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Abstract 

Failure prediction for carbon fiber reinforced polymer (CFRP) composites has been a 

longstanding challenge. In this study, we address this challenge by first applying a 

computational micromechanics model based on representative volume element (RVE) 

to predict the failure envelopes of unidirectional (UD) CFRP composites. Then, these 

failure envelopes are compared with the classical failure criteria. We have evaluated 

the performances of these failure criteria and identified the aspects for further 

improvement in their accuracies for the UD CFRP composites studied herein. Based 

on the failure mechanisms from computational results and the comparisons between 

predicted failure envelopes and classical failure criteria, a new set of homogenized 

failure criteria is proposed. The newly proposed failure criteria show significant 

improvement in the agreement with both our computational and experimental results. 

Furthermore, we have compared the proposed failure criteria with existing 

experimental data and computational results available in the literature for different 

types of composites. Good agreements between them are generally observed. 
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1. Introduction 

Carbon fiber reinforced polymer (CFRP) composites have numerous applications in 

lightweight structures in the aerospace and automotive industry, due to their excellent 

strength and stiffness. The fast-expanding demand for these composites requires 

efficient material characterization techniques to predict their mechanical properties, 

most notably their failure behaviors under various loading conditions for safety 

concerns. Different from most homogeneous materials that exhibit a limited number 

of physical failure mechanisms, of which it is easy to formulate theoretical failure 

criteria, i.e., the mathematical and/or phenomenological evaluation of the critical 

stresses that lead to the onset of damage [1], CFRP composites, with heterogeneous 

structures and interfaces between different phases, tend to present multiple failure 

modes depending on loading directions, stress states, and possible manufacturing 

defects [2]. In this case, the coexistence of various failure modes and failure 

mechanisms in CFRP composites implies the necessity to use different failure criteria 

depending on stress states. In addition, failure locus in the stress space usually locates 

at the intersection of various smooth surfaces, with each one representing the critical 

condition for a given fracture mode. Therefore, accurate and robust failure criteria to 

predict failure envelopes of CFRP composites subjected to multi-axial stress state are 

much more challenging, and it remains as a key aspect in the optimal design of a 

composite structure.  

Over the years, numerous failure criteria have been proposed to describe the failure 

envelopes for CFRP composites from limited experimental data. Typical failure 

criteria have been successfully used in the analysis, design, and calculation of safety 

factors of composite structures subjected to complex loading and boundary conditions. 

They include but not limited to strain-based [3], stress-based [4-9], as well as their 

replacement of phenomenological failure criteria [10-15]. Recently, a set of fully 

three-dimensional failure criteria for fiber-reinforced composites have been proposed 

[16-18] and reviewed in the literature. Although many failure criteria have been 

proposed, validating them remains challenging. In addition, some recent efforts have 
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shown that the failure behaviors depend not only on the onset of failure predicted by 

the failure criteria, but also on the subsequent fracture propagation processes [19]. 

Due to the significant uncertainties in the validation of the failure criteria, many 

efforts have been devoted to comparing them with each other and with experimental 

data [17, 20]. In particular, the recent World-Wide-Failure Exercise (WWFE) 

conceived and conducted by Hinton and Soden [2, 21, 22] provides a good assessment 

of currently available failure criteria for predicting failure in carbon and glass fiber 

composites. WWFE showed that the predictions of many failure criteria differed 

significantly from the experimental results, particularly under multi-axial stress states 

involving matrix fracture and/or fiber compression. However, precise conclusions 

regarding which criterion best reproduces the physical failure mechanisms and the 

mechanical strength have not been reached due to the scarcity of experimental results 

under multi-axial stress states. Furthermore, there are several limitations for 

experimental tests because specific loading conditions or geometries of the test 

specimens are extremely difficult to obtain. Thus, many existing failure criteria for 

strength prediction have not been validated. 

