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Abstract

In an earlier report [PB15], we reported on the extension to the statistical analysis capability of
the Visualization Tool Kit (VTK), which we developed for the calculation of divergence statis-
tics, with the particular aim of providing quantitative means for HPC performance analysis,
of which we provided an example as well as user’s manual. However, we did not provide the
mathematical foundations for this work.

In the current report, we fill this void with the complete derivation of the formulas which
we used in the divergence statistics engine. This provides the foundations for future work
which will aim at generalizing these formulas for more detailed HPC performance analysis.
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1 Introduction

In earlier work [PB15], we reported on a divergence statistics extension which we added to the
Visualization Tool Kit (VTK), [Kit10], which we developed for the sake of quantifying, in a sta-
tistical manner akin to measuring a distance, between an observed empirical distribution and a
theoretical, “ideal” one. The main motivation for this work was the performance assessment of
High Performance Computing (HPC) performance analysis, performed either experimentally (i.e.,
using values of metrics measured on a real, live system performing an actual computation) or by
simulation (for instance, using the Structural Simulation Toolkit SST [WK15] developed at Sandia
National Laboratories).

In the aforementioned report, we focused on implementation details, specifically regarding how
our implementation, in the form of the vtkDivergenceStatistics class, fits within the scalable,
parallel statistics tool kit which we have previously developed [PTBM11].

However, although we illustrated the above with applications of the divergence statistics ap-
proach to SST simulation cases, we did not provide the mathematical foundations of our method,
for [PB15] was mostly intended as a user’s guide. It has come however to our attention that our
method may lend itself to a broader class of problems than what we first anticipated. Therefore,
the goal of the present report is to provide the full derivation of the formulas that are utilized by
the vtkDivergenceStatistics engine.



2 Statistical Divergences

In this section, we first present a summary on the notion of statistical divergence. We then choose
a set of 5 such divergences, some of which are semi-distances or even distances, exhibiting diverse
properties, which we selected to experiment with our performance assessment method.

2.1 Definitions

The term statistical divergence describes a class of functions whose particular aim is to quantify
the discrepancy between two distributions. Specifically, a divergence is a positive definite bivariate
function with positive values, but it is not requested that they satisfy the symmetry axiom nor the
triangle inequality: as such, they do cannot be called distances. This is the reason why the more
general term divergence is used.

In particular, one interesting family of statistical divergences is that of f-divergences, which
are defined between two distributions with respective probability densities p and g as:

() () — [ as (%)dx

where f is a real function, convex in IRy and such that f(1) = 0, cf. [Bas10] for more details. In
the case of discrete probability distributions, which is that which is of interest to us here, where P
and Q instead refer to probability mass functions, the definition becomes:

oo P(xi)
A1) (P,Q) — i
(0 — ¥ o (G5)

where . denotes the union of the supports (i.e., where probability is nonzero) of P and Q. Note
that in the case where those two sample spaces do not exactly overlap, some terms in the sum
become degenerate and the divergence must be calculated as a limit.

2.2 A Selection of Divergences with Diverse Properties

Infinitely many statistical divergences may be conceived with the above definition. However, there
is a number of classical formulas, which are used in different contexts, that are well known. For
example, the Kullback-Leibler divergence is widely used in the field of information theory, and
is related to several concepts such as mutual information and Shannon entropy. Another classical
example is that of the Bhattacharyya semi-distance, a measure of statistical overlap between two
samples, which has many applications in computer vision, when attempting to match two different
observations based on their respective color histograms.

Different statistical divergences and distances often provide qualitatively similar results but, as
we have observed in our analyses, frequently reveal different details which might be of interest, or
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not. Not knowing, a priori, which divergence would be best in general, or even whether one could
be considered best in the context of HPC performance analysis, we retained 5 different divergences,
selected amongst the “classic” ones commonly described in the literature. This choice is somewhat
arbitrary ; however, it offers enough variety, from divergences in the narrowest sense of the term,
to semi-distances or distances in the full meaning of term, so that this study appears to be the first
in its kind to propose this approach with such relative generality.

