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Abstract

We present a numerical error estimation technique specifically formulated to deal with stochastic
code output with multiple discretization parameters. This method is based on multiple fits to an
error model with arbitrary convergence rates and cross-coupling terms, performed using nonlinear
optimization. The fitting approach varies by the type of residual norm which influences the impor-
tance of outliers, and weights which influences the relative importance of data points in the coarse
and refined regions of discretization parameter space. To account for the influence of stochas-
tic noise, these fits are performed on multiple bootstrap values based on the underlying response
data set. Using an automated discretization domain selection scheme, the fits are performed on
a series of reduced sets of discretization levels in order to find an optimal fully-converged result
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estimate in the minimum variance sense; this automated approach enables straightforward analysis
of multiple quantities of interest and/or time and spatially-dependent response data. The overall
numerical error analysis method is useful for verification and validation problems for stochastic
simulation methods and forms a key component in the overall uncertainty quantification process.
The method was demonstrated for steady and unsteady electron diode problems simulated using a
particle-in-cell kinetic plasma code, demonstrating excellent results.
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Nomenclature

a discretization parameter dependence exponent for residual weight
A surface area [m?]

B number of bootstrap samples

D number of discretization parameters

e elementary charge [C] (= 1.6022 x 10~19)

E electric field vector [V/m]

f velocity distribution function

G objective function

J current flux density vector [A/m?]

L spatial domain size [m]

m particle mass [kg] (= 9.1095 x 103! for electrons)
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M total number of discretization levels

q particle charge [C]

t time [s]

T temperature [V]

v velocity vector [m/s]

V volume [m?]

w residual weights

W diagonal matrix of squared residual weights

x spatial coordinate [m]
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X discretization parameter
X scaled discretization parameter
Y response data

Z matrix of auxiliary variables defined by Equation (2.8)

Subscripts

0 reference condition
lof lack-of-fit

t thermal
Greek

o discretization parameter dependence exponents for variance model
B discretization error model coefficients

B lack-of-fit error corrected discretization error model coefficients
Y convergence rates

0 dimensionless discretization

A discretization

€ residual

g permittivity of free space [F/m] (= 8.8542 x 10~12)

Ap electron Debye length [m] (= \/W)

W mean values

v degrees of freedom in the F distribution

variable defined by Equation (2.18)

(x]

p charge density [C/m?]
¢ electric potential [V]

Y dimensionless MPW
@p electron plasma frequency [s™!] (= \/e%n/(gym))
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Q) domain in discretization parameter space
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CFD computational fluid dynamics

GCI grid convergence index

LAD least absolute deviation

LS least squares

PCMM predictive capability maturity model
PDF probability distribution function

PIC particle-in-cell

Qol quantity of interest

StREEQ stochastic Richardson extrapolation based error quantification
VPCL Vlasov-Poisson-Child-Langmuir
V&V verification and validation

MPW macro particle weight
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Chapter 1

Introduction

This report focuses on numerical error estimation techniques for stochastic simulation methods
having multiple discretization parameters with arbitrary, but theoretically predicted, convergence
rates. Numerical error estimation lies within the purview of verification and validation (V&V),
which are the primary means to estimate the accuracy of computational simulations [24]. Verifica-
tion and validation are key components of the Predictive Capability Maturity Model (PCMM) [23],
which is used to assess the level of maturity in modeling and simulation for high consequence ap-
plications.

Verification is the process of assessing correctness with which mathematical models are repro-
duced in a computational simulation. There are two distinct forms of verification: code verification
and solution verification. Code verification generally involves the simulation of problems for which
an analytic or otherwise high precision solution of known accuracy is available. From simulation
responses at multiple discretization levels, the estimated fully-converged solution along with un-
certainty bounds is compared directly to the known solution; here, the most common method for
estimating the fully-converged solution is Richardson extrapolation [26]. Ideally, the full suite
of code verification problems used tests the relevant physics of the target application. [32]. So-
lution verification refers to performing numerical error analysis of code responses for a problem
without a known solution. The overall credibility of solution verification (as well as validation) is
fundamentally built upon a solid foundation of code verification problems.

In contrast to verification, validation [24, 32] is the process of assessing the predictive capa-
bility of a code by directly comparing simulated response data to experimental data. Uncertainty
quantification is a related activity to the validation process, which involves independently estimat-
ing the uncertainty in both experimental and computational results due to such factors as experi-
mental error and input parameter uncertainty. Numerical error is clearly an essential component of
the total uncertainty in the reported simulation results, although in many cases of practical interest,
the numerical error can be shown to be small relative to the other uncertainties, and therefore may
be ignored in the overall uncertainty estimate.

While error estimation is principally concerned with finding the uncertainty in a simulation
response (either at a given discretization level, or with respect to the fully-converged estimate),
estimating the convergence behavior is also useful, especially in the context of code verification.
Key parameters used to quantify convergence behavior are the convergence rates for various dis-
cretization parameters; these are defined as the exponents in the discretization parameter depen-
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dence for the leading numerical error terms which approach zero in the limit as the discretization
parameters approach zero. (Convergence rates are also called order-of-convergence [32] and order-
of-accuracy [24] by other authors.) Changes to the computational algorithms and code bugs can
cause reduction in the observed convergence rates, and therefore convergence rate estimates are
a useful tool in the code development process. However, care must be exercised in interpreting
deviations from theoretical convergence rates as convergence rates may be problem dependent.

Previous methods for numerical error analysis were developed primarily for deterministic sim-
ulation methods with the grid size being the sole discretization parameter. The most well known
of these is the Grid Convergence Index (GCI) method, which provides an estimation of the amount
of discretization error in the finest grid solution relative to the extrapolated estimate of the con-
verged numerical solution [31, 32, 24]. The GCI method has been used by the computational fluid
dynamics (CFD) community since the 1990s, has recently become a standard for publishing in
the Journal of Fluids Engineering [8], and was incorporated in the ASME standard in 2009 [1].
In addition, the method is gaining acceptance in the field of solid mechanics [33, 2, 4]. The GCI
method, based on Richardson extrapolation [26], estimates solution error using a series of simu-
lations with systematically finer meshes. The Least Squares version of GCI [12, 25, 14, 13, 15]
improves upon the error estimation by obtaining an improved estimation of the uncertainty at the
expense of needing more simulations.

In the robust verification approach developed by Rider et al. [28, 29], a multi-fitting approach
was used to estimate the numerical error for deterministic code results in up to two discretization
parameters. The key idea in this work was to estimate the numerical uncertainty by using a suite
of fitting models. These fitting models included various residual norms and alternate residual
weightings, regularization methods, and predictions based on theoretical and extrema bounds on
the convergence rates. He also developed a detailed workflow procedure which starts from the most
converged region of the discretization parameter space and expands to include progressively less
converged regions, and demonstrated this approach on CFD and neutronics simulation response
data. In his recent work [30], he has extended his method to treat ill-behaved simulation data by
applying constraints within the nonlinear optimization used to fit the regression models.

The method developed in this report was significantly inspired by robust verification [28, 29],
and follows this multi-fitting approach. However, as it is targeted to stochastic code output, it is
based on a different and smaller suite of fitting models. It also incorporates bootstrap sampling [16]
based on a set of multiple code evaluations at the same discretization level to capture the effects
of stochastic noise in the numerical uncertainty estimates. In addition, we have implemented a
discretization domain reduction scheme which, starting at the full set of simulation data, progres-
sively reduces the domain of discretization parameter space to exclude data outside the asymptotic
region. Evidence for the credibility of a particular such analysis is obtained by performing an
F-test and/or direct examination of fit residuals. For convenience, we will refer to this method as
Stochastic Richardson Extrapolation based Error Quantification, or StREEQ.

