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Abstract

Failure prediction for carbon fiber reinforced polymer (CFRP) composites has been a
longstanding challenge. In this study, we address this challenge by first applying a
computational micromechanics model based on representative volume element (RVE)
to predict the failure envelopes of unidirectional (UD) CFRP composites. Then, these
failure envelopes are compared with the classical failure criteria. We have evaluated
the performances of these failure criteria and identified the aspects for further
improvement in their accuracies for the UD CFRP composites studied herein. Based
on the failure mechanisms from computational results and the comparisons between
predicted failure envelopes and classical failure criteria, a new set of homogenized
failure criteria is proposed. The newly proposed failure criteria show significant
improvement in the agreement with both our computational and experimental results.
Furthermore, we have compared the proposed failure criteria with existing
experimental data and computational results available in the literature for different

types of composites. Good agreements between them are generally observed.
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1. Introduction

Carbon fiber reinforced polymer (CFRP) composites have numerous applications in
lightweight structures in the aerospace and automotive industry, due to their excellent
strength and stiffness. The fast-expanding demand for these composites requires
efficient material characterization techniques to predict their mechanical properties,
most notably their failure behaviors under various loading conditions for safety
concerns. Different from most homogeneous materials that exhibit a limited number
of physical failure mechanisms, of which it is easy to formulate theoretical failure
criteria, i.e., the mathematical and/or phenomenological evaluation of the critical
stresses that lead to the onset of damage [1], CFRP composites, with heterogeneous
structures and interfaces between different phases, tend to present multiple failure
modes depending on loading directions, stress states, and possible manufacturing
defects [2]. In this case, the coexistence of various failure modes and failure
mechanisms in CFRP composites implies the necessity to use different failure criteria
depending on stress states. In addition, failure locus in the stress space usually locates
at the intersection of various smooth surfaces, with each one representing the critical
condition for a given fracture mode. Therefore, accurate and robust failure criteria to
predict failure envelopes of CFRP composites subjected to multi-axial stress state are
much more challenging, and it remains as a key aspect in the optimal design of a

composite structure.

Over the years, numerous failure criteria have been proposed to describe the failure
envelopes for CFRP composites from limited experimental data. Typical failure
criteria have been successfully used in the analysis, design, and calculation of safety
factors of composite structures subjected to complex loading and boundary conditions.
They include but not limited to strain-based [3], stress-based [4-9], as well as their
replacement of phenomenological failure criteria [10-15]. Recently, a set of fully
three-dimensional failure criteria for fiber-reinforced composites have been proposed
[16-18] and reviewed in the literature. Although many failure criteria have been
proposed, validating them remains challenging. In addition, some recent efforts have
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shown that the failure behaviors depend not only on the onset of failure predicted by

the failure criteria, but also on the subsequent fracture propagation processes [19].

Due to the significant uncertainties in the validation of the failure criteria, many
efforts have been devoted to comparing them with each other and with experimental
data [17, 20]. In particular, the recent World-Wide-Failure Exercise (WWFE)
conceived and conducted by Hinton and Soden [2, 21, 22] provides a good assessment
of currently available failure criteria for predicting failure in carbon and glass fiber
composites. WWFE showed that the predictions of many failure criteria differed
significantly from the experimental results, particularly under multi-axial stress states
involving matrix fracture and/or fiber compression. However, precise conclusions
regarding which criterion best reproduces the physical failure mechanisms and the
mechanical strength have not been reached due to the scarcity of experimental results
under multi-axial stress states. Furthermore, there are several limitations for
experimental tests because specific loading conditions or geometries of the test
specimens are extremely difficult to obtain. Thus, many existing failure criteria for

strength prediction have not been validated.

On the other hand, many of these difficulties can be overcome by virtual testing by
means of computational micromechanics analysis. In particular, computational studies
are advantageous in the systematic characterization of the effects of fiber and matrix
properties and microstructures on the composites’ mechanical response [23]. In
addition, virtual experiments could avoid the complexity and variability of conditions
in real tests, especially when complicated loading cases such as bi-axial or tri-axial
loading tests are involved. Recently, computational analysis has been successfully
employed to investigate the mechanical behavior of fiber-reinforced lamina up to
failure subjected to different combined loading conditions [1, 24-29]. This approach
provides full control of the constituent properties, spatial distribution, and loading,
eliminating many sources of experimental error. Nevertheless, accurately modeling
the inelastic and failure behavior of CFRP composites remains a difficult challenge
due to various factors, such as (1) the high fiber volume fraction of the fibers leads to
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stress or strain concentrations in the matrix; (2) the distinct properties of the
interphase region between fiber and matrix also influence the inelastic and failure
behavior of the composites [30]; (3) fiber distribution is non-uniform [30]; and (4) the
manufacturing process introduces different defects (fiber shape [31, 32], fiber
waviness [33], interface properties [34, 35], fiber-matrix interface defects [36],
thermal residual stress [23, 34], micro-voids [29, 37]). These factors limit the
applicability of computational models with homogenized behaviors of the composites

or constituents.