Our selection hence goes as follows:

e The total variation distance (-,-), or TVD, obtained when f(u) = 3|u— 1|, and which is a
distance in the true sense of the term (being symmetric and satisfying the triangle inequality).
Note that in our case, where we focus on discrete distributions, it is the same distance as the
1-distance, up to a factor of 2:

1
3(p.q) = 3 lp—qll,-

We prefer to use the TVD for it has an upper bound of 1, which is convenient, but in statistical
literature the 2 are sometimes confounded. In the case of discrete probability distributions,
the above formula becomes:

3(PQ) =5 Y. [P(xi)—Q(x)]

1
2 )C,'Ery

e The Hellinger distance dy(-,-), also symmetric and satisfying the triangle inequality, ob-
tained by taking the square root of the f-divergence associated with f(u) = %(\/ﬁ —1)2

Again in the case of discrete distribution, there is a relationship with a known norm, in this
case the 2-distance (or Euclidean distance): specifically,

dr(p.q) =\%II\/5—\/?1||2-

In addition, dy also has an upper bound of 1. In the case of discrete distributions, one
obtains.

i€?

du(P,Q) = \/%\/Z (VP(i) —VO(x))*.

e The Bhattacharyya coefficient b(-,-) is another statistical divergence which, albeit not a f-
divergence (because the function f does not vanish at u = 1), is obtained with f(u) = \/u.
We then define he Bhattacharyya semi-distance as follows :

dp(p,q) = —logh(p,q).

In this case again, we are interested in the formula that arises for discrete distributions:

dp(P,Q) = —log Z V P(x:)O(x;).

i€y



It is a semi-distance because it satisfies all the axioms of a distance, except for the triangle
inequality. In particular, unlike divergences in general, it is symmetric. However it is not
bounded above and takes on an infinite value when the respective supports of p and g are
disjoint.

The Kullback-Leibler divergence A(-||-) is obtained with f(u) = ulog, u:
p(X)>
Alp,q) = / x)lo — )dx

Note that the natural logarithm is also often encountered in the literature, instead of log,. In
the discrete case, the formula becomes as follows:

A(P|Q) = ¥ Plxi)log 02
e Q(xi )
Albeit not a statistical distance, because of its lacking symmetry, it is nonetheless very use-
ful as is allows one to give different meanings to the two distributions, where the first one
represents a “model”, in the sense of desired outcome, against which the second distribution
is compared. In an information-theoretical context, A(p||¢) quantifies the amount of infor-
mation that is lost when ¢ is observed instead of the “ideal” p. In the discrete and finite case
often encountered, as is the case for our application domain, the binary logarithm allows
for a direct, intuitive understanding of the divergence: specifically, if the model distribution
consists of a single, ideal value, then a divergence equal to some integer value of a € IN*
indicates that only 2%“1 of the observed sample has the desired outcome. It is also worth
noticing that the Kullback-Leibler divergence is not bounded above and that, when P and Q
do not have exactly the same support, it can take its values in [0, 40|, as a result of the fact
that
0log0 = lim xlogx =0
x—0t

and
1 . 1

- — oo,

—— = lim =
log0  x—o0+ logx

The % divergence x*(-||-), obtained with f(u) = (u—1)*:

X)—q(Xx 2
o= [ L=,

Also called Pearson divergence, it plays an important role in statistical literature in partic-
ular as result of its relationship with the homonymous %> hypothesis testing. It is also a

divergence, in the most strict meaning of the term, neither being symmetric nor satisfying
the triangle inequality. When the distributions are discrete, the formula becomes

2 _w (Px)—0(x:))?

Using again the limits for degenerate cases when the denominator vanishes, x2(-||-) takes its
values in [0, 4-oo].
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Note that, in the context of HPC performance analysis, performed either experimentally (i.e.,
measured values on a real, live system performing an actual computation) or by simulation (for
instance, using Sandia’s Structural Simulation Toolkit SST), typical analyses will have divergence
analyses repeated at regular time intervals, in order to obtain a time-series analysis which can be
further processed to obtain a space-time quantitative performance aggregate value. This time-series
analysis is outside the scope of this report.
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3 Divergence Statistics for Performance Assessment

We now describe how we use the statistical divergences chosen in §2 for the sake of HPC perfor-
mance analysis.

Our approach is to compare an observed (i.e., empirical) distribution of values for some set of
variables of interest (e.g., measurements of network traffic, CPU utilization, probe temperature,
etc.) with respect to an ideal distribution, materialized by a probability mass function whose entire
weight (1) is located at a user-defined, variable-specific “ideal” value. For example, in the case
of CPU utilization, our method can be used to quantify the discrepancy between the empirical
distribution observed across a number of compute cores with respect to an ideal 100% CPU load
for all cores.

3.1 Statement of the Problem

Consider a variable of interest, whose experimental or simulated values across a finite domain of
interest are regarded as the realizations of a discrete random variable X, with empirical probability
mass function (EPMF) denoted P. The support of P is the set of values where P has non-zero value,
i.e., correspond to the values really observed (at least once), in the experiment or the simulation.
Denoting N € IN* is the number of such distinct values, the support of P is:

supp(P) = {x:}i=}
and by definition of a probability mass function, one has Y= P(x;) = 1.