The flagship computational application considered here is the particle-in-cell (PIC) kinetic
plasma simulation method, although the methods developed here are directly applicable to any
stochastic computational code. Response data for various quantities of interest (Qols) for these
and other Monte Carlo based computational techniques have a stochastic noise variance that is
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inversely proportional to the number of random samples; in PIC-plasma codes, the number of
samples scales directly with the number of computational particles used in the evaluation of the
Qol as well as the number of statistically independent, replicated computational responses which
are ensemble averaged. For these codes, there are generally three relevant discretization parame-
ters: grid size, time step, and macroparticle weight (MPW).

The StREEQ methodology is demonstrated on both stationary and time-periodic electron diode
problems simulated using the Aleph PIC plasma code [3]. These diode problems are code verifi-
cation examples, since they have a known solution. StREEQ error analysis was also performed on
a smaller subset of the response data for the stationary diode problem in order to demonstrate the
procedure for solution verification. In all cases, the method produced converged solution estimates
which bracketed the known solution and convergence rate estimates consistent with the theoretical
values.

The basic outline of this report is as follows: a full description of the StREEQ error estimation
method is presented in the first chapter. Several test cases, including steady and time-periodic
diode simulations, are analyzed in Chapter 3. A summary of the report, with directions for future
research, is presented in Chapter 4; and finally the derivation of the exact solution for the steady
diode verification problem is derived in Appendix A.

17
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Chapter 2

StREEQ Numerical Error Estimation
Method

In this chapter, the overall StREEQ method is introduced. The first sections, which describe
the form of response data assumed by the method and how it is processed for use in the error
analysis, consist of: generation of response data for use in the StREEQ fits, the bootstrap sampling
technique, and the variance model fitting procedure. Subsequent chapters address the core of the
method, which involve the choice of an error model and the suite of fitting models, estimation of
the converged result and convergence rates with uncertainty, the discretization parameter domain
reduction algorithm used to determine the optimal set of data to fit, and credibility assessment.

Response Data

A StREEQ simulation requires response data from multiple simulations at a number of dis-
cretization levels. Multiple replications are required at each discretization level in order to ac-
count for the stochastic noise, while multiple discretization levels are required to account for the
discretization error. Here, we denote the response data for a specific Qol as Yj; which is as-
sumed to be a function of discretization parameters X,;, where j =1,2,.... M, k=1,2,...,N;,
and g =1,2,...,D. Here, j is one of M discretization levels, while g indexes different discretiza-
tion parameters, where D is the total dimensionality of discretization parameter space. The index
k represents a specific replication at give discretization level; for each j, there are N; computa-
tional replications; in total representing N =} ; N; independent simulations. These replications
can be obtained in general by repeating the simulation with a different random number seed. In
the steady state case, one can generate replications by a series of time-averages that are taken over
sufficiently long time intervals to produce uncorrelated, independent values. A sufficient number
of discretization levels is required to make the regressions overdetermined (M > 3,6, 10 are re-
quired for D = 1,2,3 respectively), as well as ensuring that at least three different values for each
discretization parameter are represented to ensure reliable estimation of the convergence rates.

This report will address cases of two- and three-dimensional discretization parameter space
for PIC simulations; in the D = 3 case, X,; are dimensionless versions of grid size Ox, time step
ot, and macroparticle weight (MPW, defined as the number of physical particles represented by a
single computational particle) ¥, while in the D = 2 case, time step convergence is omitted. The
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definitions of the dimensionless discretization parameters are defined by specific case in Chapter 3
because they vary slightly by the verification problem being simulated. Generally dx and ¥ related
to their raw values Ax and MPW by a simple scaling with (constant) reference values, while 8¢ is
understood as a cell-based Courant condition with respect to physical time scale Ar. The overall
theory is applicable to an arbitrary set of discretization parameters, although we assume that they
are defined such that the discretization error decreases with decreasing X, in the remainder of the
report.

For multiple discretization parameters, it is good practice to keep the rate of refinement con-
sistent between different discretization parameters. This was discussed by Richards [27] for the
specific case of spatial and temporal convergence, but is extended in the formula below for the
present application. Here ¥, %, and Yy are the theoretical grid, time, and MPW convergence rates
respectively, while the index j’ refers the discretization level where each parameter is the next

smallest value after j.
Sxy\ " AN W\
o R e R 2.1)
o0x J ot b R Y j

For time dependent Qols, an independent StREEQ analysis will be performed for each Qol at
each time step. When feasible, the set of simulations should be constructed in order to report at
times evenly divisible by the time step at each discretization level. Otherwise, interpolation can
be performed to a specific time step at the cost of introducing interpolation error into the response
data. For spatially dependent Qols, the situation is similar in principle but more complex, and may
require interpolation between nodal values. For this reason, integrated Qols are generally easier
to deal with and better behaved than spatially-distributed or time-dependent Qols, and also have a
reduced level of stochastic noise.

Bootstrap Sampling

Multiple bootstrap samples of the mean ,uf.’ and standard deviation (square root of the variance)

of the mean O'JI? , where b indexes separate bootstrap samples, are taken from the underlying re-
sponse data and used directly to perform the multiple fits in a StREEQ analysis. These mean and
deviation samples are obtained from independent bootstrap response samples Y ﬁ( according to the

formulas below. For each bootstrap response sample Y }’ , the response values are randomly sampled
with replacement from the available data (k = 1,2,...,N;) independently for each discretization
level j. A basic property of bootstrapping [16] is that /.Lj-’ and GJI? are approximate samples of the
true mean and standard deviation in the mean.

1
uh = N Y vh (2.2)
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b 1 A
7 \/Nj(Nj— 1) ;(ij “J'> 2.3)

It is generally advantageous to produce a set of data where 6]17 are approximately constant

with respect to discretization level j, although the degree of computational expense necessary
to accomplish this is not always feasible. While this condition was maintained for most of the
examples analyzed in this report (see Chapter 3), we included a single example with non-constant
G_f? which achieved excellent results; based on this example and other experience, using response

data with non-constant GJI-’ does not seem to be problematic.

In cases where a small number N; of replications exist at one (or more) discretization levels, the
stochastic noise distributions are poorly-resolved in a pointwise sense. While this fundamentally
limits the number of unique bootstrap samples per discretization level, this situation is not as
grave as it may seem. Assuming that Y are unique for each level j at fixed k, there are (Z%fl)
unique bootstrap samples. And, since response data is required for multiple discretization levjels,

21\If<-]j—1); or (21\5\,];1
all j. Assuming that the stochastic noise distribution differs only in location and scale between
discretization levels, it is this total number of unique values that is the important parameter. In
particular, assuming D = 2 for which a minimum of M = 7 discretization levels are required in
order to perform the fits, the absolute worst case scenario for which StREEQ may be performed is
for Ni = 2 replications; yet this results in 2187 unique bootstrap samples. For the more reasonable
case with Nj = 5, this results in 126 unique samples per level and a total of 5.0 x 10'* unique

samples!

the actual number of unique values is []; ( )M for the special case N; = Ny for

Variance Model Fitting

Although the consequences of of small N; do not generally cause StREEQ analyses to fail
(with one notable exception, discussed below), there are two consequences that can be improved
by an alternate representation of the variance over the entire data set. First the bootstrap estimator
(Equation 2.3) will be unduly noisy, resulting in noisier numerical uncertainty estimation. Another
effect of small N; is that the bootstrap variance estimator (G][? )2 has a N} i probability of ob-
taining a bootstrap sample with a single repeated value leading to a zero variance estimation, thus
causing the the fitting process to fail due to the variance dependent weighting (see Equation 2.12).
One way to alleviate the second effect is to replace zero variance realizations with the overall sam-
ple variance estimation. However, a superior approach is variance model fitting as it adequately
addresses both problems when the variance scaling is theoretically known.