In this paper, a computational micromechanics model based on representative
volume element (RVE) modeling is developed to investigate the failure mechanisms
and calibrate the failure envelopes of UD CFRP composites. This model addresses
several challenges aforementioned. First, we consider the influence of the distinct
interphase region on the failure behavior of the composites. Then, we accurately
represent the fiber volume fraction according to experimental samples. Also, we adopt
a fiber waviness function in the longitudinal direction to represent the defects
introduced from the manufacturing process. This computational micromechanics
model enables us to propose a new set of homogenized failure criteria for the UD
CFRP composites. In detail, we first use the computational model to investigate the
failure mechanisms and failure envelopes of the composites under combined
transverse load and in-plane/out-of-plane shear, i.e., 022-712 and 022-723. Afterwards, we
further include local fiber waviness in the fiber longitudinal direction in our RVE
model. It then enables us to consider the longitudinal deformation of the composites
and predict the failure envelopes under combined longitudinal compression and
in-plane shear, i.e., o11-712. Then, the calibrated failure envelopes are compared with
the predictions of the classical failure criteria. The results show that within ¢22<0 in
022-112 and o22-123 stress space, there are obvious differences between computational
results and classical failure criteria, especially in the high shear stress regime. We
have found out that it is because the transition in dominant failure mechanisms

observed in computational results has not yet been considered in existing failure



criteria. Furthermore, most of the current failure criteria cannot match our
computational failure envelope of o11-r12. To address the limitations of the current
failure criteria, a new set of homogenized failure criteria of UD CFRP composites is
proposed for predicting composite failure under multi-axial stress states. The
proposed failure criteria are based on the failure envelopes and failure mechanisms
observed from the computational micromechanics model. Finally, the accuracy of the
proposed failure criteria is validated by comparing the analytical predictions with our
computational and experimental results under multi-axial stress states. We have also
compared our proposed failure criteria with other experimental or computational data

found in the literature for different types of fiber-reinforced composites.
2. Computational micromechanics model
2.1. RVE model set-up

By adopting an algorithm proposed by Melro et al. [38], we generate the
cross-section microstructure of our RVE model with cylindrical fibers randomly
distributed in the matrix for high values of fiber volume fraction. In addition to the
fiber and matrix phase, our RVE model also consists of a finite thickness (~200 nm)
interphase region adjacent to the fibers. We use this interphase region to capture the
unique properties of the transition zone between the carbon fiber and resin matrix, as
described in our previous work [30]. A zero-thickness interface between fiber and
interphase region is also considered to capture the realistic failure strength and
debonding failure mechanism by inserting cohesive elements, as shown in Fig. 1. The
fiber volume fraction within the RVE is about 51% in this study, which is the same as
the experimental sample.

Apart from the selection of the RVE size, the applied boundary conditions play a
key role in the assessment of mechanical properties. We would like to note that the
RVE size and boundary conditions are actually closely related [39, 40], and a common
practice is that the independence on the boundary condition is considered as the
indicator for the sufficiency of the RVE size. The classical approach to introduce

periodic boundary condition (PBC) in a RVE is by means of the definition of
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constraint equations (*EQUATION in Abaqus [41]) between periodic nodes, hence
imposing constrains to their allowed displacements. In its essence, this method
requires the mesh to be periodic, in such a way that every node on each RVE
boundary has its homologous node on the respective opposite boundary. The
traditional PBC approach is well appropriate for standard [1, 25] and implicit
integration numerical schemes, but exhibits several drawbacks when explicit dynamic
time integration is used. It is observed that the relationships between master and slave
displacement is translated into equations that introduce intense high-frequency
oscillations in the system that compromise the numerical solution [42]. Moreover, the
method with traditional PBC is computationally expensive. An alternative approach is
to apply uniform boundary conditions (displacement or traction). It has been shown
that for sufficiently large RVEs, the results obtained from using PBC are close to
those obtained from using uniform boundary conditions [43-45]. Thus, in this work,
loading is applied by imposing uniform displacements (traction) on the boundary
nodes. To choose a sufficiently large RVE, we adopt the size convergence approach
[39] in which the RVE size is gradually enlarged and we take the size where the
results reach convergence. Previous study has shown that the results obtained with 30
fibers in the RVE were equivalent to those computed with 70 fibers in terms of the
stress-strain curves and of the dominant failure micro-mechanisms when subjected to
transverse compression and shear [1]. Following the previous research, we choose our
RVE size to include around 50 fibers, and this size has been reported to be sufficient
to capture the essential micro-scale features with relatively low computational costs
[28, 46].

The RVE is developed using Abaqus/Explicit [41] in the following way: an orphan
mesh technique with predominantly first-order hexahedral elements under reduced
integration (C3D8R) and tetrahedral elements (C3D6) is adopted for these three
phases, while first-order cohesive elements (COH3D8) are used to represent the
interface. To generate a well-structured, high-quality mesh, a seed density of 2
elements in the thickness direction of the interphase region is used, leading to an

average element size for the interphase region of 0.1 um, while the element size of
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fiber and matrix are slightly larger with a size around 0.35 um. Mass scaling
artificially increases the mass of elements. It is therefore essential to remain aware
that adding some ‘“‘nonphysical” mass to increase the time increment can strongly
affect the results, especially for a dynamic study and the inertia effects could become
dominant. A common technique to check a posteriori that the mass scaling does not
significantly affect the results is the comparison between the kinetic energy and the
internal energy of the system. This ratio is often chosen below 5-10% [47]. The mass
scaling (stable time increment) le-5 is selected in this study. The linear bulk viscosity

in Abaqus-explicit is set to be 0.06 and the quadratic bulk viscosity parameter is 1.2.
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Figure 1. Schematic cross-section view of the microstructure of UD CFRP
composites used in the RVE model.

2.2.Constitutive models of the three phases

In the RVE model, carbon fibers are assumed to be transversally isotropic and
linearly elastic. The five independent material constants of AKSACA carbon fibers
are listed in Table 1. The fiber diameter is 7 um. The fiber volume fraction is around

51.4%, consistent with the specimen used in experimental analyses.