On the other hand, many of these difficulties can be overcome by virtual testing by 

means of computational micromechanics analysis. In particular, computational studies 

are advantageous in the systematic characterization of the effects of fiber and matrix 

properties and microstructures on the composites’ mechanical response [23]. In 

addition, virtual experiments could avoid the complexity and variability of conditions 

in real tests, especially when complicated loading cases such as bi-axial or tri-axial 

loading tests are involved. Recently, computational analysis has been successfully 

employed to investigate the mechanical behavior of fiber-reinforced lamina up to 

failure subjected to different combined loading conditions [1, 24-29]. This approach 

provides full control of the constituent properties, spatial distribution, and loading, 

eliminating many sources of experimental error. Nevertheless, accurately modeling 

the inelastic and failure behavior of CFRP composites remains a difficult challenge 

due to various factors, such as (1) the high fiber volume fraction of the fibers leads to 
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stress or strain concentrations in the matrix; (2) the distinct properties of the 

interphase region between fiber and matrix also influence the inelastic and failure 

behavior of the composites [30]; (3) fiber distribution is non-uniform [30]; and (4) the 

manufacturing process introduces different defects (fiber shape [31, 32], fiber 

waviness [33], interface properties [34, 35], fiber-matrix interface defects [36], 

thermal residual stress [23, 34], micro-voids [29, 37]). These factors limit the 

applicability of computational models with homogenized behaviors of the composites 

or constituents. 

In this paper, a computational micromechanics model based on representative 

volume element (RVE) modeling is developed to investigate the failure mechanisms 

and calibrate the failure envelopes of UD CFRP composites. This model addresses 

several challenges aforementioned. First, we consider the influence of the distinct 

interphase region on the failure behavior of the composites. Then, we accurately 

represent the fiber volume fraction according to experimental samples. Also, we adopt 

a fiber waviness function in the longitudinal direction to represent the defects 

introduced from the manufacturing process. This computational micromechanics 

model enables us to propose a new set of homogenized failure criteria for the UD 

CFRP composites. In detail, we first use the computational model to investigate the 

failure mechanisms and failure envelopes of the composites under combined 

transverse load and in-plane/out-of-plane shear, i.e., σ22-τ12 and σ22-τ23. Afterwards, we 

further include local fiber waviness in the fiber longitudinal direction in our RVE 

model. It then enables us to consider the longitudinal deformation of the composites 

and predict the failure envelopes under combined longitudinal compression and 

in-plane shear, i.e., σ11-τ12. Then, the calibrated failure envelopes are compared with 

the predictions of the classical failure criteria. The results show that within σ22<0 in 

σ22-τ12 and σ22-τ23 stress space, there are obvious differences between computational 

results and classical failure criteria, especially in the high shear stress regime. We 

have found out that it is because the transition in dominant failure mechanisms 

observed in computational results has not yet been considered in existing failure 
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criteria. Furthermore, most of the current failure criteria cannot match our 

computational failure envelope of σ11-τ12. To address the limitations of the current 

failure criteria, a new set of homogenized failure criteria of UD CFRP composites is 

proposed for predicting composite failure under multi-axial stress states. The 

proposed failure criteria are based on the failure envelopes and failure mechanisms 

observed from the computational micromechanics model. Finally, the accuracy of the 

proposed failure criteria is validated by comparing the analytical predictions with our 

computational and experimental results under multi-axial stress states. We have also 

compared our proposed failure criteria with other experimental or computational data 

found in the literature for different types of fiber-reinforced composites.  

2. Computational micromechanics model 

2.1. RVE model set-up 

By adopting an algorithm proposed by Melro et al. [38], we generate the 

cross-section microstructure of our RVE model with cylindrical fibers randomly 

distributed in the matrix for high values of fiber volume fraction. In addition to the 

fiber and matrix phase, our RVE model also consists of a finite thickness (~200 nm) 

interphase region adjacent to the fibers. We use this interphase region to capture the 

unique properties of the transition zone between the carbon fiber and resin matrix, as 

described in our previous work [30]. A zero-thickness interface between fiber and 

interphase region is also considered to capture the realistic failure strength and 

debonding failure mechanism by inserting cohesive elements, as shown in Fig. 1. The 

fiber volume fraction within the RVE is about 51% in this study, which is the same as 

the experimental sample.  

Apart from the selection of the RVE size, the applied boundary conditions play a 

key role in the assessment of mechanical properties. We would like to note that the 