The variance model fitting approach builds on the fact that the variance has theoretically known
dependencies on discretization parameters in most cases. For PIC kinetic plasma simulations, the
variance in volume-integrated quantities will scale according to crj2 o« MPW Ax’ /N j» while the

variance of surface-integrated quantities scale as GJZ o MPW Ax?/N;; here we are assuming that
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the volume and surface areas are defined independently of the mesh resolution level. Generalizing
this concept, we assume a variance model given below, in which each dimension of discretization
parameter space has an arbitrary exponential dependence specified by &, coefficients.

) (o7
A2 0 HquJ?
2 = v 2.4)
J

Assuming that the stochastic noise in the data comes from the same underlying distribution with
only differences in the variance which are captured by the variance model, the single fit coefficient

Gg can be readily obtained in the least squares sense, as shown.

N; T 2
52 = Yy (Yje— 1) (2.5)

O
7 k=1 YqX,j

The variance model hypothesis can be tested using the nonparametric Brown-Forsythe test
for equality of variances [6] for some significance level (we used a significance level of 5% for the
validation cases analyzed in Chapter 3); where the use of nonparametric test avoids any assumption
on the form of the stochastic noise distribution. This variance model based approach provides
an alternative variance estimator for reducing the noise in the residual weights by replacing the
bootstrap version GJI? with &; from Equation (2.4). For the engineered data set verification problem
analyzed in Chapter 3, we show excellent results for estimating the numerical error by using as
few as N7 = 2 replications per discretization level when using the variance model fitting approach.

Discretization Error Model

Oberkampf and Roy [24] distinguish between four sources of numerical error: round-off er-
ror, statistical sampling error, iterative error, and discretization error. In choosing the error model
used in this report, we assumed negligible round-off error and iterative error. The stochastic noise
inherent in Monte Carlo based algorithms is an example of statistical sampling error, which is
included in our present approach using bootstrap sampling. We are assuming that all remaining
sources of numerical error consist of discretization errors, which have a parametric dependence
that is explicitly accounted for in the discretization error model. We also assume that the method
is convergent, i.e. that the true solution of the equations being simulated (the fully-converged solu-
tion) is recovered (for a sufficient amount of ensemble averaging) as the discretization parameters
approach zero.

A commonly used model for discretization error is ¥ = fy + B1 X7 + € where X is the (sin-
gle) discretization parameter (typically indicated by 4 for grid convergence studies) and 7y is the
convergence rate.! Our discretization error model is given by

! Although most authors use p for convergence rate, we used a different nomenclature in order to avoid conflict
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wi=Po+Y BXl+Y Y BuX X' +e. (2.6)
q q r>q

This an extension of the common approach which assumes an arbitrary number D of discretization
parameters and also includes second-order (in qu") cross-coupling between combinations of two
discretization parameters. The bootstrap index (b) superscripts from the previous discussion are
omitted for clarity, and indices ¢, = 1,2,...,D. The 8 and v are fit (optimized) using a suite of
fitting models. Here, By is an estimate of the converged response, and the Y, are estimates of the
convergence rates. An earlier version of this model retained the f3,, terms in the error expansion;

this approach proved problematic because the ququ " term competes with BqX;/q but tending to-
ward a convergence rate of half the true value, and therefore subsequent work has retained only the
cross-coupling terms to second-order in the expansion. The total number of model coefficients (f3)
is Ng = 1+D(D+1)/2, and the total number of fit coefficients is Ng + D.

The matrix form of the above expression is given below. Here, I is a M x 1 column vector
of ones, Z(Yy) is a M x Ng matrix with rows corresponding to unique discretization levels and
columns corresponding to fit coefficient () terms. Note that each Xg" and Xg"XZ’ term is also a
M x 1 column vector with entries for all discretization levels, and Iis a M x 1 vector of ones.

n=7(y)B+e (2.7)

Ziy=[1 X' ... xP xix® ... xXPIxP] (2.8)
B'=1[Bo B - Bo B2 ... Bp-1p] (2.9)
Y= .- W (2.10)

While we have found this discretization error model to be adequate for the verification prob-
lems considered in this report, the overall method is applicable to any parameterized model. We
note that Rider [30] used a different form of the cross-coupling term in his work. Verifying the
appropriate choice of discretization error model is part of the code verification scheme, and if poor
fits are discovered at the solution verification or validation stage (for discretization points within
the asymptotic region), this is evidence of an incomplete hierarchy of code verification problems.

Fitting Models

Following the approach used by Rider et al. [29, 28, 30], we use a suite of fitting models to
propagate the uncertainties inherent in performing the fits to the discretization error model for
multiple realizations of the bootstrap samples. In this report, we used a total of nine fitting models,

with L, norms and p values used later in this chapter.
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which varied in both weighting strategy and error norm. This set of fitting models is significantly
different than that used by Rider et al., in particular because it chooses a different set of weights
and error norms, as well as avoiding the use of regularization models and fits based on fixed
convergence rates. We believe this selection of fitting models to be more appropriate for fitting
stochastic response data, which is the desired application. Testing the present approach in the limit
of vanishing stochastic noise (i.e. for deterministic response data), which would justify its use for
general application, is left to a future work.

The overall form of the fitting models is defined by Equation 2.11, where w* is an M x 1
column vector of weights (defined in Equation 2.12 and Table 2.1), ||- ||, is an L, error norm, and s
indexes the fitting model. The choice of error norm is the mechanism used to control the influence
of outliers. At one end of the spectrum, p = oo denotes the minimax or L. regression with is optimal
for uniformly distributed residuals; this approach is maximally sensitive to outliers. In contrast, the
least absolute deviation (LAD) or L; approach is a robust form of regression [19] as it is minimally
sensitive to outliers. The LAD approach is optimal for Laplace (double exponential) distributed
residuals, and does not necessarily yield a unique solution for the fit coefficients. The standard least
squares or L, regression is taken as the middle approach and is optimal for normally distributed
residuals. We use the p = 1,2,00 norms to represent the full range of behavior. The principle
justification for this approach is that least squares regression represents a median expected behavior
and the remaining two cases bound the range of behavior. While one can invent any number of
ways to distribute p within this range, the effect of the choice of distribution is unknown and using
more than three norms to span this space would involve ad-hoc assumptions without more rigorous
theoretical justification.

G(B.Y)=11(W)" [t =Z(NB] | (2.11)

Weighting strategies are commonly used to control the degree of heteroscedasticity (non-
homogeneous variance of the response variable with respect to the discretization parameters). The
weighted least squares approach uses variance based weighting, which uses the sample variance to
emphasize regions with lower variance in the objective function (Equation 2.11). We use weight-
ing for the additional purpose of emphasizing different regions of discretization parameter space.
For stochastic code output, using weights which are a function of the refinement level generally
involves a tradeoff between the accuracy of the error model and the strength of the convergence
signal (variation of the response as a function of the discretization parameters). Specifically, in the
less refined regions of discretization parameter space, the convergence signal is larger and more
easily distinguished from the stochastic noise, but may be outside the asymptotic region where the
error model is expected to hold. In refined regions, although the convergence signal response is
likely to be within the asymptotic region, it can be dominated by the stochastic noise. In this work,
we used three different weighting strategies, for which an expression for the individual elements
of w* are shown in Equation 2.12. All cases include the standard variance-based weighting; here
o; is ideally represented using the variance model fit (6; from Equation 2.4), although the boot-
strap estimate (Gjl? from Equation 2.3) can also be used when the variance model fit is poor or the
fit parameters o, cannot be determined. Additional weighting to emphasize different regions of
discretization parameter space are specified by a(s) € 0,£1: standard variance weighting is indi-
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Table 2.1. Fitting model L, norm and weighting strategy a(s) for
the various fitting models s = 1,2,...,9.

p(s) | als)
| -1
1|0
I
2 | -1
2 |0
2

1
-1
0
1

O 00 IO\ N AW =«

cated by a = 0, while a = £1 emphasizes less refined and more refined regions of parameter space
respectively. Three weighting strategies and three L, error norms results in a total of nine fitting
models with the parameters specified in Table 2.1.

