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1 Introduction

Sensitivity analysis and uncertainty quantification (UQ) are important capabilities
for circuit simulation. Sensitivity analysis allows one to determine the most impor-
tant parameters governing the response(s) of interest, and uncertainty quantification
allows one to understand the probability distribution of the response, given proba-
bility distributions on the inputs.

Sampling methods are commonly used to perform UQ. While sampling is an at-
tractive approach for several reasons (e.g the accuracy and computational burden
is independent of the number of uncertain parameters, it is repeatable given a par-
ticular seed, it is fault tolerant in the sense one can drop failed sample evaluations,
and it is easy to understand), sampling suffers from the curse of dimensionality. A
large number of samples are required to estimate the output statistics, especially to
resolve small tail probabilities. The accuracy of the mean estimate obtained form
a set of random samples exhibits 1/ -NAN) convergence, meaning that on average
one needs to quadruple the number of sample points N to halve the error. Although
many improvements on sampling schemes have been developed to overcome these
limitations, such as Latin Hypercube Sampling (LHS) and space-filling designs, the
essential limitations of sampling still remain

One recent interest in the computational simulation community is the use of more
"embedder UQ methods. Specifically, there has been interest in implementing ad-
joints within expensive computational models, so that the adjoint equations can be
solved as part of the equation system governing the physics of the problem. [1-3].
Adjoint calculations generate local sensitivities, that is, the derivatives of a quan-
tity of interest with respect to an input parameter (usually at a particular time or
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condition such as a particular voltage level). In this paper, we document the im-
plementation of direct sensitivities for steady-state and transient behavior in the
Xyce circuit simulation. We then explore the use of these sensitivities in a UQ
method called polynomial chaos expansions. We outline the formulations for this
UQ method, and demonstrate the computational savings that can be gained when
using local sensitivities from Xyce in the UQ process. Note that in this paper, we
focus on formulations for the sensitivities and uncertainty quantification methods
that employ gradients. These approaches are broadly applicable. The particular im-
plementations of the approaches and algorithms that we describe are in two soft-
ware frameworks: Xyce, which is a parallel circuit simulator developed at Sandia
National Laboratories [4], and Dakota [5], which is an optimization and UQ toolkit
also developed at Sandia. These are both open-source software packages available at
https://info.sandia.gov/xyce and https://dakota.sandia.gov, respectively. We empha-
size that the algorithms and approaches presented here are general, but the specific
implementations we use to demonstrate these approaches are in Xyce and Dakota.

2 Sensitivities

Many UQ techniques can be enhanced if the application code is able to produce pa-
rameter sensitivities with respect to objective functions of interest. of interest. The
Xyce circuit simulator now has steady-state and transient sensitivity capabilities. In
this paper, we provide a high-level overview of how the sensitivities are calculated
in Xyce. For a more detailed description and derivation of the direct equations, the
reader is encouraged to look at [6]. Our primary use case has been using the sensitiv-
ity capability in Xyce (either steady-state or transient, depending on the problem),
with Xyce passing the sensitivities (the gradients of the objective function with re-
spect to parameters) to Dakota for use in an uncertainty quantification method.

Typically sensitivities are computed with respect to an output of interest. For
example:

dO dO (an-1 aF dO

dp dx dx ) dp+ dp 
(1)

Where O is the scalar objective function, p is a scalar parameter, F is the residual
equation and x is the solution vector. dF Idx is the Jacobian matrix. A typical ob-
jective function, O, could be something like a circuit output current, or possibly a
comparison of that current to measured data for purposes of calibration. The param-
eter, p, is a compact model parameter such as saturation current.

Sensitivities can be computed using two different methods; the direct method
and the adjoint method. These methods are mathematically equivalent, and the best
method for any given problem is a matter of computational efficiency. The difference
between direct and adjoint is related to the order in which the terms of equation 1
are computed [3, 7].
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The general form for direct sensitivities is given by equation 2, in which square
brackets have been added to equation 1 to indicate that dx/dp is determined first by
way of a linear matrix solve of the Jacobian matrix.

dO dO [( 

(9)c 

dF) +-1 dFd0

dp dx dp dp

dO dO dx dO

dp dx dp+ dp

Direct transient sensitivities are described in section 3.

3 Transient Direct Sensitivities

Transient direct sensitivities can be derived following the approach described by
Hocevar. [10]. In transient, the derivation is slightly more complicated than steady-
state, as the time derivative term, 4, must be accounted for. To be consistent with
the original DAE solve, it is necessary to derive forward direct formulas for all the
time integration methods of interest. For the sake or brevity, only a derivation for
Backward Euler will be given here, but a similar approach can be taken for other
integration methods such as higher-order Gear and Trapezoid. Detailed derivations
of the transient direct equations for second-order Gear and Trapezoid are given in
reference [6].