RVE size and boundary conditions are actually closely related [39, 40], and a common 

practice is that the independence on the boundary condition is considered as the 

indicator for the sufficiency of the RVE size. The classical approach to introduce 

periodic boundary condition (PBC) in a RVE is by means of the definition of 
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constraint equations (*EQUATION in Abaqus [41]) between periodic nodes, hence 

imposing constrains to their allowed displacements. In its essence, this method 

requires the mesh to be periodic, in such a way that every node on each RVE 

boundary has its homologous node on the respective opposite boundary. The 

traditional PBC approach is well appropriate for standard [1, 25] and implicit 

integration numerical schemes, but exhibits several drawbacks when explicit dynamic 

time integration is used. It is observed that the relationships between master and slave 

displacement is translated into equations that introduce intense high-frequency 

oscillations in the system that compromise the numerical solution [42]. Moreover, the 

method with traditional PBC is computationally expensive. An alternative approach is 

to apply uniform boundary conditions (displacement or traction). It has been shown 

that for sufficiently large RVEs, the results obtained from using PBC are close to 

those obtained from using uniform boundary conditions [43-45]. Thus, in this work, 

loading is applied by imposing uniform displacements (traction) on the boundary 

nodes. To choose a sufficiently large RVE, we adopt the size convergence approach 

[39] in which the RVE size is gradually enlarged and we take the size where the 

results reach convergence. Previous study has shown that the results obtained with 30 

fibers in the RVE were equivalent to those computed with 70 fibers in terms of the 

stress-strain curves and of the dominant failure micro-mechanisms when subjected to 

transverse compression and shear [1]. Following the previous research, we choose our 

RVE size to include around 50 fibers, and this size has been reported to be sufficient 

to capture the essential micro-scale features with relatively low computational costs 

[28, 46]. 

The RVE is developed using Abaqus/Explicit [41] in the following way: an orphan 

mesh technique with predominantly first-order hexahedral elements under reduced 

integration (C3D8R) and tetrahedral elements (C3D6) is adopted for these three 

phases, while first-order cohesive elements (COH3D8) are used to represent the 

interface. To generate a well-structured, high-quality mesh, a seed density of 2 

elements in the thickness direction of the interphase region is used, leading to an 

average element size for the interphase region of 0.1 um, while the element size of 
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fiber and matrix are slightly larger with a size around 0.35 um. Mass scaling 

artificially increases the mass of elements. It is therefore essential to remain aware 

that adding some ‘‘nonphysical’’ mass to increase the time increment can strongly 

affect the results, especially for a dynamic study and the inertia effects could become 

dominant. A common technique to check a posteriori that the mass scaling does not 

significantly affect the results is the comparison between the kinetic energy and the 

internal energy of the system. This ratio is often chosen below 5–10% [47]. The mass 

scaling (stable time increment) 1e-5 is selected in this study. The linear bulk viscosity 

in Abaqus-explicit is set to be 0.06 and the quadratic bulk viscosity parameter is 1.2. 

 

 

Figure 1. Schematic cross-section view of the microstructure of UD CFRP 

composites used in the RVE model. 

 

2.2.Constitutive models of the three phases 

In the RVE model, carbon fibers are assumed to be transversally isotropic and 

linearly elastic. The five independent material constants of AKSACA carbon fibers 

are listed in Table 1. The fiber diameter is 7 um. The fiber volume fraction is around 

51.4%, consistent with the specimen used in experimental analyses. 

The polymeric matrix of epoxy is modeled as an isotropic elasto-plastic solid and it 

follows the isotropic damage law proposed by Melro et al. [48], implemented as a 

VUMAT user subroutine. A paraboloidal yield criterion, defined as a function of the 

stress tensor and the compressive and tensile yield strength, is used together with a 

non-associative flow rule, which allows for a correct definition of the volumetric 

deformation in plasticity. Damage onset is defined by a damage activation function 
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similar to the paraboloidal yield criterion, but using the final compressive and tensile 

strengths of the epoxy matrix instead of yield strengths. The detailed constitutive 

model can be found in our previous study [30, 33].  

We would like to note that the epoxy resin used in this study shows first softening 

and then re-hardening plastic deformation behaviors under compression at room 

temperature. Plastic softening for matrix inevitably causes some numerical difficulties 

for implicit FEA, although several techniques such as viscous damping [49] have 

been used to circumvent it to some extent. By comparison, a favorable approach is to 

resort to explicit FEA method [50] to perform microscopic progressive failure 

analysis of the CFRP composites. This further justifies our explicit approach.  

As studied previously, the average properties of the interphase region have been 

calibrated based on molecular dynamics simulations on similar epoxy resins and an 

exponential gradient model as shown in our previous studies [30, 51]. The average 

Young’s modulus and strength of the interphase region are found to be around 5 and 9 

times larger than those of bulk resin matrix. The constitutive behavior and damage 

model of the interphase are assumed to be similar to those of the matrix model 

proposed earlier [30]. 