WS = (Hq X‘Ij) “
J o

(2.12)

The fits were performed using nonlinear optimization. Due to the highly nonlinear nature of the
error model (2.7), we adopted a nested approach for efficiency. Specifically, the fitting is performed
by minimizing G*(B’(y),y), where B'(y) = argming G*(B,¥). For robustness in the presence
of noisy and/or ill-behaved response data, the convergence rates were constrained according to
yg /A<y, < 270, where yg are the theoretical convergence rates. Since the convergence rate can
be problem dependent, and a value of half the theoretical rate is commonly encountered for certain
classes of degenerate problems (e.g., the presence of discontinuities), the lower bound was set
to include this possibility. Setting a lower bound closer to zero can lead to erroneous results as
convergence rates may cause the Bngq to duplicate the effect of f3y, thus corrupting the estimate
of the converged response estimate.

For least squares fits (p = 2), the inner optimization loop can be evaluated directly by solving a
matrix equation using a standard approach [11] for linear regression. In this case, the coefficients
BI can be obtained by solving [Z WZ] B/ =7 "Wu, where W is a diagonal M x M matrix with
(nonzero) elements given by W;; = (WT)z; this procedure results in significant computational cost
savings for the least-squares inner regression. Biconjugate gradient stablization [35] was used
to solve the above matrix equation, as poorly-conditioned matrices are encountered for practical
problems. This procedure is also useful for initializing the nonlinear optimization scheme for
general L, norms by using an L, initial guess. For L and L. inner optimizations and all outer
optimizations, Nelder-Mead optimization [22] was used. Due to the potential for finding local
minima in the outer optimization step, a multi-start global optimization scheme is employed which

compares multiple fits with different initial guesses for the convergence rates and keeps the result

25



which achieves the smallest objective function. In this procedure, the theoretical convergence rates
is used as one of the initial convergence rate guesses, while the remaining are obtained as Latin
hypercube samples from a uniform distribution bounded by the constraints (}/g J4 <7y, < 2}/,9). In
this work, we found that using ten sets of initial guesses for the convergence rates was sufficient.

Error Estimation

In a typical StREEQ analysis, the fitting procedure is repeated for each of nine fitting models for
each bootstrap sample. In this work, we used B = 100 bootstrap samples, which corresponds to 900
total samples and provided reasonably smooth statistics. The key output quantities are the pooled
fit parameters—ﬁé’s, é’s, é’rs, y;’s with b =1,2,...,Band s = 1,2,...,9—from which the overall
confidence intervals can be established. Since the B parameters appear with linear dependence in
the error model (2.6), it is straightforward estimate the lack-of-fit uncertainty from the residuals
and the Jacobian for the error model for a single regression (b,s); the standard approach is to
included the uncertainty (variance) shown by example below for é’s , where the variance in the

remaining 3 parameters is similarly constructed.

1 dg;\ 2 2
Giog(By*) = 1—N/3—DZ.(8/3;) (ej-”) (2.13)
J

For this work, we adopted an alternate approach consisting of lack-of-fit corrections to the
pooled fit parameters shown below. Here, the B are lack-of-fit corrected discretization error model
coefficients (). In this approach, the set of 9B parameters is expanded to a set of 9BM (9 fit
models, B bootstrap samples, and M discretization levels) parameters which substantially smooths
the pooled sample distribution. When the fit quality is high (small, well-behaved residual dis-
tributions), this correction is negligible, especially for ;. However, when the fits are poor, this
correction helps retain the conservative nature of the estimates.

< M—1
B = gAer—_Nﬁ_ng?s (2.14)
~ M—1 e\ !
bs bs bs
— ; 2.15
25 =Py +M—N,3—D (a[sq) £ (2.15)
~ M—1 e \ !
bs bs bs
Pip— . 2.1
arJ q’+M—Nﬁ—D (&ﬁqr> € (2.16)

Due to the highly nonlinear dependence of the error model on the convergence rates, no lack-
of-fit correction was applied to the pooled y values since the Jacobian can tend toward zero at
specific discretization levels in practical problems. Moreover, the linearization step introduced in
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the derivation for such expressions may not be a valid approximation when the lack-of-fit error
is large. However, lack-of-fit corrections for the convergence rates are not generally needed for
verification problems. Good code verification problems are computationally cheap enough to allow
sufficient data well into the asymptotic region, and therefore lack-of-fit corrections will be small.
In contrast, solution verification problems can be very expensive, which usually limits the size of
the response data set to the point where precise estimation of the convergence rates is not possible.

The StREEQ approach generates a large amount of data samples, enabling a wide variety of
error estimates. Typically, the most important result is obtained from the pooled statistics of ﬁ bsj;
from which numerically derived 95% confidence intervals provide a useful estimate of the fu17ly
converged Qol with numerical uncertainty. For code verification problems with a sufficiently large
response data set, estimates of the convergence rates may also be obtained and are useful for di-
agnosing code bugs and algorithmic performance. Evidence for the credibility of these results can
be obtained by examining the residuals plot or performing an F-test for lack-of-fit for the variance-
weighted least-squares regressions; both are discussed in a later section within this chapter.

Discretization Parameter Domain Reduction

Parameterized discretization error models, like the one used in this report (Equation 2.7), gen-
erally only hold asymptotically in the limit X, — 0, which is referred to as the asymptotic region of
discretization parameter space. As this is violated, the quality of the error model fits suffer. Gen-
erally, accuracy and numerical stability considerations for the type of solution being solved will
provide a starting point for the coarsest discretization levels to use. In PIC plasma simulations,
nonphysical self-heating (and other) undesirable effects are encountered [18] for Ax 2 Ap, where
Ap = /€Ty /(eng) is the electron Debye length in terms of the permittivity of free space &, ele-
mentary charge e and reference density ng and temperature 7. The most commonly-used dimen-
sionless form of the time step is the cell-based Courant number defined by voAz /Ax where vy is a
characteristic speed. For electrostatic PIC methods, vy is typically the thermal speed vi = /2eTy/m
or equivalently (neglecting the factor of \/E) vo = WpAp wWhere @, = +/ e2ng/(gym) is the electron
plasma frequency and m is the electron mass. For electromagnetic PIC methods, choosing vy as
the speed of light is generally appropriate. Choosing Courant numbers of greater than unity can
lead to gross inaccuracies, while numerical instabilities can occur for wpAf 2 1 when explicit-time
stepping is used. [5, 18]

In the best case scenario for a given set of simulation responses, the S(REEQ method will
obtain fits with a reasonable fit quality in the first application. Poor fit quality may indicate an
inappropriately chosen discretization error model, the presence of other sources of numerical error
(e.g. round-off or iterative error), or that discretization parameter domain € (i.e. the total set
of discretization levels spanned by the response data set) contains points outside the asymptotic
region. In the latter case, the fit quality may be substantially improved by suitably restricting
by removing a subset of the coarser discretization levels. This restriction can be performed by
trial and error, although this becomes highly cumbersome, especially for multiple discretization
parameters and/or time/spatial dependent data. To address this, we developed a discretization

27



parameter domain reduction scheme to sequentially reduce the size of discretization parameter
domain by identifying and excluding regions where the fit is poor. By performing StREEQ analyses
on each reduced domain in discretization parameter space, an optimal domain can be identified.