The polymeric matrix of epoxy is modeled as an isotropic elasto-plastic solid and it
follows the isotropic damage law proposed by Melro et al. [48], implemented as a
VUMAT user subroutine. A paraboloidal yield criterion, defined as a function of the
stress tensor and the compressive and tensile yield strength, is used together with a
non-associative flow rule, which allows for a correct definition of the volumetric

deformation in plasticity. Damage onset is defined by a damage activation function
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similar to the paraboloidal yield criterion, but using the final compressive and tensile
strengths of the epoxy matrix instead of yield strengths. The detailed constitutive

model can be found in our previous study [30, 33].

We would like to note that the epoxy resinused in this study shows first softening
and then re-hardening plastic deformation behaviors under compression at room
temperature. Plastic softening for matrix inevitably causes some numerical difficulties
for implicit FEA, although several techniques such as viscous damping [49] have
been used to circumvent it to some extent. By comparison, a favorable approach is to
resort to explicit FEA method [50] to perform microscopic progressive failure
analysis of the CFRP composites. This further justifies our explicit approach.

As studied previously, the average properties of the interphase region have been
calibrated based on molecular dynamics simulations on similar epoxy resins and an
exponential gradient model as shown in our previous studies [30, 51]. The average
Young’s modulus and strength of the interphase region are found to be around 5 and 9
times larger than those of bulk resin matrix. The constitutive behavior and damage
model of the interphase are assumed to be similar to those of the matrix model

proposed earlier [30].

Interfacial debonding is considered by inserting cohesive elements at the interface
between the fiber and interphase region, with a constitutive response defined by a
bilinear mixed-mode softening law. Damage onset is predicted by a quadratic
interaction criterion which depends on the interface strength for each damage modes.
Once debonding is initiated, the cohesive tractions linearly decrease to zero. We also
adopt the energy-based Benzeggath-Kenane (BK) damage propagation criterion to
account for the dependence of the fracture energy dissipation on fracture modes [52].
The interfacial fracture strength and energy have been calibrated based on a reverse
engineering method according to experimental tests [30]. The calibrated and validated

cohesive parameters are also listed in Table 1.

Table 1. Model parameters in the RVE model
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Carbon E11 (GPa) Ex=E33(GPa) G12=G13(GPa) G23 (GPa) V12
fiber 245 19.8 29.191 5.922 0.28
Epoxy Em (GPa) Vi Vp ott (MPa) otc (MPa)  Gic (J/m?)
matrix 3.73 0.38 0.3 61.6 300 334.1
Ei (GPa) i (MPa)
Interphase
225 670
K (MPa/mm) 11 (MPa) 12, 73(MPa) Gic(I/m?)  Gic, Guic (I/m?)
Interface

108 70 80 2 32

3. Failure envelopes obtained from computational micromechanics model
3.1. Failure envelopes of 622-712 and 622-723

In this section, we utilize the computational micromechanics RVE model to predict
the failure envelopes under multi-axial loading conditions, i.e. the failure loci for the
whole range of combined stress states. First, the focus is put on the prediction of
failure envelopes in the 22-712 and g22-123 stress planes. We adopt an RVE model with
a thickness of 2R, where R is the fiber radius. The influence of the loading path on the
failure surfaces of UD CFRP composites subjected to transverse load and shear is
analyzed through computational RVE model, as shown in Fig. 2(c) and (d). In the first
loading path, the RVE was applied with a transverse load up to a prescribed stress
level and then was deformed in shear until failure while the total transverse force
acting on the RVE was held constant, which can be designated as o — y loading path.
In the second path, the RVE is loaded simultaneously by proportional amounts of

transverse and shear displacement, which can be designated as radial loading path.

The failure envelopes show that the loading path has a negligible influence on the
failure envelopes, and the maximum shear strength increases by applying transverse
compressive stress up to a transition point, before which it indicates a hardening effect
of shear strength under moderate transverse compression. In this regime, the failure is

shear dominated. With further increasing the magnitude of the transverse compression,
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failure of the matrix under compression loading starts to dominate the failure process
of composites, and the shear strength starts to decrease. In the transverse tension side,
we observe that the shear strength decreases with the magnitude of transverse tension
monotonically. Fig. 2(c) and (d) show the entire failure envelopes of 622-712 and g22-723

and the corresponding three dominant failure mechanisms or modes.
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Figure 2. Schematic of the RVE of the UD CFRP composites subjected to (a)
transverse load (022) and in-plane shear (z12), (b) transverse load (g22) and out-of-plane
shear (723). (c) and (d) show the predicted failure envelopes of combined loading
conditions corresponding to (a) and (b). The numbers next to the red points represent
the ratio of shear displacement (J;) to transverse displacement (d. for either tension
or compression).

This lack of sensitivity of the failure locus to the loading path is due to the fact that
the initial failure is always interfacial debonding under combined uniaxial transverse
tension and compression and combined in-plane and out-of-plane shear. The

interfacial debonding tend to start at closely neighboring fibers where the stress
11



concentrations at the interfaces are higher, and interfacial debonding is corresponding
to the peak point of the stress-strain curves obtained from the RVE model. Failure is
also controlled by the same mechanisms under a combination of both stresses. The
contour plots of the accumulated plastic strain after interface debonding for different
ratios of ds/0yc are shown in Fig. 3. We can clearly observe that plastic deformation of
the matrix and interphase region is only found around the interface cracks. The main
matrix region of RVE model is still in the elastic state prior to fracture. Thus, failure
envelopes depend primarily on the critical magnitude of the stresses that trigger
interface debonding rather than on the loading path to reach the critical condition.
Meanwhile, previous experimental results of AS4/PEEK composite subjected to
longitudinal [27] or transverse compression [53] and numerical simulations of
transverse compression combined with out-of-plane shear [54] or in-plane shear [53]
did not detect any significant effect of the loading path on the failure locus either.
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Figure 3. Contour plot of the accumulated plastic strain in the composites subjected

to: (a) The ratio 0s/0;of the radial loading path is 7.58 in the o22-712 stress space; (b)

The ratio ds/0. of the radial loading path is -4.45 in the g22-712 stress space; (c) The
12




ratio o0s/0; of the radial loading path is 5.33 in the o22-123 stress space; (d) The ratio
0s/0. of the radial loading path is -2.31 in the g22-123 stress space. The plastic strain
corresponding to each color is shown in the legend.

