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Implantation into Diamond photonics

Why donors in Silicon?
- Donors in silicon have demonstrated long coherence times
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- Key question = How to produce a single donor where you want it?

Why Color Centers in Diamond? %/: ' SiVin diamond
- Color centers (defects) in diamond include NV, ; |
J

SiV plus many more for a wide range of applications

I. Aharonovich et al., Rep. Prog. Phys. 74,076501 (2011)

Single-protein spin resonance Electrically driven SiV'  Readout of single NV spin
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nanolmplanter

* Focused ion beam system (FIB)

-2 nm beam spot size on target

e ExB Filter (Wein Filter)
—2>Multiple ion species

e Fast blanking and chopping

—Single ion implantation

e Direct-write lithography

—2<35 nm targeting accuracy

What ion species are possible?
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~1/3 the periodic table are available Am/m ~ 0.016, separates out isotopes
\ of Sb and Si in this AuSiSb source
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\- Key question = How to produce a single color center where you want it?/

We developed an integrated single ion detector in

Single lon Detection eV _ |
conjunction with low temperature transport devices

Integrated single ion detector with 200 keV Si — Quantized lon Detection
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Detection down to 20 keV Sb with SNR of 2.5
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Counted Donor-SET Devices

How to make counted donor devices? 120 keV Sb into a 35 nm oxide layer
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Y M. Singh et al., APL 108 062101 (2016)
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Counted lon Detection and Transport in the same device

Outlook for Two Donor: D-QD-QD-D

New designs relax donor placement requirements

Use of the donor-QD
coupling to reduce donor
placement requirements

What is needed to make this?

Donor-QD (few electron) requires:
 Target depth of <10 nm

Work to extend this design
 D-QD lateral spacing of <20 nm

to donor-QD-QD-donor
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QCAD simulations show simultaneous electron Ditficult, but NOT impossiblel

occupation and donor ionization are possible
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Yield Testers
We implanted Si at a series of dose and energies into
diamond substrates to form SiV color centers, yield
measurement performed by the Englund group
50  10-100keV Si implants for SiV creation
? * Yield ~3% at 100 keV

* Recipe for localized single color centers
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Comparison of yields under different implants
— Towards deterministic and localized color centers

Localized Color Center Formations - Nanobeams

We locally formed SiV color centers in a
series of diamond nanobeams using the SNL
nanolmplanter, measurements performed
by the Lukin/Loncar groups

- Implanted 100 keV Si into the nanobeams
forming localized SiV color centers

A. Sipahigil et al., submitted into Science

Preliminary g(?)(t) measurements indicate we have fabricated single SiV color
centers and our collaborators have used these as a single photon switch

Test of diamond coupling - 2D Photonic Cavities

We implanted Si into a series of photonic crystals to
test SiV-cavity coupling, PL and Raman measurements
performed by the Englund group

Reference POINT 3

- Raman-SiV emission:
- ~45nm positioning accuracy

T. Schroder et al., presented at CLEO2016

Demonstrated ion detection
in diamond to improve yield

250

200{ )

z150; [ studies:
S100 i
50l Yield = # measured SiV @planted Si
N N 3
044l AU NN i —
5 0 5 10 15 20 25 30 : P
Signal (mV) Poisson Statistics
(Uncertainty in number of centersis VN )
CCE = Charge Collec.t(.ed x 100 o |
Charge Depositied 0
‘ SNR=7.1
Ve Charge Pre-Amp | Single lon Detection in
—= 3 [
O ;.“ [ .
Shaping Amp 20 | Diamond with SNR ~10
h+ e- w |
€ >

E 0 Jiill A8 WSS, L, eSS A S e .
\ oy o 2 Sig‘;l " (\;3) 8 10 J,B.S. Abraham et al., submitted to Appl. Phys. Lett./

Sandia
National
Laboratories