For any integration method, a transient direct equation can be solved by starting
with the differential algebcaic equation (DAE) form, which is given by:

F =4+ j—b= (4)

This equation is minimized at every time step in transient using a Newton solver. To
obtain the direct sensitivity equation, equation 4 must be differentiated with respect
to a parameter, p, and then re-arranged to give a linear system to be solved at each
time step:

dF d
—
dp
=

p
(4+ j-b)=0

dF_aq dj dx dji db

dp dp+ [dxdp+ dpi dp

3.1 Backward Euler Derivation

For Backward Euler integration, the general time derivative form is given by:

(5)

(6)
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(Pp ah(ddqp(xn) dapq (xn-i))-P2(x„_1)

If Backward Euler, then a = 1 and = 0, giving:

(xn) (xn 1))

Using Backward Euler, substitute in the equation for dq/dp:

dq  Oq dx dq

Op ax Op+ dp

dF 1 (rdqdx Oqi rdq dx

dp h[dx d 13+ dp] [dx dp+ dp] n-1) (10)
Id j ax dj] 01)

[dx Op+ Op] Op

Rearrange to put all the gn terms on the left hand side, and everything else on the

right:

(7)

(8)

dx
J = -FD+CR,

pn

Where J is the original Jacobian given by:

j [1 dq ±dji

[h dx dx]

(9)

(12)

FD is the "function derivative, or the partial derivatives that come directly from the
device models, and is given by:

1 [dq dq j db
FD= -

h 
(ypn- 

pn_1 
+—
Op
- 

p
(13)

The remaining term, CR, in this paper is referred to as the chain-rule term, given by:

1 [dqldx
CR= -

h 
Tx (ypn_1 (14)

Note that the chain rule term is using the Q-matrix (2) from the previous time step,
n-1. So, for the implementation to be correct, it is necessary to either store store

previous matrix-vector muliplication results of 2g.
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4 Polynomial Chaos Expansion Methods

Stochastic expansion UQ methods approximate the functional dependence of the
simulation response on uncertain model parameters by expansion in a polynomial
basis. The polynomials used are tailored to the characterization of the uncertain
variables. Polynomial chaos expansion is based on a multidimensional orthogonal
polynomial approximation.

One advantage of PCE methods is their convergence rate. For smooth functions
(i.e., analytic, infinitely-differentiable) in £2 (i.e., possessing finite variance), ex-
ponential convergence rates can be obtained under order refinement for integrated
statistical quantities of interest such as mean, variance, and probability. Another ad-
vantage of stochastic expansion methods is that the moments of the expansion (e.g.
mean or variance of the response) can be written analytically, along with analytic
formulations of the derivatives of these moments with respect to the uncertain vari-
ables. This property can be exploited in design optimization under uncertainty or
epistemic uncertainty problems [16]. A disadvantage of polynomial chaos, as for all
global approximation-based methods, is that they may not scale well to high dimen-
sions. Recent research in adaptive refinement and sparse recovery methods strives
to address this limitation.

Variance-based decomposition, which explains how output variance relates to the
variance of each input variable, may also be calculated analytically from a stochastic
expansion. This is a powerful capability for sensitivity analysis, where influential in-
put parameters can be identified and rank ordered. In particular, Dakota can generate
Sobol' indices for main, interaction, and total effects. A larger value of the sensi-
tivity index, si, means that the uncertainty in the input variable i has a larger effect
on the variance of the output. Analytic dependence on expansion coefficients makes
computing Sobol' indices essentially free. In contrast, estimating Sobol' indices
with LHS can be extremely expensive, since repeat multi-dimensional integrations
must be performed.

In PCE, the output response is modeled as a function of the input random vari-
ables using a carefully chosen set of polynomials. For example, PCE employs Her-
mite polynomials to model Gaussian random variables, as originally employed by
Wiener [17]. Dakota implements the generalized PCE approach using the Wiener-
Askey scheme [18], in which Hermite, Legendre, Laguerre, Jacobi, and general-
ized Laguerre orthogonal polynomials are used for modeling the effect of continu-
ous random variables described by normal, uniform, exponential, beta, and gamma
probability distributions, respectively. These orthogonal polynomial selections are
optimal for these distribution types since the inner product weighting function cor-
responds to the probability density functions for these continuous distributions.