The detailed failure modes of the UD CFRP composites subjected to different
loading conditions in the o22-712 stress space are presented in Fig. 4(a)-(f). For
transverse tension side (022>0), a fracture plane throughout the thickness direction is
always generated. This fracture plane is formed by the normal interface debonding
when the in-plane shear load is low, as shown in Fig. 4(a) and (b). While, with
increasing the shear load, the complete fracture surface tends to tilt to an angle of 45°
relative to the fiber direction (see Fig. 4(c)), which is similar to the pure in-plane
shear loading case [30]. For the transverse compression side (022<:0), the fracture
plane is oblique, which causes the interfaces to be under tangential debonding other
than normal opening. However, the in-plane shear loads induce a change in the
fracture plane orientations. For instance, in the range of high shear loads (—40.7 <
0s/6. < —8.12), the composite fails in shear-dominated mode and the final fracture
angle is the same as the pure in-plane shear loading case, similar to Fig. 4(c). When
the compressive stresses become more dominant as —8.12 < §5/6, < 0, the fracture
occurs through a matrix plane whose inclination with respect to the Xo-direction
increases gradually, as marked by the increasing angles show in Fig. 4 (d) - (f). When
the compressive stress becomes large enough, the angle of the fracture surface with
respect to Xo-direction saturates at around 57.8°, which is similar to the pure

transverse compression loading case [30].
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(d) (e) ¢y
Figure 4. The failure modes of the UD CFRP composites under combined loading in
the g22-712 stress space characterized by the ratio Jy/due. (a) O5/8; = 7.58, (&, =
0.76%, v12 =5.78%), (b) 65/8; =11.45, (&, =0.51%, Y1, =5.78%), (c)
0s/6¢ = 25.13, (&3, =0.23%, y1,=578%), (d) 85/6.=-812, ( &, =
—0.71%, Y12 =5.78%), (e)8s/0. = —4.45, (&5, = —1.30%, y1, = 5.78%), (f)
0s/6. = —1.90, (&5, =—3.04%, Y12 = 5.78%).

The failure modes under combined transverse load and out-of-plane shear (622-723
stress space) are presented in Fig. 5(a)-(f). It can be found that failure is always
initiated by the nucleation of interface cracks depending on the contribution of
transverse load and out-of-plane shear stresses. The stress concentration at the
interface crack tip promotes the plastic deformation of the matrix, and then, damage
localizes along the weakest path. Final failure occurs by the coalesce of interfacial
cracks through the matrix. The orientation of the final fracture path varies as a
function of the ratio of the applied transverse load and out-of-plane shear load. When
it is shear dominant, the fracture plane is more towards an angle of 45° corresponding
to X>-direction, while if the transverse tension or compression dominates, the fracture
plane is more towards 0° or 57.4°, respectively. For instance, in the transverse
compression dominant case of 85/8. = —1.43 as shown in Fig. 5(f), the fracture
plane is inclined at 57.4° to X>-direction, showing good agreement with experimental

observations of UD CFRP composites under solely transverse compressive loading

[30].
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(d) (e) ()
Figure 5. The failure modes of the UD CFRP composites under combined loading in
the 022-123 stress space for different ratios of ds/dsc. (a) O5/0¢ = 3.87, (€22, = 0.78%,
Y23 = 3.03%), (b) 85/8; = 5.33, (g22 = 0.57%, y23 = 3.03%), (c) 65/8; = 10.38,
(822 = 0.30%, V23 = 3.03%), (d) 85/6. = —5.92, (g5, = —0.51%, Y3 = 3.03%),
(e) 85/8.=—2.3, (&, =—131%, y,3 =3.03%), (f) 65/0. = —1.43, (&, =
—2.12%, Y23 = 3.03%).

3.2. Failure envelope of o11-712

Kink-bands typically initiate in the regions of fiber waviness/misalignment [33] or
where fiber rotations have been introduced by other failure mechanisms (e.g.
delamination of neighboring plies [55], following a shear-driven fiber compressive
failure [56]). Under compressive load, initially misaligned fibers rotate and lead to
shear stresses in the matrix. As the matrix fails, the fibers lose the support which
results in further fiber rotation and deformation of the kink-band [33]. Recently, Bai et
al. [57] presented a 3D RVE investigation of the formation of kink-band under
longitudinal compression of the composites. In this section, we further extend that
work in the fiber longitudinal direction by considering local fiber waviness, which is
characterized in an interval between x;<x<:x in the longitudinal direction located at

the middle of the 3D RVE model, as shown in Fig. 6(a). The total length of the 3D
15



RVE model is Ly = 700 um. We use half of the wavelength of a cosine wave to
represent the fiber waviness, and the wavelength (L=1000 um) is estimated by
evaluating the experimental sample [33], which is assumed to be constant for all the
fibers in the computational micromechanics RVE model. Different maximum
waviness angles (fnqx) Can be achieved by changing the wave amplitudes (4). Fig. 6(a)

shows the imperfection area and the parameters for the local fiber waviness.