The first component of the discretization domain reduction scheme is the identification of a core
region, defined as the minimum set of the most refined points in discretization parameter space for
which the fits are overdetermined. Therefore, the core region Q* of the entire domain Q will have
the following properties: (i) it will consist of M* = Ng + D+ 1 unique points in discretization space,
and (i1) it will have a minimum of three distinct points X, for each discretization parameter g (in
order to enable convergence rate estimates). Determining this core region involves first producing
a scaled version of the set of discretization levels X, such that X, = 1 when X, is the third smallest
unique value in for each g; thus, retaining all points with X, < 1 would be guaranteed to include a
minimum of three unique values of X,,. Using these scaled points, the core region Q* is defined as
the set of discretization levels obeying the inequality below for positive real numbers (.S, Q) which
are determined by the algorithm.

1/8
(ZXqS) <Q (2.17)
q

In the above, for the limit S — oo expression reduces to max, X, < Q. The algorithm proceeds
as follows:

1. Set S =0 and Q = 1. If inequality (2.17) contains exactly M* points, exit. If the number of
points is < M* proceed to step 2. Otherwise, proceed to step 3.

2. Find Q > 1 such that inequality (2.17) contains exactly M* points and exit.

3. Find bounded S such that inequality (2.17) contains exactly M* points and exit.

The resulting (S, Q) will generally result in a core region Q* with the desired number of points M*.
For specific cases, when exactly M* cannot be achieved with the above algorithm, the approach is
to find optimal parameters (S, Q) resulting in the smallest discretization level greater than M* and
eliminate points satisfying (¥, XJ) 1/s
in the core region.

= Q taken at random until precisely M* points are retained

The second component of the discretization domain reduction scheme is a technique for deter-
mining the points with the largest residuals using LAD (or L;) regression. For the L; regression
weighted to overrepresent the more refined regions of discretization parameter space (model s = 1
in Table 2.1), we expect the corresponding fits will have maximal ignorance of outliers in the com-
plement of the core region Q*, and therefore will act to emphasize discretization levels with large
X that have a poor fit to the error model. Since multiple bootstrap residuals values exist for each
position j € Q, we can identify the discretization levels with the poorest fit on the basis of me-
dian and 95% confidence interval bounds using the Z; variable defined below. Here, sj-"’ and 8;—L
correspond to median and upper/lower 95% confidence bounds respectively.
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Ej:—/ﬁforej-uéo (2.18)

The E; variable has a simple interpretation: when |Z;| < 1 the zero value is contained within
95% confidence bounds, while the sign (£) indicates that the median residual is above/below
the zero value. Thus, the largest |E;| indicates the point j* = argmax;|Z;| which is the most
poorly centered about zero. When this point occurs in the core region, it indicates that the fits are
unlikely to improve by further reducing the domain; this defines a stopping point for the algorithm.
Otherwise, when the largest value of |E j| occurs outside the core region, a reduced domain Q' is
formed by using j’ as a pivot to remove points from the domain. Specifically, Q' is the set of points
J for which X,;; < X, in for all g.

Using this process, a full set of StREEQ fits is performed on a sequence of reduced domains
(Q0,Q1,...); a schematic representation of such a sequence is shown in Figure 2.1. The expected
behavior is that the derived uncertainty estimate for the various fit parameters decreases as points
outside the asymptotic region are removed up to a point where the lack of data leads to increased
uncertainty. Thus, the typical work process is to perform a StREEQ analysis for the entire sequence
of subdomains and choose the optimal domain as that resulting in the minimum pooled variance in
the estimated fully-converged result (Equation 2.14); although an alternate choice for the reduced
domain can be used (for example, a smaller domain than the minimum variance domain may be
optimal when credibility is of paramount importance). This procedure is easily automated, and
results in a substantially simplified workflow for performing numerical error analysis for cases
with multiple or time/spacial dependent Qols.
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Figure 2.1. An example sequence of reduced domains fora D =2
dimensional discretization parameter space. The core region Q*
boundary is shown in gray, while subsequent reduced domains
(Q0,Q1,8) are shown in blue, red, and green respectively. Also
shown, are points of maximum |Z| for each StREEQ analysis.
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Credibility Assessment

The error estimation provided by the StREEQ method is is fundamentally built on the as-
sumption that the discretization error model provides a reasonable description of the convergence
behavior. Thus, evidence to support the credibility of the error estimate can be obtained by examin-
ing the residuals of the discretization error model fits. Although this examination can be performed
by visual inspection in simple cases (i.e., by looking for significant outliers or obvious trends), it
is not feasible for multiple Qols or time/spatial dependent results.

The credibility can also be assessed by the F-test, which is a goodness-of-fit statistical test for
regression [21]. Since the F-test is based on the assumption of normally distributed residuals, the
test is only valid for the variance-weighted least-squares fitting model (s = 5 in Table 2.1). Since
this fitting model is the “median approach” for the error norm and weighting strategy, this provides
a reasonable metric for highlighting poor model fits. Note that a poor model fit might be due
response data occurring outside the asymptotic region (addressed by obtaining more response data
in the asymptotic region or by reducing the discretization domain), or a fault with the simulation
code or the problem being simulated (e.g. shocks).

The F statistic for a bootstrap sample b is defined as

»  N-M XN, (wig;)

“M—-N;—D 2
BT LW (V- u))

) (2.19)

where the w;, 11}, and &; are for the variance-weighted least-squares regression model exclusively.
This F statistic is evaluated for each bootstrap sample, yielding a distribution of values, each of
which are compared to the critical values for the F distribution with degrees of freedom vi =N —M
and v, =M — Ng — D at a specified significance level pcrir. Here, the critical values Fq are obtained
by inverting the cumulative F distribution .% according to .7 (Fu; V1, V2) = 1 — perir. Alternatively,
the probability values p for each F statistic can be evaluated directly via p® = 1 —.Z (F?; vy, v2).
For p values larger than a chosen significance level (e.g., with a median greater than 5%), evidence
for the credibility of the error estimate is obtained.

It is important to note that the F test alone is not proof of the credibility for solution verification
and validation problems, but rather further evidence built on top of the code verification activities
(see Chapter 1). However, even in the absence of systematic V&V activities to support solution
credibility, the StREEQ method tends to be surprisingly robust and conservative. In these cases,
using StREEQ error estimation for solution verification still generally results in a better estimate
of the converged result than the most refined case.
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Chapter 3

Application to Verification Problems

In this section, we apply the theory developed in Chapter 2 to several verification problems,
including: (i) an engineered data set with a known bias for less refined points in convergence
space, (ii) a steady electron diode problem, and (iii) a time-periodic electron diode problem. These
problems were chosen both to test various aspects of the StREEQ method, as well as to demonstrate
key steps in the code and solution verification process which are required to establish credibility
for computer simulations relevant to a particular application [24].

The theory in Chapter 2 was implemented in MATLAB! and used to analyze all cases presented
in this report; we used B = 100 independent bootstrap samples for each fitting model with weights
based on the variance model fits (rather than the bootstrap sample deviation in the mean), and
achieved excellent results.

Engineered Data Set Example

In order to test the discretization domain reduction algorithm, we created artificial data sets
using the following model.

Y = 1—0.1X? —0.05X, — 0.1X2X, + £ +0.1X/X) *sin (27 [log (X, vX2) +0.25])  (3.1)

In the above expression, the first four terms are clearly in the form of the discretization error model
(Equation 2.6), while the last term is a bias term which disappears for small X. The stochastic noise
term € is modeled with zero mean and fixed variance of 4 x 1076 /N where Nj is the number of
replications simulated for each point in convergence space. The points in convergence parameter
space were chosen as X| = 1, %, %, %,% and X, =1, %, %, i, % For this set of parameters, the bias

term is significant for only the coarsest point (X; = Xp = 1).