To propagate input uncertainty through a model using PCE, Dakota performs
the following steps: (1) input uncertainties are transformed to a set of uncorrelated
random variables, (2) a basis such as Hermite polynomials is selected, and (3) the
parameters of the functional approximation are determined. The general polynomial
chaos expansion for a response g has the form
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P

g(x) E oc.,T,(x)
i=o

(15)

where each multivariate basis polynomial 'Pi (x) involves products of univariate
polynomials that are tailored to the individual random variables. If a total-order
polynomial basis is used (e.g. a total order of 2 would involve terms whose expo-
nents are less than or equal to 2, such as x12, x22, and xlx2 but not x12x22), the total
number of terms N in a polynomial chaos expansion of arbitrary order p for a re-
sponse function involving n uncertain input variables is given by: (n + p)!/n!p!. If
on the other hand, an isotropic tensor product expansion is used with order p in each
dimension, the number of terms is (p +1)n . If the order p of the expansion captures
the behavior of the true function, polynomial chaos methods will give very accurate
results for the output statistics of the response.

In non-intrusive PCE, as in Dakota, simulations are used as black boxes and the
calculation of the expansion coefficients oct for response metrics of interest is based
on a set of simulation response evaluations. To calculate these response PCE coef-
ficients, two primary classes of approaches are used: spectral projection and regres-
sion. The spectral projection approach projects the response against each basis func-
tion 'Ili (x) using inner products and employs the polynomial orthogonality prop-
erties to extract each coefficient. Each inner product involves a multidimensional
integral over the support range of the weighting function, which can be evaluated
numerically using sampling, tensor-product quadrature, Smolyak sparse grid [19],
or cubature [20] approaches.

In this work, we use regression-based PCE. Regression-based PCE approaches
solve the linear system:

= R (16)

for a set of PCE coefficients a that best reproduce a set of response values R. The
regression approach finds a set of PCE coefficients ai which best match a set of
response values obtained from either a design of computer experiments ("point col-
location" [21]) or from sub-sampling a set of tensor Gauss points ("probabilistic col-
location" [22]). The set of response values can be defined on an unstructured grid ob-
tained from sampling within the density function of 4 (point collocation [21, 23]) or
on a structured grid defined from uniform random sampling on the multi-index1 of
a tensor-product quadrature grid (probabilistic collocation [22]), where the quadra-
ture is of sufficient order to avoid sampling at roots of the basis polynomials2. In
either case, each row of the matrix IP contains the Nt multivariate polynomial terms
Wi evaluated at a particular 4 sample.

Additional regression equations can be obtained through the use of deriva-
tive information (gradients and Hessians) from each collocation point (refer to
use_derivatives in the PCE regression specification details in the Dakota Ref-
erence Manual [24]), which can aid in scaling with respect to the number of random

1 Due to the discrete nature of index sampling, we enforce unique index samples by sorting and
resampling as required.

2 Generally speaking, dimension quadrature order mi greater than dimension expansion order pi.
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variables, particularly for adjoint-based derivative approaches. The derivative equa-
tions are added to the set of regression equations as follows:

dg(x) = vP a dtlij(x)
dx dxj=o

(17)

Various methods can be employed to solve (16). The relative accuracy of each
method is problem dependent. Traditionally, the most frequently used method has
been least squares regression. However when IP is under-determined, minimiz-
ing the residual with respect to the £2 norm typically produces poor solutions.
Compressed sensing methods have been successfully used to address this limita-
tion [25, 26]. Such methods attempt to only identify the elements of the coefficient
vector a with the largest magnitude and enforce as many elements as possible to
be zero. Such solutions are often called sparse solutions. Dakota provides algo-
rithms that solve the following formulations: orthogonal matching pursuit, least an-
gle regression (LARS), least absolute shrinkage (LASSO), basis pursuit, basis pur-
suit denoising, and a standard least squares. Typically, we recommend using least
squares for over-determined systems and compressed sensing methods for under-
determined systems, which is the case when the basis functions are augmented with
additional basis functions representing gradient terms. Details of these methods are
documented in the Linear Regression section of the Dakota Theory Manual [27].

5 Results for CMOS Inverter Circuit

In this section, we demonstrate the use of the gradient-enhanced UQ methods on a
five-stage CMOS inverter which involves transient sensitivities calculated by Xyce.
We model a simple CMOS five-stage inverter circuit, which uses 10 instances of
the BSIM6 [28] compact model. This circuit is meant to mimic applications where
signal delay is the important metric. Each inverter stage adds to the signal delay. The
CMOS circuit is shown in Figure 1. The PMOS and NMOS oxide thicknesses are
thus critical uncertain parameters. We model these as normal uncertainties, centered
around a nominal value with a standard deviation equal to 10% of nominal.