The waviness function of the bottom boundary is given by:

0 0 <x<xg
y = Acos(2nx /L) X1 <X X, (1)
A X, <X<ZLrp

The initial misalignment is geometrically introduced according to the derivation of

y(x),
tanf(x) = — # sin(2mx/L) (2)

Imperfections stemming from the manufacturing process influence the compressive
strength and fiber kinking of unidirectional composites significantly. In fact,
previous studies have acknowledged that the compressive strength of fiber composites
is highly dependent on initial fiber misalignment [33, 58-60]. It is, however, difficult
to determine the initial fiber misalignment angle since manufacturing defects appear
stochastically. In this section, a parametric study relating to Gpax is first conducted
using our computational model. The compressive strength is found to decrease with
increasing Gqx, as shown in Fig. 6(b). Thus, .. can be used as a representative
parameter to describe the scale of fiber waviness from different manufacturing

conditions.

A large variety of analytical models to predict the strength related to fiber kinking
under pure longitudinal compressive loading can be found in the literature [11, 61].
Recently, Pinho and coworkers [62] have proposed a theoretical model to predict the
compressive strength depending on the initial fiber waviness angle under pure

longitudinal compressive loading:
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v
X, = -
¢ (1 - Vf)/Gm + Hmax/sis

€)

where V/ is fiber volume fraction, G, is matrix shear modulus, 6., is the

maximum fiber waviness angle and s'* is the in-situ in-plane shear strength of the

composite.

Fig. 6(b) also shows the comparison of longitudinal compressive strength obtained
computationally and theoretically using Eq. (3). We can find that the computational
and analytical results show excellent agreement. We would like to point out that for
Omax=5.4°, the compressive strength decreases by approximately 70%. It indicates that
the compressive strength is very sensitive to the initial fiber waviness introduced

during manufacturing processes.

1800

. * Lomputational analysis resalts

Ll * Analytical resules
£ '
< 1000
s
g L}
S 80
5
=
-
£ 600
£ g
i
& 400 :
.
- v
} 00
4 0
0 1 3 4 s [
000 )
(a) (b)

s )
o e a
Pt =80 o byren3 (0 & \. ‘ A
“l“l .z - Y - L
.

.
1 i 12m 1 "0 oo 0 20 "
oy, M)

(©) (d)

17



matnx erack

Matrix cracksisplitting
matrix crack

(e) ®

Figure 6. (a) Schematic of the computational model considering local fiber waviness
(Lw=L/2=500 um, L1=700 um). (b) Comparison between the predicted longitudinal
compressive strength values from RVE models and analytical solutions proposed by
Pinho et al. [62]. (c) Schematic of computational micromechanics model subjected to
the stress state of o11-712. (d) Failure envelopes of ai1-712 for different Gpa. (€) and (f)
show the failure modes which correspond to the points I and II in panel (d) for
Onax=0.90°, respectively.

The experimental determination of the failure envelope of a11-712 is very difficult to
set up. To overcome these difficulties and determine the failure envelope of o11-712,
in-plane shear load (712) is applied simultaneously with longitudinal compression (o11)
using our computational micromechanics model, as shown in Fig. 6(c). Shear forces
are applied at x; = 0 and L7. A compressive displacement is applied at x1 = Lz, while

the displacements in the x;- direction are restricted at x1=0.

Taking advantage of the RVE model, we further investigate the effect of fiber
misalignment, i.e. maximum waviness angle 6. on the shape and magnitude of the
failure envelope in the space of o11-712. From Fig. 6 (d), we can see that the o11-712
envelopes rotate around the point (o11=0, 712=S7) and increasing Gn. leads to a
significant decrease of the domain defined by the area under the failure envelopes. In
addition, the longitudinal compressive strength decreases with increasing 7i».
Interestingly, we find that the in-plane shear load changes the kink-band failure
mechanism of UD CFRP composites, and we observe that the main failure mode
changes from fiber kink to matrix cracking/splitting with increasing 712. Meanwhile,
the area of matrix cracking goes up with increasing 712, as shown in the comparison

between Fig. 6(e) and ().
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4. Comparison between the classical failure criteria and numerical results
4.1. A brief overview of the classical failure criteria

Currently, there exist numerous failure criteria which are usually stress-based and
expressed as equations, including fully interactive criteria (Tsai Wu [63], Tsai Hill
[64]) and failure mode based criteria (Hashin [65], Puck [10], and Pinho-LaRC04 [11,
12]. In a recent study, Daniel-NU failure theory [17, 66], which is based on
micromechanical matrix failure mechanisms, allows the prediction of failure
envelopes under multi-axial stress states at different strain rates. The strain-rate effect
is considered by developing an equation of the matrix strength as a function of the

strain rates.

Tsai Wu [63] and Tsai Hill [64] criteria predict failure load by using equations
involving all stress components, which combine different fundamental fracture
mechanisms together. Different from Tsai Wu and Tsai Hill criteria, in the work by
Hashin and Rotem [65], the failure of laminated composites has been categorized into
fiber-dominated failure and matrix-dominated failure, and either one is further
subdivided into tensile and compressive modes. In addition, they assume that failure
is induced by the normal and tangential stresses acting on the fracture plane. One
disadvantage of Hashin’s criterion is that it neglects the shear hardening effect with
the presence of transverse compression [12]. Hashin’s approach has been further
extended by Puck and Schuermann [10] by addressing matrix compression failure
with a model based on the Mohr-Coulomb criterion, where Puck distinguishes
different fracture modes according to the stress combinations which appear on the
detected fracture plane. Afterwards, Pinho and coworkers [11, 12] adopted a similar
assumption and implemented the action plane concept according to the
Mohr-Coulomb criterion. Concerning tensile matrix cracking, LaRC03 [13] is
associated with Dvorak’s fracture mechanics approach [67], using the energy release
rates associated with intralaminar crack propagation. Subsequently, the LaRCO04
criterion was developed by extending the approach to three-dimensional stress states

and taking into account the non-linear matrix shear behavior [12].
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4.2. Assessments of classical failure criteria by comparison with numerical

failure envelopes

Following the recent collaborative work carried out in WWFE, a number of failure
criteria have been compared to corresponding experimental characterizations.
However, the physical failure mechanisms and the mechanical strengths are
notoriously difficult to be validated experimentally for multi-axial stress states, and
the capability of these criteria in predicting ultimate strength of composite composites
under multi-axial loading remains unclear. The computational model presented here
provides a great advantage to evaluate the performance of ply-level composites failure

criteria for complex stress states by replacing experimental tests.