We first consider the case with normally distributed error with N; = 5 replications at each point
in convergence space, which is plotted in Figure 3.1; the large bias at X; = X, = 1 is very appar-
ent. Since the data was chosen with constant pointwise variance in the mean, we employed the

'MATLAB 2014b, The MathWorks Inc., Natick, MA
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variance model fit with o; = a; = 0, which was confirmed using the Brown-Foresythe test. After
performing initial StREEQ fits to the entire data set, the discretization domain reduction algorithm
identified the point X; = X, = 1 as having the largest |Z| indicating that it is the worst outlier in
the coarse region as expected. Subsequent fits further reduced the size of the domain, although
the lowest uncertainty in the converged result estimate is obtained by removing only the single
worst point in this case. The full fit coefficient distributions are shown in Figure 3.2 for the full do-
main (£2g) and subsequent reductions (€2 and €,) of the data set. Clearly, the StREEQ technique
based on € does an excellent job estimating the true fit coefficients; and surprisingly, the fits for
Qo nearly capture all the true fit coefficients, albeit within much larger uncertainty bounds. Note
that in Figures 3.2(a) — 3.2(d), both the raw (solid) and lack-of-fit corrected (dashed) coefficient
distributions are shown. In the problems considered in this report, the lack-of-fit correction was
found to be a relatively minor effect for 3y, and for all subsequent plots shown in this report, only
the lack-of-fit corrected results will be plotted. For the full data set fits, clustering around the fit
constraints in y; and 7 is observed, which is indicates very large uncertainty in the convergence
rates; although, since the majority of the fit values occur between the fit constraints, this does not
necessarily indicate deviation from theoretical convergence rates.
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Figure 3.1. Plot of of generated data points for Ny = 5 (symbols)
compared to the first four terms of Equation 3.1 (lines).

Evidence supporting the credibility of the StREEQ estimates is obtained by analyzing the fit
residuals. The raw fit residuals for the full data set €y and reduced domain ; are shown in
Figure 3.3 for each fitting model. Clearly, significant outliers appear for the full data set, while
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the residuals are reasonably centered about zero for the reduced domain €. The F-test for the
variance-weighted least-squares also indicate a poor overall credibility for the full data set, but
reasonable results are obtained for reduced domains which remove the point at X; = X, = 1. The
median p values are negligible, 5.2%, and 11% for discretization domains Qg, 1, and Q; re-
spectively; the latter two values exceeding a significance level of 5%. This is also shown in the
full distribution of p values in Figure 3.4; here a clear separation between £y and subsequent
distributions is observed.
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Figure 3.2. Fit coefficient distributions for full data set (blue) and
reduced domains (green, red) for normally distributed noise with
N; =5. Solid lines are raw f3 values, while the dashed lines for the
ﬁ coefficients include the lack-of-fit error corrections (see Equa-
tions 2.14-2.16). The horizontal error bars are 95% confidence
intervals and vertical lines indicate exact values. The dots on the
left side of the fy plot are the response data used to perform the
fits, where the blue and green dots were eliminated after the Qg
and Q, fits respectively.
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while repeated points are obtained from fits for multiple bootstrap
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We also used the engineered data model for exploring the effect of the number of replications
and the form of the stochastic noise distribution. To investigate the first effect, we performed a
full StREEQ analysis on data sets constructed by varying the number of replications per point in
convergence space N; (for normally-distributed noise with identical variances in the mean). In all
cases, the automated discretization domain reduction algorithm identified the point X; =X, =1 as
the worst outlier in the first iteration, and the best results (minimum uncertainty in f3y) were found
for domain Q. The lack-of-fit corrected distribution fy is shown for many values of N; in Figure
3.5, demonstrating only random differences. The median p values for the F-test varied widely with
no discernible trend from 0.6% to 11% with an average of 5.5%. This result is significant because
it provides evidence that the StREEQ method (with variance fitting) gives reasonable numerical
error estimates even for a very small number of replications.
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Figure 3.5. Estimated converged result distribution for normally
distributed noise for various numbers of replications N;.

To investigate the effect of the noise distribution, we used the engineered data model for five
distributions, each with the same variance, mean, and N; = 100. In addition to normal, we created
data with Laplace, uniform, log-normal, and beta distributed noise. The additional parameters
for the log-normal and beta distributions were chosen to result in highly skewed distributions, as
shown in Figure 3.6. The resulting StREEQ analysis predicts the uncertainties in the converged
result shown in Figure 3.7. While all distributions capture the true solution well, the effect of skew
in the log-normal distribution clearly results in a greatly increased uncertainty for 3y > 1. The F-
test results are not reported here, as the choice of clearly non-normal error distributions violates the
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inherent assumptions. Nevertheless, at least for the present test case, the validity of the StREEQ
method does not seem to be dependent on normality of the noise distribution.
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——uniform
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1L
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/ :
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Figure 3.6. Alternate noise distributions.

Finally, we tested the effect of heteroscedastic response data by generating data of the form of
Equation 3.1 with normally distributed stochastic noise with variance 2 x 107X, /Ny with N; = 5.
Note that this new specification maintains the original variance at X, = %, but results in higher
variance for other values of X,. The variance model fit was used with @; = 0, ap = 1, which
was again confirmed using the Brown-Foresythe test. As before, St(REEQ determines the initial
reduced discretization domain € by omitting the point X; = X; = 1, and subsequent reduced
domains containing 15, 11, and 9 out of the original 25 points. The converged result estimates
are shown in Figure 3.8; note that the true solution is captured within estimated 95% confidence
intervals for every choice of discretization parameter domain. The minimum variance reduced
domain is Q; for which the median F-test probability value is 9%. The other fit coefficients are
also captured very well, but aren’t shown here.
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Figure 3.7. Estimated converged result distribution for various
noise distribution choices with Ny = 100.
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Figure 3.8. Estimated converged result distribution with het-
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the left side are the response data used to perform the fits, where
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Stationary Diode Verification Problem

The Vlasov-Poisson-Child-Langmuir (VPCL) diode consists of two electrodes maintained at
zero potential (voltage). At one electrode, Maxwellian (normally-distributed in velocity) electrons
are injected into the physical domain. Only the electrons injected with sufficiently high energy to
overcome the induced potential field will make it to the other electrode to be collected, while the
rest are turned around and collected at the injection electrode. A full solution to the steady-state
electron current is derived in Appendix A. For the simulations, we used the Aleph [3] PIC plasma
simulation code, which is believed to be second-order convergent in space and time, and first-order
convergent in macroparticle weight.

Dimensionless forms of the discretization parameters were chosen based on standard practice
for collisionless kinetic plasma simulations, and are defined below. The grid size Ax is scaled
by the reference electron Debye length Ap, where ox = 1 corresponds to a numerical stability
limit. Likewise, time step Af is scaled in terms of its number of cell traversals per time step.
Since Aleph is an electrostatic PIC code, we choose 7LDa)p as the reference electron velocity. Note
that the definitions for Debye length and plasma frequency were defined in the previous chapter.
Restricting our analysis to one-dimensional problems, the dimensionless form of the MPW, W, is
scaled by the number of physical particles in a Debye length,”> where A is the cross-sectional area
normal to the current flow direction (electrode surface area), which is scaled out of the problem in
one-dimensional simulations.

Sx=Ax/Ap (= X)) (3.2)
ot = QLD(L)pAt/Ax (: Xz) 3.3)
P = MPW/(n0AAp) (= X3) (3.4)

For the VPCL diode problem, we used an injection number density of ng = 10'® m—3, injection
temperature 7o = 10 V, and a domain size L = 20Ap. The corresponding total electron current
is —J = 77.0596 A/m? (see Appendix A). This was simulated in Aleph using a one-dimensional
problem domain. The dimensionless parameters were chosen in the range % < 0x,6t < 1, where

subsequent increments differ by a factor of approximately \/Li’ and 4096 < ¥~! < 64, where sub-

sequent increments differ by a factor of % (note that this method of selecting discretization levels
satisfies Equation 2.1). The steady state current values were recorded after 1000 electron traversals
(i.e. t > 1000 x L/Ap®,) and averaged over time bins of size (2000/w,) x ¥; the variable time
bins were used to generate samples with constant variance. In total, Ny = 700 independent repli-
cations were generated by sampling the particles injected into and exiting out of the simulation
domain. The various StREEQ error estimations performed below used variance model fits with
o = 0 = oy = 0, which was confirmed using the Brown-Foresythe test.

