define for each package type.

 Quality criteria: Contract between Trilinos and packages.

 Workflows: Development, testing, documentation, etc.

 Trilinos on GitHub: Evaluate.

 Trilinos Value Proposition: Re-articulate Trilinos Strategic Goals
implications.

45

IDEAS: A NEW DOE PRODUCTIVITY-FOCUSED
PROJECT

46

J. David Moulton

Tim Scheibe

Carl Steefel

Glenn Hammond

Reed Maxwell

Scott Painter

Ethan Coon

Xiaofan Yang

David Bernholdt

Katie Antypas*

Lisa Childers*

Judith Hill*

Hans Johansen

Lois Curfman McInnes

Ross Bartlett

Todd Gamblin*

Andy Salinger*

Jason Sarich

Jim Willenbring

Pat McCormick

Mike Heroux

Ulrike Meier Yang

Jed Brown

Irina Demeshko

Kirsten Kleese van Dam

Sherry Li

Daniel Osei-Kuffuor

Vijay Mahadevan

Barry Smith

Extreme-Scale Scientific Software
Development Kit (xSDK)

Institutional Leads (Pictured)
Full Team List

Outreach

Methodologies for

Software Productivity

Science Use Cases

Project Leads

ASCR: M. Heroux and L.C. McInnes

BER: J. D. Moulton

47

Software
Productivity for
Extreme-Scale

Science

Methodologies for
Software

Productivity

Use Cases:
Terrestrial Modeling

Extreme-Scale
Scientific Software
Development Kit

(xSDK)

*Liaison

Use Cases: Multiscale, Multiphysics
Representation of Watershed Dynamics

 Use Case 1: Hydrological and biogeochemical
cycling in the Colorado River System.

 Use Case 2: Thermal hydrology and carbon
cycling in tundra at the Barrow
Environmental Observatory.

 Leverage and complement existing SBR and
TES programs:
 LBNL and PNNL SFAs.
 NGEE Arctic and Tropics.

 General approach:
 Leverage existing open source application

codes.
 Improve software development practices.
 Targeted refactoring of interfaces, data

structures, and key components to facilitate
interoperability.

 Modernize management of multiphysics
integration and multiscale coupling.

48

Extreme-Scale
Scientific
Software
Ecosystem

Libraries
• Solvers, etc.
• Interoperable.

Frameworks & tools
• Doc generators.
• Test, build framework.

Extreme-Scale Scientific Software Development Kit (xSDK)

SW engineering
• Productivity tools.
• Models, processes.

Domain components
• Reacting flow, etc.
• Reusable.

Documentation content
• Source markup.
• Embedded examples.

Testing content
• Unit tests.
• Test fixtures.

Build content
• Rules.
• Parameters.

Library interfaces
• Parameter lists.
• Interface adapters.
• Function calls.

Shared data objects
• Meshes.
• Matrices, vectors.

Native code & data objects
• Single use code.
• Coordinated component use.
• Application specific.

Extreme-scale Science Applications

Domain component interfaces
• Data mediator interactions.
• Hierarchical organization.
• Multiscale/multiphysics coupling.

49

Methodologies:
SW Productivity Metrics

 Define processes to define metrics.
 Starting point: Goals, questions, metrics (GQM).

 Define goals, ID questions to answer, define progress metrics.

 GQM Example:
 Goal: xSDK Interoperability.

 Question: Can IDEAS xSDK components & libs link?

 Metric: Number of namespace collisions.

 Cultivate effective use of metrics:
 Use metrics to drive and track use case progress.

 Promote use of metrics via Outreach.

Source: The GQM Method: A Practical Guide
for Quality Improvement of SW Development,
Solingen and Berghout.

50

Software Engineering and HPC:
Efficiency vs Other Quality Metrics

Source:
Code Complete
Steve McConnell

51

Summary

 Disruptions:
 Disruptive architecture changes force disruptive software refactoring.

 Capabilities Drive Ability to Couple physics and scales, need for modularity.

 A Productivity Focus is promising:
 Walking back to first principles, iterating forward.

 Provides guidance in time of disruptive changes.

 Programming:
 Current SMP environments are not adequate (OMP, etc.)

 New programming models, environments are OK, but no new languages.

 Manytasking: Shows promise as “universal approach” to future app design.

 Enables use of classic languages and environment.

 Requires significant runtime system, API investments.

 Community Changes:
 SW Lifecycles: Explicit models bring rigor, foster communication.

 Commodity development platforms: Enable world-wide, high-quality collaborative development.

 DOE focus on Productivity: IDEAS Project, goal of an Extreme-scale Scientific SW Ecosystem.

52