The failure envelopes under transverse load and in-plane/out-of-plane shear (622-712
and 022-123) from our computational results are compared with those predicted by the
classical failure criteria, as shown in Fig. 7(a) and (b). The results show that there

exist large variances among different criteria.

We first compare our computational results and these failure criteria in the range of
022>0. In the stress space of 022-712, the predictions by Tsai-Wu [63], Daniel [17, 66]
and Puck [10] are almost identical with the computational results, while Hashin’s [9,
65] and Pinho’s [11, 12] slightly overestimate the failure strengths of 712 in the stress
plane of g22-712. In terms of the stress space of 022-723, Hashin’s predictions are almost
consistent with the computational results in the range of 022>0, while Pinho’s slightly
overestimate, Tsai-Wu’s and Puck’s values slightly underestimate failure strengths of
723 for a high ratio of ds/dc. It should be noted that the accuracy of predictions of 23
depends upon the suitable determination of ST, which is very difficult to measure

experimentally.

In the range of 620<<0, the curves predicted by these failure criteria show greater
differences from each other, especially with the presence of high shear stress in both
022-712 and o22-123. The envelopes predicted by Hashin’s 1980 criterion [9] provides a
modest improvement in accuracy compared to the 1973 version [65], but still

underestimate failure strength compared with computational results. Pinho’s and
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Daniel’s criteria capture the shear strength increase at the initial stage of compressive
022, but their predicted values are slightly higher than the results from our
computational micromechanics model. In the o2:-712 stress space, Puck’s criterion
agrees with computational results in low 22 regime but overestimates the strengths in
the high 02> regime. In 022-723 stress space, Puck’s and Daniel’s criteria perform better
with only slight overestimations in the medium o22 regime. Among all these criteria,
we can find that Tsai Wu’s criterion agrees with the computational results the best, as

the predicted failure envelope of 022-723 is nearly identical to the computational one.

For the stress states that involve longitudinal compression (oi11-712), the same
disparity is found when different failure criteria are compared with our computational
results. Fig. 7(c) shows the failure envelopes o11-712 generated by the computational
micromechanics model and the corresponding classical failure criteria. For Hashin’s
[65] and Puck’s criteria [10], the compressive strength is not affected by the shear
stress. Their failure envelopes show a rectangular or approximately rectangular shape.
In contrast, Edge’s [68] and Pinho’s predicted a linear failure envelope based on the
assumption that the buckling of the fibers under compression is promoted by the
presence of in-plane shear stress. The failure criteria of Tsai-Wu and Tsai-Hill are a
polynomial based criterion and their failure surfaces have an ellipsoid shape. Our

computational results fall between the linear and ellipsoid envelopes.

Comparing the results from our computational analysis and these classical failure
criteria, although most of these failure criteria provide a similar trend for the loading
conditions of o22-712 and 022-123, there exists some difference for combined loading
conditions for 622<<0 in o22-712 and o22-123 stress space, especially with the presence of
high shear stress. One possible reason is that most of the classical failure criteria did
not consider the transitions of failure mechanisms observed in section 3.1.
Furthermore, most of the current failure criteria are not accurate enough to describe
our computational results of ¢11-712. So, the current failure criteria are not completely
applicable to the CFRP composites studied here. It is thus important to develop a new
set of comprehensive and effective failure criteria to better predict the failure
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envelopes of the CFRP composites.
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Figure 7. Failure envelopes of (a) o22-712 and (b) 022-723 for the radial loading path,
showing the difference between Hashin, Tsai-Wu, Pinho, Daniel, Puck failure criteria
and computational results. (¢) Comparison of the failure envelopes of o11-712 obtained
from the computational micromechanics model using 6,,.,=0.90° and different failure
criteria.
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5. Proposed failure criteria and the validation
5.1. Proposed failure criteria

A new set of homogenized failure criteria of o22-712 and 022-123 is proposed here
based on the computational micromechanics RVE analysis. We have identified three
dominant failure mechanisms or modes from the computational RVE model under
multi-axial loading conditions, which is tension, shear, and compression dominated
failure modes. These three dominant failure mechanisms resemble those proposed by
the NU-Daniel failure criteria. So, we propose a new set of failure criterial based on
the NU-Daniel failure criteria as shown in Table 2. A key element in the proposed
failure criteria for o22-712 and o22-723 is the determination of the stress value of the
transition point, as shown in Fig. 8(a) and (b). The transition point is a critical point
for the transition from shear dominated failure to compression dominated failure. The
value can be obtained from computational analysis or experimental testing under

combined loading conditions.

