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Capabilities and Infrastructure

Battery Abuse Testing Laboratory
(BATLab)

Cell Prototype Facility
Battery Calorimetry

Modeling and Simulations

Materials Development R&D
Thermal Test Complex (TTC)

Burn Site, Laurence Canyon

.Thermal Test_Comp‘Iem



Battery Abuse Testing Laboratory (BATLab)

Comprehensive abuse testing platforms for safety and reliability of cells, batteries
and systems from mWh to kWh

Cell, module, and battery system hardware deliverables for testing

Mechanical abuse
o Penetration
o Crush
o Impact

o Immersion

Thermal abuse
° Over temperature
° Flammability measurements
o Thermal propagation

o Calorimetry

Electrical abuse

> Overvoltage/overcharge

o Short circuit

> Overdischarge/voltage reversal




Burn Site Test Site

lities

i

Full Scale Battery Testing Fac




Understanding Battery Failure

Materials R&D
Non-flammable electrolytes
Electrolyte salts
Coated active materials
Thermally stable materials

Testing
Electrical, thermal, mechanical abuse testing
Failure propagation testing on batteries/systems
Large scale thermal and fire testing (TTC)
Development for DOE Vehicle Technologies and USABC

Simulations and Modeling
Multi-scale models for understanding thermal runaway
Validating vehicle crash and failure propagation models
Fire Simulations to predict the size, scope, and
consequences of battery fires

Procedures, Policy, and Regulation
USABC Abuse Testing Manual (SAND 2005-3123)
SAE/UL procedures and standards
R&D programs with NHTSA/DOT to inform best
practices, policies, and requirements




Battery System Field Failures

Field failures could include:
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Latent manufacturing defects
Internal short circuits

Unique use or abuse conditions

Control failure (low voltage,
control systems, connectors,
boards, not battery initiated)

Any single point failure that propagates through a entire battery
system is an unacceptable scenario to ensure battery safety




Characterizing Thermal Runaway

Thermal Ramp Thermal Ramp + ARC
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* Consistent cell behavior between thermal abuse and calorimetry experiments

* Greater total temperature rise observed for the ARC experiment because it is in an adiabatic
environment

* May be able to use these data to compare results obtained between the two types of
experiments




Characterizing Thermal Runaway
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LCO 18650* 1.2 28.4 15.9 281
= Full cell runaway enthalpy shows NCA 18650* 1.0 21.6 9.8 266
a significant amount of heat NMC 18650* 0.95 22.0 8.3 105
generation from even an LFP
18650 cell LFP 18650* 0.9 18.0 2.4 1
*  But that heat is generated at LFP 26650* 2.6 8.2 4.6 65
much different rates for the LEP 26650¢ 2.6 3.0 4.5 65
different cell types
*AH based on dT (exotherm)
*AH based on dT/dt (exotherm)

1 Cell Type Capacity Full Cell High Rate Peak Heating

Data provide a quantitative measurement of the runaway enthalpy
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Characterizing new materials
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Accelerating rate calorimetry shows
the behavior of various chemistries
This gives information about peak
heating rates and total energy of

the thermal runaway

Newer materials such as LFP
provide significantly reduced
thermal runaway intensities, but
have limited energy density
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10-15% Si present in the anode leads to
increased runaway energies for a similar

cathode material.
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Mechanical Failure Testing

Mechanical behavior under compression
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Analog “pole test” of a battery
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Determining baseline mechanical behavior of batteries during crush/impact testing
Testing support to validate mechanical models for batteries during a crash scenario




Intensity (a.u.)

Zyc (Ohm)
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Advanced Diagnostics and Analysis
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Overcharge is applied to 10 AH NMC cells

Fast impedance hardware allows for collection of
EIS data while cell is under active load

Cycling performed after overcharge test to
observe differential capacity behavior

Anode and Cathode materials harvested post test
for materials analysis (Harvested at 0% SOC,
cathode results shown)

Coupling electrochemical measurement and
materials analysis to create a predictive
measurement technique




Failure Propagation Testing

Failures initiated by mechanical insult to edge cell of COTS LiCoO, packs (3Ah cells)

5 cell Battery TC layout
C1 C2|-3 C4|-5

e Successful initiation at Cell #1
* Propagation to adjacent cells
e (Cascading failure to entire battery over 60 s
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Observed complete propagation when cell are close packed with no thermal management




New Test Development

In hopes to reduce the oxygen exposure to hole being produced from laser, an IR
transparent slide was used as barrier during testing
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e Able to induce failure using laser through silica slide

* Final power setting of 350V, 20ms, 1Hz to induce thermal runaway
* More energy needed to induce runaway through silica slide

* Maintained seal between silica and pouch cell until full runaway
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Battery Safety R&D Program at Sandia: http://energy.sandia.gov/?page_id=634
ECS Interface Issue on Battery Safety: http://www.electrochem.org/dl/interface/sum/sum12/if sum12.htm