Interfacial debonding is considered by inserting cohesive elements at the interface 

between the fiber and interphase region, with a constitutive response defined by a 

bilinear mixed-mode softening law. Damage onset is predicted by a quadratic 

interaction criterion which depends on the interface strength for each damage modes. 

Once debonding is initiated, the cohesive tractions linearly decrease to zero. We also 

adopt the energy-based Benzeggath-Kenane (BK) damage propagation criterion to 

account for the dependence of the fracture energy dissipation on fracture modes [52]. 

The interfacial fracture strength and energy have been calibrated based on a reverse 

engineering method according to experimental tests [30]. The calibrated and validated 

cohesive parameters are also listed in Table 1. 

 

Table 1. Model parameters in the RVE model 



10 
 

Carbon 

fiber 

E11 (GPa) E22=E33 (GPa) G12=G13 (GPa) G23 (GPa) v12 

245 19.8 29.191 5.922 0.28 

Epoxy 

matrix 

Em (GPa) vm vp σft (MPa) σfc (MPa) GIC (J/m2) 

3.73 0.38 0.3 61.6 300 334.1 

Interphase 
Ei (GPa) σi (MPa) 

22.5 670 

Interface 

K (MPa/mm) τ1 (MPa) τ2, τ3 (MPa) GIC (J/m2) GIIC, GIIIC (J/m2) 

108 70 80 2 32 

 

3. Failure envelopes obtained from computational micromechanics model 

3.1. Failure envelopes of σ22-τ12 and σ22-τ23 

In this section, we utilize the computational micromechanics RVE model to predict 

the failure envelopes under multi-axial loading conditions, i.e. the failure loci for the 

whole range of combined stress states. First, the focus is put on the prediction of 

failure envelopes in the σ22-τ12 and σ22-τ23 stress planes. We adopt an RVE model with 

a thickness of 2R, where R is the fiber radius. The influence of the loading path on the 

failure surfaces of UD CFRP composites subjected to transverse load and shear is 

analyzed through computational RVE model, as shown in Fig. 2(c) and (d). In the first 

loading path, the RVE was applied with a transverse load up to a prescribed stress 

level and then was deformed in shear until failure while the total transverse force 

acting on the RVE was held constant, which can be designated as 𝜎 → 𝛾 loading path. 

In the second path, the RVE is loaded simultaneously by proportional amounts of 

transverse and shear displacement, which can be designated as radial loading path.  

The failure envelopes show that the loading path has a negligible influence on the 

failure envelopes, and the maximum shear strength increases by applying transverse 

compressive stress up to a transition point, before which it indicates a hardening effect 

of shear strength under moderate transverse compression. In this regime, the failure is 

shear dominated. With further increasing the magnitude of the transverse compression, 
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failure of the matrix under compression loading starts to dominate the failure process 

of composites, and the shear strength starts to decrease. In the transverse tension side, 

we observe that the shear strength decreases with the magnitude of transverse tension 

monotonically. Fig. 2(c) and (d) show the entire failure envelopes of σ22-τ12 and σ22-τ23 

and the corresponding three dominant failure mechanisms or modes. 

  

(a) (b) 

  

(c) (d) 

Figure 2. Schematic of the RVE of the UD CFRP composites subjected to (a) 

transverse load (σ22) and in-plane shear (τ12), (b) transverse load (σ22) and out-of-plane 

shear (τ23). (c) and (d) show the predicted failure envelopes of combined loading 

conditions corresponding to (a) and (b). The numbers next to the red points represent 

the ratio of shear displacement (δs) to transverse displacement (δt/c for either tension 

or compression). 

 

This lack of sensitivity of the failure locus to the loading path is due to the fact that 

the initial failure is always interfacial debonding under combined uniaxial transverse 

tension and compression and combined in-plane and out-of-plane shear. The 

interfacial debonding tend to start at closely neighboring fibers where the stress 
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concentrations at the interfaces are higher, and interfacial debonding is corresponding 

to the peak point of the stress-strain curves obtained from the RVE model. Failure is 

also controlled by the same mechanisms under a combination of both stresses. The 

contour plots of the accumulated plastic strain after interface debonding for different 

ratios of δs/δt/c are shown in Fig. 3. We can clearly observe that plastic deformation of 

the matrix and interphase region is only found around the interface cracks. The main 

matrix region of RVE model is still in the elastic state prior to fracture. Thus, failure 

envelopes depend primarily on the critical magnitude of the stresses that trigger 

interface debonding rather than on the loading path to reach the critical condition. 