2For two- and three-dimensional simulations, the weight may be indexed to specify a number of computational
particles per an area or volume indexed to the Debye length; e.g. within a Debye circle or Debye sphere.
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Code Verification

The VPCL diode problem is a good code verification problem because it exercises a useful
physics model (Maxwellian distributed electron injection above the space charge limit), is com-
putationally inexpensive, and most importantly, has an analytical solution. Applying the StREEQ
error estimation technique to the full set of available data resulted in multiple reductions of the
original data set with the best results (minimum variance) achieved for reduced domain €2;;. This
reduced data set is shown in comparison to the full data set ¢ in Figure 3.9. This drastic reduction
in the data set (from 343 to 103 points) occurred principally because the small pointwise variance
(due to the large number of replications) made the fits more sensitive to discrepancies with the
error model for coarser points in convergence space. The principle discrepancy noticed was oscil-
latory convergence in time step for coarse points in convergence space.> The resulting prediction
for the diode current, shown in Figure 3.10, has 95% confidence intervals 77.019 < —J < 77.076
A/m? and a median value of 77.054 A/m?; this is an excellent prediction of the true result (77.0596
A/m?).

Figure 3.9. VPCL diode verification problem points in dis-
cretization space: full data set (blue) and minimum variance do-
main (red).

3The reason for the observed oscillatory convergence in 8¢ is unknown. However, the electric potential field and
particle motion is tightly coupled in space charge limited current flow, and the oscillatory convergence behavior may
be due to cross-coupling between field and particle numerical error due to the time-splitting algorithm in PIC.
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Figure 3.10. VPCL diode code verification problem StREEQ
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the fits for the minimum-variance discretization domain. Vertical
line is the exact value.
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The convergence rates are shown in Figure 3.11. While the mesh and MPW results do confirm
the theoretically predicted second- and first-order convergence rates, minor clustering of the fit
values around the constraints for time step convergence is observed. This clustering is a result of a
very small time convergence signal which causes many fits to register unreasonable results for time
convergence rates that are excluded by the fit constraints. On the basis of this StREEQ analysis,
we can only claim that these results are consistent with second-order time convergence. For MPW
convergence, a plateau occurs at approximately 0.87 < yp < 0.95 which is due to the pooled
distribution of yp being a composite of nine different fit models; near this plateau, the primary

numerical uncertainty contribution for g < 1 comes from the refined- and coarse-weighted Lo
norm fitting models alone.
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Figure 3.11. Convergence rates for VPCL diode code verifica-
tion problem: (a) mesh, (b) time step, and (¢) MPW. Vertical black
lines are the theoretical values.

The residuals, shown in Figure 3.12, are reasonably clustered around zero for the reduced
domain. Note that the obvious heteroscedasticity in the refined- and coarsely-weighted fits is
expected as it introduces a deliberate bias in the data set. The median p value for the F-test in this
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case 1s 0.07%, which is very poor. This is likely due to the very large number of samples which
provides enough statistical evidence to find even the smallest issue with the discretization error
model (e.g., the oscillatory 8¢ convergence behavior).
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Figure 3.12. Residuals for VPCL diode code verification prob-
lem.

Since the largest discrepancies with the discretization error model were observed for time con-
vergence, the obvious approach is to reduce the dimension of convergence space by keeping only
the data with the most refined time step. The validity of this approach requires that 6t = % be
fully converged in time; this is demonstrated in Figure 3.13 for three different levels of conver-
gence in (6x,¥). This plot also demonstrates the oscillatory convergence signal in 8¢, which
is sustained until fully converged in time step. Using this approach, the minimum variance re-
duced domain (containing 27 out of the original 49 points) yields 95% confidence intervals of
77.040 < —J < 77.085 A/m? and a median value of 77.056 A/m?, where the full distribution is
compared to the underlying data in Figure 3.14. Most importantly, the median value for the F-test
p value is now 17%, indicating less discrepancy with the discretization error model and therefore
substantial evidence for the credibility of the result. This is also consistent with the improved
behavior of the residuals distributions shown in Figure 3.15 The spatial and MPW convergence
rates again confirm the theoretical second- and first-order convergence, however, these are not
reproduced here as they are similar to Figures 3.11(a) and 3.11(c).
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Solution Verification

In contrast to code verification problems, solution verification problems are typically much
more computationally intensive with an unknown solution. However, the lack of a known solution
makes such problems a poor test of the SIREEQ method. Instead of a real solution verification
problem, here we use a drastically reduced subset of the data for the VPCL diode problem as a
test solution verification problem in order to adequately test the method. In this case, only seven
replications (out of the original 700) for points dx, 5t > % and ¥~! < 256 were retained. The
resulting prediction for the converged diode for this case is shown in Figure 3.16, which used
only 19 of the original 27 data points. Due to the drastically reduced size of the data, there is
significantly more uncertainty in the prediction, although it still nicely brackets the true solution.
Likewise, due to the increased pointwise variance of the underlying data, the lack-of-fit F-test
obtained a median p value of 8.3% which supports the credibility of this result.
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Figure 3.16. VPCL diode solution verification problem StREEQ

prediction for diode current (red) compared to the data set used for
the fits.
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Periodic Diode Verification Problem

The final verification problem considered in this report is a time-periodic electron diode with an
implicit analytic formulation derived recently by Caflisch et al. [7] This consists of a simple diode
in which cold electrons are emitted from a grounded cathode with a sinusoidally varying density,
but the anode is driven with a specific (non-sinusoidal) periodic variation in electric potential. The
time-dependent current density at the anode Ji, which is QOI in this case, was found to exceed the
Child-Langmuir limit [20] on average. Using the dimensionless parameters reported in Caflisch et
al. [7] and scaling the electron injection density and velocity by 10'> m—3 and 10° m/s respectively
(in order to simulate physically realistic values); this results in a L = 31.5 mm diode driven with
a period P = 57.1 ns. We fixed the time step to 1.12 ns (512 time steps per period) which is
sufficiently small to ensure a fully-converged time step for all meshes. QOI data was recorded
after 100 simulated periods in order to omit the early transient effects.

Due to the cold injection condition, defining a reasonable Debye length was problematic, and
therefore alternate definitions of the convergence parameters were defined. Dimensionless grid
size was defined as 0x = Ax/L, where 5x7! ranged between 8 and 64. The dimensionless MPW
¥ was defined as the inverse average number of particles in the entire simulation and ¥~! varied
from 512 to 32768. The discretization levels followed a staggered grid pattern as shown in Figure
3.17. Using a staggered pattern can allow a more efficient covering of discretization parameter
space with fewer simulated values, and was used for that purpose in the present example. The
number of replications for each point j in convergence space was set to N; = ¥—1/4096 in order
to preserve a pointwise constant variance in the mean.