Table 2. Comparison of the NU-Daniel failure criteria and the proposed failure

criteria for the 622-112 stress space

NU-Daniel Proposed failure criteria
Tension dominated ) 5 ,
0 T
failure %22 (4" (T12) _ 224 (22) =1 4
YT +(2) (yT) 1 YT+(SL) “)
(022 > 0)
T2\ 022
- =) ta==1
Shear dominated - (SL) *yr
. T o
failure (g) + E% =1 YT |TTran 2 )
12
(O'érzran <0y < 0) a= |O.Tran| [( SL ) - 1]
22
Compression (2)2 +a? (Tﬁ)z =1 (2)2 + B2 (Tﬁ)z =1
MPTESSK ¢ ye/ Y¢ yc/ —
dominated failure v . i (6)
Y — ran
(=Y¢ < 0y < 053°M) a=2ﬁ ﬁ:%

In Table 2, o0,, and 74, are transverse normal stress and in-plane shear

and 717%™ are transverse normal and in-plane shear stress of the
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transition point; Y7, Y¢, and S’ are the transverse normal tensile and compressive
strengths and in-plane/out-of-plane shear strength, respectively; a and f are the
material parameters. By changing 7;, and S’ to 7,3 and ST in the Egs. (4)-(6),
we can obtain the failure criteria for a combined load of o2-723, where ST is the

out-of-plane shear strength.

Based on Puck’s theory [10, 69], the values of transition points, i.e., gi4%", glran

Tran

and 7,3%", can also be predicted by the following equations if there are no

computational or experimental results available:

o
2(1+p3)) D

|tTran| = gL /1+ 2p), |elren| = ST /1 +2pt) (8)
1 f
) _
Py = 2 1+ 2pJ.II SL’T ] (9)

where the recommended range of pill)ls 0.20 to 0.25 for glass-fiber reinforced

|O.21"(l1'l| J—

composites and 0.25 to 0.30 for carbon-fiber reinforced composites [69]. Once the

values of p l” )is determined, pi) can be calculated according to Eq. (9).

For the loading cases that involve longitudinal compression failure (oy; < 0), the
main dominant failure mechanisms identified from the computational micromechanics
model changes from fiber kink to matrix cracking/splitting with increasing in-plane
shear load. Since Tsai-Wu’s prediction agrees with our computational results the best,
we modify Tsai-Wu’s failure criterion of ¢22-712 by also considering the dependence of
compressive strength on the initial fiber waviness angle (Eq.3). The comparison
between them are listed in Table 3. We note that X¢ and X7 is longitudinal

compressive and tensile strength, respectively.

Table 3. Comparison of the proposed failure criteria and the Tsai-Wu’s failure

criterion for the o11-T12 stress spac
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Tsai-Wu Proposed failure criteria

Fiber-compression ) 011 | (T12\*
T ——+ (=) =1
Fuoh +Foy+ (o) =1 X¢ (SL)
dominated failure S vr (10)
1 1 1 X, =
= —_— =|— = — —_ f
(011 = 0) Fu = yrye i (XT XC> o GmV ), Hg”i‘;x
L

We compare the computational results and the proposed failure criteria for several
stress states Fig. 8. The material properties used in the failure criteria are listed in
Table 4. We can find that the new set of failure criteria are in very good agreement
with computational RVE results. This demonstrates that by taking the advantage of
computational results, either current failure criteria can be improved or better ones for

the investigated composites can be proposed.
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Figure 8. Comparison of the failure envelopes for the radial loading path obtained
from the computational RVE model and the proposed failure criteria. (a) 622-T12, (b)
022-T23, and (¢) o11-T12.
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Table 4. Material properties of UD CFRP composites

YT YC SL Sll,s ST (lo. ranl |T ranl) (lo_ ranl |TTranD
(MPa) (MPa) (MPa) (MPa) (MPa) (MPa, MPa) (MPa, MPa)

62.75 185.9 81.8 113.3 60.7 (53, 103.7) (49, 71)

5.2. Validation of the proposed failure criteria
5.2.1. Failure envelopes of 622-t12

To evaluate and validate the failure envelope of 62:-112 obtained from proposed
failure criteria, we also conduct off-axial tests to measure the failure strengths under

multi-axial loading conditions [70, 71].

We choose five different off-axis angles (i.e. =10°, 30°, 45°, 60°, and 90°) of UD
CFRP specimens for the experimental analysis. The geometries of these specimens are
identical as shown in Fig. 9(a). According to the given off-axis angles, the off-axis
specimens are cut from the laminated plates using a diamond saw and polished with
standard techniques. To reduce the gripping effects, woven glass/epoxy tabs are used
on the specimens. Compressive and tensile tests are conducted in accordance with
ASTM Standards D6641 [52] and D3039 [53], respectively. AMTS Sintech test
machine fitted with a 30000 /b. load cell is used to determine the transverse behavior

of the UD CFRPs with a crosshead speed of 2 mm/min.
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Figure 9. (a) Geometries of off-axis specimen (unit: mm). (b) Comparisons between
failure envelopes of ©22-tTi2 obtained from proposed failure criteria and our
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experimental tests.

For the off-axis specimen, the stresses in a ply with fibers oriented at an angle 6 to

the direction of the applied stress can be obtained as follows:

011 = Oy, cos?0,0,, = Oy, Sin6,T1, = —0y, sinf cosO (11)
where 611, 622 and 112 are stresses in the material axis, oy, is the off-axis loading
stress. The corresponding o114, 6220 and 7124 can be obtained by plugging the off-axis

ultimate strength o, into Eq. (11).

The experimental results obtained are not scattered and thus this set of experimental
data is ideal to check the applicability of the proposed failure criteria. Fig. 9(b) shows
the comparisons between failure envelopes of ©22-t12 obtained from experimental
results and analytical results. It is shown that the proposed failure criteria are in very
good agreement with experimental results. Thus, the failure criteria proposed here are
proved to be sufficient to describe the failure envelopes of UD CFRP composites in

the o22-112 stress space.