Meanwhile, previous experimental results of AS4/PEEK composite subjected to 

longitudinal [27] or transverse compression [53] and numerical simulations of 

transverse compression combined with out-of-plane shear [54] or in-plane shear [53] 

did not detect any significant effect of the loading path on the failure locus either. 

 

  

(a) (b) 

  

(c) (d) 

Figure 3. Contour plot of the accumulated plastic strain in the composites subjected 

to: (a) The ratio δs/δt of the radial loading path is 7.58 in the σ22-τ12 stress space; (b) 

The ratio δs/δc of the radial loading path is -4.45 in the σ22-τ12 stress space; (c) The 
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ratio δs/δt of the radial loading path is 5.33 in the σ22-τ23 stress space; (d) The ratio 

δs/δc of the radial loading path is -2.31 in the σ22-τ23 stress space. The plastic strain 

corresponding to each color is shown in the legend. 

 

The detailed failure modes of the UD CFRP composites subjected to different 

loading conditions in the σ22-τ12 stress space are presented in Fig. 4(a)-(f). For 

transverse tension side (σ22>0), a fracture plane throughout the thickness direction is 

always generated. This fracture plane is formed by the normal interface debonding 

when the in-plane shear load is low, as shown in Fig. 4(a) and (b). While, with 

increasing the shear load, the complete fracture surface tends to tilt to an angle of 45° 

relative to the fiber direction (see Fig. 4(c)), which is similar to the pure in-plane 

shear loading case [30]. For the transverse compression side (σ22≤0), the fracture 

plane is oblique, which causes the interfaces to be under tangential debonding other 

than normal opening. However, the in-plane shear loads induce a change in the 

fracture plane orientations. For instance, in the range of high shear loads (−40.7 ≤

δs/δc < −8.12), the composite fails in shear-dominated mode and the final fracture 

angle is the same as the pure in-plane shear loading case, similar to Fig. 4(c). When 

the compressive stresses become more dominant as −8.12 ≤ δs/δc < 0, the fracture 

occurs through a matrix plane whose inclination with respect to the X2-direction 

increases gradually, as marked by the increasing angles show in Fig. 4 (d) - (f). When 

the compressive stress becomes large enough, the angle of the fracture surface with 

respect to X2-direction saturates at around 57.8°, which is similar to the pure 

transverse compression loading case [30]. 

 

   

(a) (b) (c) 
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(d) (e) (f) 

Figure 4. The failure modes of the UD CFRP composites under combined loading in 

the σ22-τ12 stress space characterized by the ratio δs/δt/c. (a) δs/δt = 7.58, (𝜀22 =

0.76% , 𝛾12 = 5.78% ), (b) δs/δt = 11.45 , ( 𝜀22 = 0.51% , 𝛾12 = 5.78% ), (c) 

δs/δt = 25.13 , ( 𝜀22 = 0.23% , 𝛾12 = 5.78% ), (d) δs/δc = −8.12 , (  𝜀22 =

−0.71% , 𝛾12 = 5.78%), (e)δs/δc = −4.45 , (𝜀22 = −1.30% , 𝛾12 = 5.78% ), (f) 

δs/δc = −1.90,  (𝜀22 = −3.04%, 𝛾12 = 5.78%). 

 

The failure modes under combined transverse load and out-of-plane shear (σ22-τ23 

stress space) are presented in Fig. 5(a)-(f). It can be found that failure is always 

initiated by the nucleation of interface cracks depending on the contribution of 

transverse load and out-of-plane shear stresses. The stress concentration at the 

interface crack tip promotes the plastic deformation of the matrix, and then, damage 

localizes along the weakest path. Final failure occurs by the coalesce of interfacial 

cracks through the matrix. The orientation of the final fracture path varies as a 

function of the ratio of the applied transverse load and out-of-plane shear load. When 

it is shear dominant, the fracture plane is more towards an angle of 45° corresponding 

to X2-direction, while if the transverse tension or compression dominates, the fracture 

plane is more towards 0° or 57.4°, respectively. For instance, in the transverse 

compression dominant case of δs/δc = −1.43 as shown in Fig. 5(f), the fracture 

plane is inclined at 57.4° to X2-direction, showing good agreement with experimental 

observations of UD CFRP composites under solely transverse compressive loading 

[30]. 
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(a) (b) (c) 

