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Challenges in Soot Modeling

• Soot formation & evolution involves many steps
• Nucleation, surface reaction, coagulation, oxidation, etc.

• Slower evolution than combustion chemistry
• Quasi-steady assumption is not adequate
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Challenges in Soot Modeling

• Soot formation & evolution involves many steps
• Nucleation, surface reaction, coagulation, oxidation, etc.

• Slower evolution than combustion chemistry
• Quasi-steady assumption is not adequate

• Limited success in soot modeling
• 1-3, or more, parameters are carried:

Soot mass, number density, PAH, etc.

• Ex> 2-equation model:

pN: Number density, pM: Mass concentration
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• Each evolution steps contribute as a source

• Coefficients are heavily tuned for fuel and/or configuration

• May allow non-sphere and/or subfilter-PDF:
.
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Flamelet Turbulent Combustion Models Ellosenes
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• Adiabatic models: reactive field is represented by mixture fraction (Z) and

dissipation rate (x) or progress variable

• Tabulated; Cost-effective; Well-studied in many turbulent combustion regimes
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Non-Adiabatic Flamelet Model
Cb = {17F, Yo, T,
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• Adiabatic models: reactive field is represented by mixture fraction (Z) and
dissipation rate (x) or progress variable

• Tabulated; Cost-effective; Well-studied in many turbulent combustion regimes

■ Non-adiabatic approaches add enthalpy defect, or radiative heat loss
• T, or radiation, is important for soot prediction => couple with a better rad. model

• Main flame chemistry: quasi-steady vs. soot & enthalpy: unsteady

Timescale for soot & enthalpy: 0(0.1-1s) => verify unsteadiness of the flamelet

• Temperature variation is limited when only gas-phase radiation is included

lppm of soot reduces T by 100K => let enthalpy defect cover all T-X space
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Objectives

■ Develop a fully-quenched, non-adiabatic, dissipation rate-based
unsteady flamelet

Sandia
National
Laboratories

■ Couple with a discrete ordinate radiation solver for radiation-flame-
soot interaction

■ Validate the model on laminar and turbulent sooting flames
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Enthalpy Defect & Unsteady Flamelets We.
OH x021-1 .

at 2 OZ2 
= cuff

• Initially developed for NO prediction as a post-process (Pitsch et al. 1998)

• Later added as an additional flamelet dimension (lhme Pitsch 2008)

= 4a(T4 — Tot) mai

• Moderate enthalpy defect for NO prediction

• T does not go down further due to reactant mixing

• As x increases, effect of the sink term diminishes

• Soot prediction needs to cover all T-X space

• Unsteady radiative losses lead to significant cooling

■ May cross below S-curve middle branch

• Similar approach proposed by Mueller Pitsch 2013

■ Potentially extendable for wall-cooled flame

2000

1500

Radiative state space

0 3 10 100 11

[s-1]

101 100 101 102
x[e]

lo



Non-Adiabatic Flamelets Sandia
National
Laboratories

[ A new heat-loss term is proposed: 011 x 02 H

•
 = hox 

T(H, — Tool

max Too

•

Proportional to x for complete cooling Ot 2 OZ2 i

• Linear to T for a better off-stoi. coverage & potential wall-cooling capability

■ With the larger sink term, flame cools down to ambient T
• This is 'cooled product', not reactants mixing

■ Enthalpy defect y is introduced 
Had = H (0) [H (1) — H (0)] Z

• y is the difference between H and adiabatic H

• To use well-developed enthalpy solver
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Unsteady Effect Sandia.
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• Normalize by (Tmax-To) to retain the same magnitude of the source

• However, max temperature drops faster below unstable middle branch

• Timescale matches to the estimated enthalpy response delay
• 0(0.1-1s) for complete cooling at lower x range
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Tabulation Sandia
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• Tabulation of x-based enthalpy defect approach has an advantage
for fire and similar scenarios over progress variable-based
• Progress variable predicts ignition delay, local quenching/re-ignition

' X is orthogonal to y: orthogonal tabulation

• Sub-filter PDF applied to the mixture fraction: a 4D table 2, z"2, x, and 7y
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Radiation Model

• Full interaction between radiation and flame is
important for an accurate temperature prediction
• ..which approximated models such as optically thin

assumption do not provide

• Discrete-ordinate radiative transport equation
OpH

+ • (puH) =V • (pDV H) (4aaT4 aG)
at emission absorption

G = f I(s)dQ s • V I(s) + aI(s) = e

• Both gas and soot contribute on absorption and emission
source to the wave

a = agas asoot and e = egas esoot

asoot = (-375000 + 1735T)PM/PsooT

esoot = asootaT4

• Radiation sources are precomputed in the table

• Radiative transport equation is solved for 48 directions

Sandia
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Model Validation - Laminar Flame Sandia
National
Laboratories

• SIERRA/Fuego was used for model implementation and simulations
• SIERRA: Sandia's engineering mechanics simulation code suite

• Fuego: low-Ma reacting turbulent flow solver

• Validation study on a laminar flame

• Ethylene coflow sooting jet (Santoro et al. 1983, Smyth 1999)

• Needed a 3D mesh for the radiation solver, —10000 cells at a symmetric plane
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Laminar Flame Results

■ Temperature matches in the downstream
• Enthalpy defect (radiation source) is correctly modeled

■ Maximum soot volume fraction agrees well with the experiment
• Soot develops earlier and not fully oxidized
• Conventional model coefficients for ethylene were used - there are better

predictions elsewhere where coefficients & model forms were tuned
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Turbulent Fire Plume Sandia
National
Laboratories

■ Configuration follows the previous study (WSSCI 2017 Fall)

• FLAME, a large-scale high-fidelity indoor pool fire/fire plume test facility

• Mesh/domain sensitivity was studied on the soot-free methane plume (MaCFP)

• Fuel was replaced by ethylene

• LES closure: sub-filter kinetic energy one-equation model

• A total of 1.3M meshes (smallest cell size=2cm) was used
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Evolution of Enthalpy Defect Sandia
National
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■ Scatter plots show 0(0.1s) timescale between radiation source and y
• y reaches -1.6E6, approx. 1000K lower Tmax than adiabatic profile

• Plots confirm significant soot contribution to the radiation source

• y could be positive due to radiation absorption by fuel

• Soot develops at fuel rich condition
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Soot Statistics
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At upstream, higher T incurs more soot growth
At downstream, higher T means more oxidation

■ Qualitative comparison to an experiment
• Soot measure is available only for methanol blended by 10% toluene
• Qualitative comparison was made for a case with different phase, fuel, slightly

different geometry: sooting location is well captured with 0(103) mag. difference
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Conclusion Sandia
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Laboratories

■ An enthalpy-defect, dissipation rate-based flamelet is developed
for sooting flames

■ Transient flamelet-generation allows the flame temperature from adiabatic to
the surrounding temperature

■ Not only radiation: potentially suitable for wall-cooling/heating application

■ A two-equation soot model is coupled to the non-adiabatic flamelet
approach in laminar/LES context with full discrete ordinate
radiation model

■ The model is demonstrated on sooting flames
■ Effect of the modeled radiation and enthalpy defect matches well to the

measured temperature

■ Soot magnitude is well predicted while oxidation is underpredicted

■ Strong interaction between soot evolution and radiation is observed in the
turbulent flame
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