To check whether the proposed failure criteria are generally applicable to other UD
reinforced composites for the failure envelopes of 622-t12, @ comparison is made with
Six sets of experimental data found in the literature [17, 18, 72-75]. The mechanical
properties for these materials needed to generate the corresponding failure envelopes
are reported in Table 5. Fig. 10 shows the comparisons between failure envelopes of
022-T12 obtained from the proposed failure criteria and these experimental testing data.
Good agreements between the predictions and experimental data are generally
observed. As a result, the proposed failure criteria which considers the transitions of
failure mechanisms can be also applied to different types of fiber reinforced

composites.

27



1 AMPa)
(ME

P
4
| |
/
//
My
i |
5 3

Ty (MPa)
T (M)

40 > -
w,, (VPs) e (MPa)

(e) ()
Figure 10. Comparison between failure envelopes of 622-112 predicted by the proposed
failure criteria and experimental data on different materials: (a) AS4/3501-6 [72], (b)
IM7/8552 [17], (c) E-glass/RP528 [73], (d) E-glass/LY556 [74], (¢) AS4/55A [18],
and (f) T800/3900-2 [75].

Table 5. Material properties of different composites
AS4/ IM7/ E-glass/  E-glass/  AS4/ T800/

Material 0016 8552  RP528  LY556  55A  3900-2
Ref. 721 [17] [73] [74] [18] [75]
XT (MPa) 2300 2280 ; 1140 ; i
XC (MPa) 1725 1725 ; 570 - i
YT (MPa) 602 80 47 375 27 48.8
YC(MPa) 2758 290 134 1303 918 2017
St (MPa) 734 90 47 665 513 53
loT79%| (MPa) 140 140 65 55 39 73
|c77en| (MPa) 130 143 65 01 75 127
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5.2.2. Failure envelopes of 611-T12

Experimental determination of the failure envelopes for the combined in-plane
shear/longitudinal compression (c11-T12) is much more complex. Here, we refer to the
limited experimental data found in the literature. Fig. 11 shows the failure envelopes
generated by the proposed failure criteria and the corresponding experimental data
determined by the torsion and compression tests of tubes [76-78]. The relevant
mechanical properties of the material are shown in Table 6. The results show that the
predictions of the proposed failure criteria are in good agreement with the
experimental data of Soden et al. [78], as shown in Fig. 10(a) and (b). However, some
discrepancies between the predicted results and the experimental data of Michaeli et
al. [77] and Chandra et al. [76] are shown in Fig. 11(c) and (d). Large scatters also
exist in these two sets of experimental data, which is possibly due to largely variant
fiber misalignment or waviness in the specimens. Nevertheless, the general trend of

failure strengths in the 611-112 stress space is captured by the proposed failure criteria.
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Figure 11. Comparison between failure envelopes of o11-t12 predicted by the proposed
failure criteria and experimental data on different materials: (a) and (b) T300/914C
[78], (c) T300/LY556/HY917/DY070 [77], and (d) E-glass/411-C50 [76].
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Table 6. Material properties of investigated composites

T300/914C  T300/914C T300/LY556/HY917 E-glass/

Material Set1[78]  Set2 [78] /DY070 [77] 411-C50 [76]
X (MPa) 898.6 784 900 629.8
st (MPa) 125 101.25 80 55

5.2.3. Failure envelopes of 622-123

The stress states of 622-123 are extremely difficult to realize experimentally because
geometries of the test specimens are extremely difficult to obtain. However,
computational analysis has been used to generate failure envelopes of 622-123. So, we
validate the proposed failure criteria with computational results found in the literature
[18, 37]. Table 7 lists the material properties used in these computational models. Fig.
12(a) and (b) show the comparison between the failure envelopes of 622-123 found in
two studies and the failure criteria proposed herein. Again, the transitions of failure
mechanisms well describe the characteristics of these failure envelopes, which further

justifies the applicability of the proposed failure criteria.

Ty, AMPa)

(a) (b)
Figure 12. Comparison between failure envelopes of 622-123 predicted by the proposed
failure criteria and computational results from (a) Melro et al. [18], and (b) Danial et
al. [37].

Table 7. Material properties of investigated composites

& Y? s’ (la23°", 135%™ D)
(MPa) (MPa) (MPa) (MPa, MPa)
Melro et al. [18] 114.4 48.32 46.28 (26, 47)
Danial et al. [37] 1155 51.47 42.67 (33.6,45.3)
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6. Conclusions

In this paper, a comprehensive set of computational micromechanics RVE models
have been developed to investigate the failure mechanisms and failure envelopes of
UD CFRP composites under multi-axial stress states. We first compare the failure
envelopes obtained from the computational models with classical failure criteria. The
results indicate that in the o22-712 and 22-723 stress space, all the failure criteria fail to
give satisfactory results for combined loading conditions in the regime of 0220,
especially with the presence of high shear stress. For the stress space that involves
fiber longitudinal compressive deformation, i.e., og11-712, different failure criteria
provide different predictions, and none of them shows quantitative agreement with
our computational results. To overcome the limitations of the current failure criteria, a
new set of homogenized failure criteria for the UD CFRP composites studied herein
have been proposed based on the transitions of failure mechanisms observed from our
computational micromechanics model. The proposed failure criteria have been
validated with our computational and experimental results. In addition, we have
compared the failure criteria with other experimental and numerical data found in the

literature, good agreements between them are generally observed.

In conclusion, we have presented a thorough analysis of the failure criteria of UD
CFRP composites by combining computational, theoretical, and experimental
investigations. The analyses and methods presented in this study provide valuable
solutions to the great challenge of failure prediction for composites used in structural
applications. The workflow herein would also be generally applicable to formulate

better failure criteria for other fiber reinforced composites.
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