   

(d) (e) (f) 

Figure 5. The failure modes of the UD CFRP composites under combined loading in 

the σ22-τ23 stress space for different ratios of δs/δt/c. (a) δs/δt = 3.87, (𝜀22 = 0.78%, 

𝛾23 = 3.03%), (b) δs/δt = 5.33, (𝜀22 = 0.57%, 𝛾23 = 3.03%), (c) δs/δt = 10.38, 

(𝜀22 = 0.30%, 𝛾23 = 3.03%), (d) δs/δc = −5.92, (𝜀22 = −0.51%, 𝛾23 = 3.03%), 

(e) δs/δc = −2.3 , ( 𝜀22 = −1.31% , 𝛾23 = 3.03% ), (f) δs/δc = −1.43 , ( 𝜀22 =

−2.12%, 𝛾23 = 3.03%). 

 

3.2. Failure envelope of σ11-τ12  

Kink-bands typically initiate in the regions of fiber waviness/misalignment [33] or 

where fiber rotations have been introduced by other failure mechanisms (e.g. 

delamination of neighboring plies [55], following a shear-driven fiber compressive 

failure [56]). Under compressive load, initially misaligned fibers rotate and lead to 

shear stresses in the matrix. As the matrix fails, the fibers lose the support which 

results in further fiber rotation and deformation of the kink-band [33]. Recently, Bai et 

al. [57] presented a 3D RVE investigation of the formation of kink-band under 

longitudinal compression of the composites. In this section, we further extend that 

work in the fiber longitudinal direction by considering local fiber waviness, which is 

characterized in an interval between x1≤x≤x2 in the longitudinal direction located at 

the middle of the 3D RVE model, as shown in Fig. 6(a). The total length of the 3D 
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RVE model is 𝐿𝑇 = 700 𝑢𝑚. We use half of the wavelength of a cosine wave to 

represent the fiber waviness, and the wavelength (L=1000 um) is estimated by 

evaluating the experimental sample [33], which is assumed to be constant for all the 

fibers in the computational micromechanics RVE model. Different maximum 

waviness angles (θmax) can be achieved by changing the wave amplitudes (A). Fig. 6(a) 

shows the imperfection area and the parameters for the local fiber waviness.  

The waviness function of the bottom boundary is given by: 

y = {

0          0 ≤ 𝑥 < 𝑥1

   𝐴 cos(2𝜋𝑥/𝐿)         𝑥1 ≤ x ≤ 𝑥2

𝐴          𝑥2 < x ≤ 𝐿𝑇

 (1) 

The initial misalignment is geometrically introduced according to the derivation of 

y(x),  

𝑡𝑎𝑛𝜃(𝑥) = −
2πA

𝐿
sin(2π𝑥/𝐿) (2) 

Imperfections stemming from the manufacturing process influence the compressive 

strength and fiber kinking of unidirectional composites significantly. In fact,  

previous studies have acknowledged that the compressive strength of fiber composites 

is highly dependent on initial fiber misalignment [33, 58-60]. It is, however, difficult 

to determine the initial fiber misalignment angle since manufacturing defects appear 

stochastically. In this section, a parametric study relating to θmax is first conducted 

using our computational model. The compressive strength is found to decrease with 

increasing θmax, as shown in Fig. 6(b). Thus, θmax can be used as a representative 

parameter to describe the scale of fiber waviness from different manufacturing 

conditions.  

A large variety of analytical models to predict the strength related to fiber kinking 

under pure longitudinal compressive loading can be found in the literature [11, 61]. 

Recently, Pinho and coworkers [62] have proposed a theoretical model to predict the 

compressive strength depending on the initial fiber waviness angle under pure 

longitudinal compressive loading: 
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𝑋𝑐 =
𝑉𝑓

(1 − 𝑉𝑓)/𝐺𝑚 + 𝜃𝑚𝑎𝑥/𝑆𝐿
𝑖𝑠

 (3) 

where 𝑉𝑓  is fiber volume fraction, 𝐺𝑚 is matrix shear modulus, 𝜃max  is the 

maximum fiber waviness angle and 𝑠𝐿
𝑖𝑠 is the in-situ in-plane shear strength of the 

composite. 

Fig. 6(b) also shows the comparison of longitudinal compressive strength obtained 

computationally and theoretically using Eq. (3). We can find that the computational 

and analytical results show excellent agreement. We would like to point out that for 

θmax=5.4°, the compressive strength decreases by approximately 70%. It indicates that 

the compressive strength is very sensitive to the initial fiber waviness introduced 

during manufacturing processes. 

