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Liquid hydrogen stations have been found to be
more economically favorable than gaseous stations

As compared to gaseous stations,

liquid storage stations have:

Larger storage capacity

Lower costs for product
Similar positive cash flow year
Higher potential profit

Larger return on investment
(although more investment is
required)
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Standoff distances in NFPA 2 for liquid hydrogen
stations are often prohibitively large
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Previous modeling of releases from gaseous
hydrogen storage have informed the fire code

) | Dispersion Characteristics
- Laminar Flow

- Turbulent jet

- Volumetric rupture

- Enclosure Accumulation | Lqmt."_)" Probab||.|tv
Fl - Ignition mechanism

- Mixture ignitability

- Ignition delay/location _
- Sustained light-up Hazard Characteristics

- Flame radiation
. - Overpressure (deflagration/detonation)
I : - O, dilution/depletion

x

Risk requires a Release, then Ignition, forming a Hazard, causing Harm
» We quantify each of these events using models
« Purple events quantified with statistical models, Red with reduced-order behavior models



Current network flow model (NETFLOW) must be
updated for use near saturation conditions

Models 1-D flow networks (e.g. piping, valves, tanks) by solving
conservation and state modeling equations with local corrections for
wall friction, heat transfer, and pressure loss

Conventional state equations invalid near saturation conditions
Important to capture phase-change behavior
Must model compressible and incompressible flows
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A conceptual model for liquid H, releases was
originally developed in 2009

entrained

air
entrained

rvessel wall air

entrained _

+ Steady-state _
* 1-dimensional (along 0
streamline coordinate) leak

« Zone 0: accelerating flow
« Zone 1: underexpanded jet
« Zone 2: initial entrainment and heating .

. Winters, SAND Report 2009-0035
« Zone 3: flow establishment Winters & Houf, JHE, 2011

+ Zone 4: self-similar, established flow Houf & Winters, JHE, 2013
Ekoto et al., SAND2014-18776
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Accelerating flow (leak) develops from saturated
storage conditions

- conserved energy with isentropic

expansion
Ekoto et al., SAND2014-18776

GH2
Saturated

2
’/|._H2 71720
Tv < Saturated
N

* conditions at zone 0 capture by network flow model (requires development)
* hydrogen is stored as a pure substance
* multi-phase components have equal velocities



Pseudo source models are used to account for
choked flow behavior in Zone 1 (if applicable)

M<1 =«

Slip 4
Region~ Mach Disk

M>>1 . Barrel

Shock
-—

Ruggles & Ekoto, IJHE, 2012

Several source models have been developed to
predict the mass weighted effective diameter,
(i.e., the critical scaling parameter): d* =

deff\/peff/pamb
Source Model m
Birch et al. (1984) 0.947
Ewan & Moodie (1986)  0.993
Birch et al. (1987) 0.790 Neglects Mach Disk
: (i.e., fully supersonic)
Yuceil & Otugen (2002)  0.790
Harstad & Bellan (2006)  1.440 All flow through Mach
disk (i.e., fully subsonic)
Molkov (2008) 0.993
SNL Data (2011) 0.867 Reality is that fluid is split

™ between the slip and

*All models updated w/ Able-Noble EOS . .
Mach disk regions

Ongoing work to develop validated two-zone source model that accounts for the
fluid split ratio between the slip region & Mach disk regions
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Plug flow assumption invoked for Zone 2 as the

jet begins to warm s

Momentum my,Vy —> < —>

Mairh amb

State modeling by NIST H, EOS:

rvessel wall

Winters, SAND Report 2009-0035

mz = my, + Mgir

unknowns
assumed value
m3V3 = mHZVHZ
m3h3 = mHZhHZ + mairhamb

h; = f(YH2,3»Pamb» T3)

Species conservation used to s = iy, 23
. 2
close system of equations: Vi3
Turbulent jet entrainment rate » , . R —
I . = 1 Y 1 mgir __ Mair _ H, PHYH
used to estimate zone length: | Emom = —— ¢~ —— === 53 = —" —, wWhere Emom = o, (—4 z—pambz)




unknowns

assumed value
VCL,4 =V
D? ' 22
Mass P3 T = Bf Pampb — /12—_'_1 (pamb - pCLA)]
Winters, SAND Report 2009-0035 D? [ 0amb A2
Momentum  (pgmp — P3) 2= B? a;n ToOR+1 (Pamb — Pcr4)
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Zone 4 modeled with previous SNL 1D integral jet/plume
models that invoke self-similarity - FY08

\

rvessel wall air S
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Entrainment due to buoyancy
& momentum

F;: Jet Froude length

a,: Buoyancy entrainment coefficient
a,,. Momentum entrainment coefficient
g: Gravity constant
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Model results compare favorably to experiments
from Karlsruhe Institute of Technology

Measured & Calculated H2 Centerline Concentration

Reservoir | Reservoir Leak
pressure |temperature| diameter
Case [MPa] [K] [mm]
1 1.7 298 2 x
2 6.85 298 1 -
3 0.825 80 2
4 3.2 80 1

0 500 1000 1800 2000 2500

+
Xiao et al, JHE, 2011 (s+s,)D,

Houf & Winters, IJHE, 2013

However, no well-controlled validation data is available at lower temperatures
where multi-phase flows are expected (i.e., T< 77 K
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As moisture and air condense, multi-phase flows
may have droplet/particle slip

Liquid and vapor phases have different velocities due to density differences —
slip models have captured these effects in CFD simulations.

90 -

a0
S,

—_ 70 . .
z - models with same solid HSL Measurements: Sample probes
£ 604 data ~ and gas velocities Hooker et al. ICHS. 2011
E N \‘ '\,\_‘-\ ooker et al, )
& TR
§ 40
g 0. T
% ey
o

20
model with different soli

and gas velocities

ADREA-HF CFD Simulations
LFL Giannissi et al, ICHS, 2013

T T T T T T T T 1
0 1 2 3 4 5 G 7 a8 2]
downwind distance (m)

10 1

Substantial differences in model results suggest 2-phase effects
cannot be neglected for LH2 releases

Experiments had poor control of release and environmental boundary
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We plan to retrofit our lab to generate the necessary
low temperature data for model validation
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Optical diagnostics with carefully controlled

boundary conditions will provide validation data

PIXIS 400B low noise CCD Camera

* 2 x 2 binning for high signal-to-noise (~400:1)
* Multiple interrogation regions to image full jet
* Multiple images for converged statistics

Air co-flow & barriers to minimize Nd:YAG injection seeded laser (1
impact of room currents J/pulse @ 532 nm)
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Future work to verify and quantify ignition
boundaries
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Summary and conclusions
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Experimental plans:

update network flow model
build out laboratory system

planar laser Rayleigh
scattering to measure jet
spreading

particle imaging velocimetry
to measure velocity

model validation and
updating

ignition quantification

Challenges for liquid H,
reduced-order modeling:

accurate state modeling

pool spreading and
evaporation

humidity effects

multiphase flow models,
with velocity slip

interactions with surfaces
(e.g. barriers, ground)
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