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Motivation

Why donors in Silicon?

- Donors in silicon have demonstrated long coherence times
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- Key question 4 How to produce a single donor where you want it?

Why Color Centers in Diamond?

- Color centers (defects) in diamond include NV-,
SiV plus many more for a wide range of applications
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SiV in diamond

I. Aharonovich et al., Rep. Prog. Phys. 74,076501 (2011)

Single-protein spin resonance Electrically driven SiV Readout of single NV spin 
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Key question 4 How to produce a single color center where you want it?

Nanoscale Top-Down lon Implantation

nanolmplanter

• Focused ion beam system (FIB)

4nm beam spot size on target

• ExB Filter (Wein Filter)

4Multiple ion species

• Fast blanking and chopping

4Single ion implantation

• Direct-write lithography

4<35 nm targeting accuracy
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What ion species are possible?

Green - demonstrated at other labs

Purple - demonstrated at SNL

Yellow - attempting at SNL
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What mass resolution is possible?
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Am/m - 0.016, separates out isotopes
of Sb and Si in this AuSiSb source

Single lon Implantatio • or Don
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Single lon Detection We developed an integrated single ion detector in
conjunction with low temperature transport devices

Integrated single ion detector with 
Si MOS nanostructure 
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Ion Species Energy (keV) Si02 Thickness Range*(+ Straggle) SNR Error Rate

Si 200 7 nm 273 (+ 76) nm 21.2 <<1%

Sb 120 35 nm 25 (+ 17.5) nm 5.2 8%

Sb 50 7 nm 25 (+ 9) nm 4.4 9%

Sb 20 7 nm 11 (+ 5) nm 2.5 15%

* Range measured from the Si02/Si interface into the Si substrate

200 keV Si - Quantized lon Detection 
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We find excellent agreement between
the ratio of number of detected ions to
Poisson probability distribution.

Single Ion Implantation 
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J. L. Pacheco et al., submitted to Nanotechnology 0
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Fetection down to 20 keV Sb with SNR of

Counted Donor-SET Devices 

How to make counted donor devices? 120 keV Sb into a 35 nm oxide layer
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Outlook for Two Donor: D-QD-QD-D 

New designs relax donor placement requirements 

Use of the donor-QD
coupling to reduce donor
placement requirements

to donor-QD-QD-donor

QCAD simulations show simultaneous electron
occupation and donor ionization are possible
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What is needed to make this? 

Donor-QD (few electron) requires:

Work to extend this design • Target depth of <10 nm
• D-QD lateral spacing of <20 nm

Difficult, but NOT impossible!
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Implantation into Diamond photonics

Yield Testers 
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We implanted Si at a series of dose and energies into
diamond substrates to form SiV color centers, yield
measurement performed by the Englund group

• 10-100keV Si implants for SiV creation

• Yield r`'3% at 100 keV

• Recipe for localized single color centers

Comparison of yields under different implants
Towards deterministic and localized color centers

Localized Color Center Formations - Nanobeams 

We locally formed SiV color centers in a
series of diamond nanobeams using the SNL
nanolmplanter, measurements performed
by the Lukin/Loncar groups
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A. Sipahigil et al., submitted into Science

Preliminary g(2)(t) measurements indicate we have fabricated single SiV color
centers and our collaborators have used these as a single photon switch

Test of diamond coupling - 2D Photonic Cavities 

We implanted Si into a series of photonic crystals to
test SiV-cavity coupling, PL and Raman measurements
performed by the Englund group

- Raman-SiV emission:
r‘j45nm positioning accuracy

T. Schroder et al., presented at CLE02016

Single Ion Detection in Diamond Detector
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Demonstrated ion detection
in diamond to improve yield
studies:

Yield = # measured SiV # implanted S

Poisson Statistics

(Uncertainty in number of centers is -0/Ti

rSingle Ion Detection inDiamond with SNR ev10

lo J. 8. S. Abraham et al., submitted to Appl. Phys. Lett.
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