 

 
 

(a) (b) 

 
 

(c) (d) 
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(e) (f) 

Figure 6. (a) Schematic of the computational model considering local fiber waviness 

(LW=L/2=500 um, LT=700 um). (b) Comparison between the predicted longitudinal 

compressive strength values from RVE models and analytical solutions proposed by 

Pinho et al. [62]. (c) Schematic of computational micromechanics model subjected to 

the stress state of σ11-τ12. (d) Failure envelopes of σ11-τ12 for different θmax. (e) and (f) 

show the failure modes which correspond to the points I and II in panel (d) for 

θmax=0.90°, respectively.  

 

The experimental determination of the failure envelope of σ11-τ12 is very difficult to 

set up. To overcome these difficulties and determine the failure envelope of σ11-τ12, 

in-plane shear load (τ12) is applied simultaneously with longitudinal compression (σ11) 

using our computational micromechanics model, as shown in Fig. 6(c). Shear forces 

are applied at x1 = 0 and LT. A compressive displacement is applied at x1 = LT, while 

the displacements in the x1- direction are restricted at x1=0. 

 Taking advantage of the RVE model, we further investigate the effect of fiber 

misalignment, i.e. maximum waviness angle θmax on the shape and magnitude of the 

failure envelope in the space of σ11-τ12. From Fig. 6 (d), we can see that the σ11-τ12 

envelopes rotate around the point (σ11=0, τ12=SL) and increasing θmax leads to a 

significant decrease of the domain defined by the area under the failure envelopes. In 

addition, the longitudinal compressive strength decreases with increasing τ12. 

Interestingly, we find that the in-plane shear load changes the kink-band failure 

mechanism of UD CFRP composites, and we observe that the main failure mode 

changes from fiber kink to matrix cracking/splitting with increasing τ12. Meanwhile, 

the area of matrix cracking goes up with increasing τ12, as shown in the comparison 

between Fig. 6(e) and (f). 
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4. Comparison between the classical failure criteria and numerical results 

4.1. A brief overview of the classical failure criteria 

Currently, there exist numerous failure criteria which are usually stress-based and 

expressed as equations, including fully interactive criteria (Tsai Wu [63], Tsai Hill 

[64]) and failure mode based criteria (Hashin [65], Puck [10], and Pinho-LaRC04 [11, 

12]. In a recent study, Daniel-NU failure theory [17, 66], which is based on 

micromechanical matrix failure mechanisms, allows the prediction of failure 

envelopes under multi-axial stress states at different strain rates. The strain-rate effect 

is considered by developing an equation of the matrix strength as a function of the 

strain rates.  

Tsai Wu [63] and Tsai Hill [64] criteria predict failure load by using equations 

involving all stress components, which combine different fundamental fracture 

mechanisms together. Different from Tsai Wu and Tsai Hill criteria, in the work by 

Hashin and Rotem [65], the failure of laminated composites has been categorized into 

fiber-dominated failure and matrix-dominated failure, and either one is further 

subdivided into tensile and compressive modes. In addition, they assume that failure 

is induced by the normal and tangential stresses acting on the fracture plane. One 

disadvantage of Hashin’s criterion is that it neglects the shear hardening effect with 

the presence of transverse compression [12]. Hashin’s approach has been further 

extended by Puck and Schuermann [10] by addressing matrix compression failure 

with a model based on the Mohr-Coulomb criterion, where Puck distinguishes 

different fracture modes according to the stress combinations which appear on the 

detected fracture plane. Afterwards, Pinho and coworkers [11, 12] adopted a similar 

assumption and implemented the action plane concept according to the 

Mohr-Coulomb criterion. Concerning tensile matrix cracking, LaRC03 [13] is 

associated with Dvorak’s fracture mechanics approach [67], using the energy release 

rates associated with intralaminar crack propagation. Subsequently, the LaRC04 

criterion was developed by extending the approach to three-dimensional stress states 

and taking into account the non-linear matrix shear behavior [12].  
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4.2. Assessments of classical failure criteria by comparison with numerical 

failure envelopes 

Following the recent collaborative work carried out in WWFE, a number of failure 

criteria have been compared to corresponding experimental characterizations. 