This verification example was chosen principally to demonstrate the utility of the discretization
domain reduction approach for performing numerous StREEQ error estimations at multiple time
periods. Here, we found an independent error estimate at 17 different time periods spaced 32 time
steps apart. The variance model fit was used with ¢, = 0 and oy = 1 to account for the variability
in the number ~ W~! of computational particles in each simulation, and the fit of the variance
model was confirmed using the Brown-Forsythe test. This example was chosen primarily due to
the time-dependence in the QOI. Performing StREEQ error estimation for this problem is greatly
simplified by the discretization domain reduction algorithm, which independently determines a
minimum-variance domain for each time step. In this case, the minimum-variance domain ranged
from nine to 25 discretization levels for various time steps. The results, obtained at intervals of 32
time steps, are shown in Figure 3.18, which show excellent agreement with the result of Caflisch et
al. In this case, the stochastic noise level was the dominant contribution to error estimate for most
points in time, but grid and MPW convergence also influenced the results. The median p values
for the F-test were greater than 50% for all times shown in the figure.
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Chapter 4

Summary and Future Directions

The stochastic Richardson extrapolation based error quantification (StREEQ) method is a pow-
erful numerical error analysis technique for stochastic code response data. This method is based on
using set of nine fitting models to represent uncertainty in the fitting process (influence of outliers,
relative importance of subregions of discretization parameter space), while multiple bootstraps rep-
resent the influence of stochastic noise inherent in stochastic particle simulations. These features
result in a method which appears to produce robust and conservative estimated confidence intervals
for the fully-converged result, even in cases when credibility (as estimated by a lack-of-fit F-test) is
highly suspect. By using engineered data sets and steady and time-periodic electron diode simula-
tion data using a PIC kinetic plasma code, we demonstrated its usefulness for code verification and
solution verification problems, which are key components in the overall verification and validation
(V&V) process.

Future work is expected in two key areas: (i) performing StREEQ analysis for verification
problems using existing and new Sandia analysis codes, and also (ii) development of a method to
efficiently combine StREEQ numerical error estimation with input parameter uncertainty. In the
first area, the existing Sandia plasma codes of interest include the Aleph [3] electrostatic PIC and
the EMPHASIS [34] electromagnetic PIC codes; in addition, EMPIRE, an electromagnetic PIC
plasma code which is currently in the early phases of development. For these codes, a subset of
the regression test suite can be modified to perform StREEQ analysis code verification tests. This
introduces several important advantages, including: allowing for a direct comparison between ex-
act results by incorporating the numerical error estimation, and by using the convergence behavior
as a diagnostic for changes in algorithmic behavior.

Additional future work will entail the development a combined uncertainty estimation approach
which effectively combines numerical error estimations obtained from StREEQ analyses with input
parameter uncertainties obtained by another method (such as Latin Hypercube sampling). This
may be complicated in certain applications, as the convergence behavior may be radically different
in different regions of input parameter space, as was observed in a recent validation exercise [9].
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Appendix A

Vlassov-Poisson-Child-Langmuir Diode
Solution Derivation

In this section we derive the solution for a one-dimensional, time-independent Child-Langmuir
diode. This solution has been shown with more generality, arbitrary emission distribution, and
finite voltage across the gap in Greengard and Raviart [17] and Degond [10]; however, the simpler
solution shown here has a Maxwellian emission distribution and zero voltage across the gap. For
the basic background on kinetic plasmas, the interested reader is directed to Reference [20]. While
an electron diode is our primary consideration, our derivation is made in more general terms to
consider a single particle species with arbitrary charge.

For a one-dimensional collisionless non-magnetized plasma consisting of a single charge species,
the governing equation for the velocity distribution is the one-dimensional Vlasov equation

of , 9f of _
5 gy Hakig, =0, (A.1)

where f(x,vy) is the distribution function which is a function of spatial coordinate x and the x-
coordinate of velocity v. Here, t is time, g is particle charge, E = —V ¢ is the electric field, and ¢
is the electric potential. The first term in Equation A.1 is identically zero for a time-independent
problem, which is achieved in steady-state conditions.

The governing equation for the electrical potential inside the diode is the Poisson equation
given by

V9 =—p/e, (A2)

where p = gn is the charge density for a single particle species with number density n, and & is
the permittivity of free space. Two boundaries are defined at x = 0 and x = L, where L is the length
of the diode. The inflow boundary condition is a Maxwellian particle distribution at x = 0, while
both boundaries are grounded, i.e. ¢(0) = ¢(L) = 0.

With d f/dt = 0, the solution to the above equations is an example of a conservative Hamilto-
nian. Thus, the velocity distribution f can be constructed from single particle trajectory solutions
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of the Vlasov equation that conserve energy mv)zC /2+ q¢(x), and extend the Maxwellian injection
condition to all space. The resulting distribution is

202
flx,vy) = Vt% exp [— (:—? + Cffv(tzx)>} ; (A3)

where ny is the injected particle density, v, = /2eTy/m is the thermal velocity, e is the elementary
charge, Tp is the injection temperature, and m is the particle mass. Note that for v, > 0 at x =0,
this expression reduces to the Maxwellian injection velocity distribution as expected.

From Equation A.2, we know that the potential field solution must have negative/positive cur-
vature on the entire domain for positive/negative particle charge respectively and a single potential
maximum/minimum within the domain denoted by ¢y, and located at x,. Thus, particles injected
with kinetic energies mv2/2 < q¢p, are reflected back to the boundary, while those injected with
mv2/2 > gy pass the potential extremum and are accelerated to the x = L boundary. This gives

the appropriate lower velocity bound on distribution (A.3) as vy > F1/2¢(¢m — @) /m for x < xp,.

The current is evaluated by integrating the first moment of the distribution function directly
using the lower bound discussed above

qnovt 2q0m gnovy =
Je = dvy vef(x,v) = (— > m (A4)
/ 2\/_ mv? 2\/_

where the (positive) dimensionless potential extremum is defined as @, = g, /(eTp). The current
flux is then determined by the value of @y, the solution of which is developed below.

The charge density is evaluated by direct integration.

p= q/dvx fx,v) (A.5)

To simplify the equations we introduce the following normalizations: 11 = vy /v, © = q¢ /(eTp),
& = x/Ls, where Lg = +/e€oTy/(q*np). For electrons, Lg reduces to the electron Debye length
based on the injection conditions. With this normalization, Poisson’s equation is now

dgz /dn e (42, (A.6)

where the integration limits in dimensionless form are now 1 > F/®p, — @ for & < &y; here &y
is the dimensionless potential maximum position.

Performing the integrations yield
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An additional integration gives an expression for the potential gradient, where d®/dé =0 at & =
Em was used.

(%)zz[lierf( cpm_q>)]e%<2\/¢mj;q’il>e“’m for § S&m.  (A8)

Equations A.8 are separable integrals that can be integrated from the walls to the potential
maximum which is equal to the length of the system.

AEL%/Oq)mdcb {[1+erf<\/m>]e_q)—<2 q)mnq)H)eq’m}l/z

{ [1—erf (VO —®) | e+ (2 q)mﬂ_cp - 1) eq’m}l/z (A.9)

The dimensionless length A is the single parameter that controls the system. Equation A.9
does not have a known analytical solution, but A & 4/ ®,¢%m is a close approximation obtained
by neglecting the 1/®,, — ® terms, which are small; this approximation bounds the solution from
above and has less than 5.6% error at all points. Series expansions of A — 41/ ®,ePm in <I>Iln/ 2 or

q);]l/ 2 can also be developed; however, the convergence properties would be poor near ®,, = 1 and
high precision numerical evaluation of Equation A.9 is computationally trivial. The relationship
between A and @y, is shown in Figure A.1, where the approximation is also shown.

The analytical result for the verification problem studied in this report was computed for an
electron diode (¢ = —e) using A = 20, which obtains &, = 2.3979. By fixing the injection density
tong = 10'® m—3 and the injection temperature to 7o = 10 V, a current flux of —J, = 77.0596 A/m?
is obtained.
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Figure A.1. Plot of dimensionless diode length (black, solid line)
and approximation (red, dashed line) as a function of potential ex-
tremum. In logarithmic scales, the difference between the exact
value and the approximation is difficult to discern.
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