Now, assume that a value, denoted x, is considered ideal, (or “peak”), for the same variable of
interest. Note that xo does not necessarily belong to supp(P). We henceforth denote Q the PMF of
the discrete random variable which has a single outcome, xg. In other words,

supp(Q) = {xo}
and Q(xp) = 1.

It is important to note that the realizations of the variable of interest may, or may not, contain
the peak value. For some of the chosen divergences, the latter will result in infinite values, whereas
the statistical distances are bounded.

3.2 Formulas

We now explicitly derive the formulas which we implemented in vtkDivergenceStatistics:
rather than computing the formulas given in §3, across the entire support of P (which can be
arbitrarily large), we have derived much simpler expressions in the case where the support of Q is
a singleton, as is the case here.
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Theorem 3.1. With the above setting, and using the convention that —log(0 = +oo together with
the usual arithmetic operations on the extended real number line R U { —oo; 4o}, then:

5(0.P) = 1 - P(x)),
duy(Q,P) =1/1—+/P(xo),
dp(Q,P) = —log\/P(xo),
A(Q|IP) = —log, P(xo),
(OIP) = 1.

Proof. We prove this theorem by disjunction of cases. First, consider the case when xo & supp(P);
therefore,

supp(P) Usupp(Q) = {xi}/=5 .
VieN,1<i<N Q(x)=0,
and P(xp) = 0. Using the arithmetic operations on the extended real number line R U { —oo; oo},

together with the limits of logx and xlogx as x — 0™, we obtain the following identities:

1 i=N

5(0.7) = § 1071y = 3 X 100) - Pls)l = (@) + 3, Pls) =31+ D)= 1.

= i=1

V2
1 (Q,P) = \/_\/Z \/Qx, \/Px, \/_\/ QO(xo +Zle:E:1,

1

dp(Q,P) = —logli vV O(x;)P(x;) = —log ( O(xp) x O—l—li 1/ 0 x P(xi)> = oo,
i=1

i=0
i=N =N
0(x) 12 0log,0
P) )1 =1 xlog, ~ = Foo40 = foo,
A(Q||P) IZOQX % b xog20+l:1 Pl 0=
i=N 2 2 =N
2 (Q(x;) —P(x;))”  (1-0)
P = _= P i) = [ore] 1: o]
eI = X =50 o TL P = tetl=t
On the other hand,
1—P(xo) =1,
1 —+/P(xo) =1,

which proves the identities when xo & supp(P).
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Second, consider the case when x( € supp(P); therefore,

supp(P) Usupp(Q) = supp(P) = {xi}/=},

which implies that xo = x,, for some unique index g between 1 and N. Therefore, that P(xq) =
P(x4) # 0 and Q(x9) = Q(x,4) = 1. We can thus derive the desired identities, as follows:

1 1 & 1
3 lzi 0(x) = P(xi)| = 5 (1 — P(xq) + ZP xi) ) = 5(2=2P(xy)) = 1 = P(x0),
l#q

o (yoe—yray | (V) I
dH(Q,P):\/ i=1 x’z X)) _ . i#q

=1/1—+/P(xp),

i=N i=N
dp(Q,P) = —log ; VO(x:)P(x;) = —log (,/1 x P(x4) + ; /0 x P(x,-)) = —log\/P(xp),

i#q
i=N i=N
O(x;) 1 0log, 0
A(Q||P) = O(x;)lo =1xlo + = —log, P(xp),
H = l J25) P( ) %) P( ) l; P(Xi) g2 ( 0)
i#q
v (O() —P(x;))>  (1-— 1 v 1
2 (Q|IP) = ’ = + P(x;) = 2+ Y P(x) = 1.
L p) P+ B = g2 L o =3
t#q
This completes the proof of the theorem, for no other case than either xo & supp(P) or xp € supp(P)
exists. U

Note that the respective roles of P and Q can be exchanged, leaving the results unchanged, for
the total variation and Hellinger distances, as well as for the Bhattacharyya semi-distance, as a
result of their satisfying the axiom of symmetry (being distances):

0(P,Q) =98(Q,P)=1—P(xp),
du(P,Q) = du(Q,P) = \/ 1 -/ P(xo),
dB(P,Q) dB Q P = —log \/ X()

However, this is not true for any of the two strict divergences (Hellinger and %), whose values
are always equal to 4-cc if P and Q are permuted, even when xo = x, € supp(P), as shown below:

=N X i=N xz
APIQ) = T P(x)logs P9 — px)logy Plx,) + Y D I08P0D) _
i=1 QO(xi) 0
t#q
> VP -0 o RYPe)?
X (P“Q)_,:1 00 (1—P(x,)) +§ =+
i7#q
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