Vdd

Vin

Fig. 1 CMOS circuit with five inverters.

Vdd Vdd Vdd Vdd

• Vout



o

8 Eric R. Keiter, Laura P. Swiler, and Ian Z. Wilcox

1.2

0.8

rn
B06

0.4

0.2

0

StepMpM
Stage 3 Output
Stage 5 Output

1E-07 2E-07 3E-0
Time (seconds)

4E-07

reduced objective (Elmore) = 2.078232472421e-007

Fig. 2 Overall behavior of CMOS circuit with Elmore delay highlighted

The circuit is driven by a step input, and the output of interest is the output voltage
vout. This is shown in Figure 2.

Since the output voltage is a transient signal, we used a generalized Elmore delay,
similar to that given by [2], as our objective function of interest. The Elmore delay
is given by:

•
0 = Elmore Delay = 

fo g 
T
A(t)•t dt 

(18)
fo gr'A (t)dt

and represents the approximate time for the signal rise or fall. Note that gA (t) = Vow.
Xyce returns the transient sensitivities (e.g. the derivatives of the Elmore delay

objective with respect to the thickness of the NMOS and PMOS oxide layers as a
function of time). This is shown in Figure 3.
We performed uncertainty quantification on the CMOS circuit using a variety

of UQ techniques. As a baseline, we performed Latin Hypercube Sampling (LHS)
with 100 and 1000 samples. LHS is a stratified sampling method which has good
space-filling properties and generally gives better results than plain Monte-Carlo
sampling (e.g. results which have lower variance on statistical estimators such as the
mean). Then, we performed polynomial chaos expansion using a full tensor product
quadrature of order 5 for each of the two input parameters, resulting in a total of
25 sample points. Finally, we performed two types of regression-based PCE. In the
first, we used 30 samples but did not include the gradients. In the second, we used 10
samples. For each sample, we had two gradient values representing the derivative
of the Elmore delay with respect to the two input parameters. Thus, the last PCE
calculation used 30 pieces of information and was comparable to the 30 sample
regression PCE with no gradients, but it only required 10 samples.

Note that for all of these sample runs, the two input parameters were the NMOS
and PMOS oxide layer thickness.They were varied according to a normal distribu-
tions with means of 1.74E-9m and 2.34E-9m, and standard deviations of 1.75E-10
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and 1.34E-10, respectively. After each Xyce run, the Elmore delay was calculated
and used as the quantity of interest in these analyses. All of the runs were performed
using Dakota for the UQ methods and Xyce as the circuit simulator.

The use of sensitivities in performing uncertainty analysis is highlighted in Fig-
ure 4 and Table 1. As shown in the figure, the cumulative distribution function
(CDF), which gives the probability that the Elmore delay is less than a particular
value, is almost the same for an LHS sample of size 1000 and all of the PCE meth-
ods. It is very hard to see differences: the CDF curves for LHS 1000 and all of the
PCE variants overlay each other. The one that is different is LHS based only on 100
samples. Figure 4 shows that this CDF is not as resolved as the others. Table 1 shows
that the mean values of the Elmore delay are very similar, differing only in the fifth
significant figure. Finally, the standard deviations show a little more variability, but
again are reasonably close. We conclude that a polynomial chaos expansion using
sensitivities from Xyce (the 10 PCE with regression case) performs comparably to
1000 samples from LHS.

6 Conclusions

This paper explored a new approach to circuit level uncertainty quantification, based
on gradient-enhanced Polynomial Chaos Expansions (PCE). PCE is a non-sampling,
projection-based technique, in which circuit parametric uncertainties are approx-
imated using an expansion of orthogonal polynomials, and the specific choice of
polynomial is determined by the assumed functional form of the uncertain inputs.
Regression-based PCE can be enhanced by parametric derivative information from
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Fig. 4 Cumulative Distribution Function of Elmore Delay using Various UQ Approaches

Table 1 Comparison Results from UQ Approaches

Number of samples

and UQ Method

Mean Std Dev.

100 LHS 2.0781E-7 6.6309E-9

1000 LHS 2.0782E-7 6.6935E-9

25 PCE Quadrature 2.0783E-7 6.6954E-9

30 PCE Regression 2.0783E-7 6.7131E-9

10 PCE Regression

with derivatives

2.0782E-7 6.7035E-9

the simulator. Derivative-based enhancements to PCE offers the possibility of sim-
ilar accuracy for a smaller number of samples. In this paper, the development of
direct transient sensitivities in a circuit simulator is described, and the successfull
application of these sensitivities to gradient-enhanced PCE has been demonstrated.
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