However, the physical failure mechanisms and the mechanical strengths are 

notoriously difficult to be validated experimentally for multi-axial stress states, and 

the capability of these criteria in predicting ultimate strength of composite composites 

under multi-axial loading remains unclear. The computational model presented here 

provides a great advantage to evaluate the performance of ply-level composites failure 

criteria for complex stress states by replacing experimental tests.  

The failure envelopes under transverse load and in-plane/out-of-plane shear (σ22-τ12 

and σ22-τ23) from our computational results are compared with those predicted by the 

classical failure criteria, as shown in Fig. 7(a) and (b). The results show that there 

exist large variances among different criteria.  

We first compare our computational results and these failure criteria in the range of 

σ22>0. In the stress space of σ22-τ12, the predictions by Tsai-Wu [63], Daniel [17, 66] 

and Puck [10] are almost identical with the computational results, while Hashin’s [9, 

65] and Pinho’s [11, 12] slightly overestimate the failure strengths of τ12 in the stress 

plane of σ22-τ12. In terms of the stress space of σ22-τ23, Hashin’s predictions are almost 

consistent with the computational results in the range of σ22>0, while Pinho’s slightly 

overestimate, Tsai-Wu’s and Puck’s values slightly underestimate failure strengths of 

τ23 for a high ratio of δs/δc. It should be noted that the accuracy of predictions of τ23 

depends upon the suitable determination of 𝑆𝑇, which is very difficult to measure 

experimentally. 

In the range of σ22≤0, the curves predicted by these failure criteria show greater 

differences from each other, especially with the presence of high shear stress in both 

σ22-τ12 and σ22-τ23. The envelopes predicted by Hashin’s 1980 criterion [9] provides a 

modest improvement in accuracy compared to the 1973 version [65], but still 

underestimate failure strength compared with computational results. Pinho’s and 
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Daniel’s criteria capture the shear strength increase at the initial stage of compressive 

σ22, but their predicted values are slightly higher than the results from our 

computational micromechanics model. In the σ22-τ12 stress space, Puck’s criterion 

agrees with computational results in low σ22 regime but overestimates the strengths in 

the high σ22 regime. In σ22-τ23 stress space, Puck’s and Daniel’s criteria perform better 

with only slight overestimations in the medium σ22 regime. Among all these criteria, 

we can find that Tsai Wu’s criterion agrees with the computational results the best, as 

the predicted failure envelope of σ22-τ23 is nearly identical to the computational one. 

For the stress states that involve longitudinal compression (σ11-τ12), the same 

disparity is found when different failure criteria are compared with our computational 

results. Fig. 7(c) shows the failure envelopes σ11-τ12 generated by the computational 

micromechanics model and the corresponding classical failure criteria. For Hashin’s 

[65] and Puck’s criteria [10], the compressive strength is not affected by the shear 

stress. Their failure envelopes show a rectangular or approximately rectangular shape. 

In contrast, Edge’s [68] and Pinho’s predicted a linear failure envelope based on the 

assumption that the buckling of the fibers under compression is promoted by the 

presence of in-plane shear stress. The failure criteria of Tsai-Wu and Tsai-Hill are a 

polynomial based criterion and their failure surfaces have an ellipsoid shape. Our 

computational results fall between the linear and ellipsoid envelopes. 

Comparing the results from our computational analysis and these classical failure 

criteria, although most of these failure criteria provide a similar trend for the loading 

conditions of σ22-τ12 and σ22-τ23, there exists some difference for combined loading 

conditions for σ22≤0 in σ22-τ12 and σ22-τ23 stress space, especially with the presence of 

high shear stress. One possible reason is that most of the classical failure criteria did 

not consider the transitions of failure mechanisms observed in section 3.1. 

Furthermore, most of the current failure criteria are not accurate enough to describe 

our computational results of σ11-τ12. So, the current failure criteria are not completely 

applicable to the CFRP composites studied here. It is thus important to develop a new 

set of comprehensive and effective failure criteria to better predict the failure 
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envelopes of the CFRP composites. 

 

 
 (a) 

 
(b) 

 
(c) 

Figure 7. Failure envelopes of (a) σ22-τ12 and (b) σ22-τ23 for the radial loading path, 

showing the difference between Hashin, Tsai-Wu, Pinho, Daniel, Puck failure criteria 

and computational results. (c) Comparison of the failure envelopes of σ11-τ12 obtained 

from the computational micromechanics model using θmax=0.90° and different failure 

criteria. 
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5. Proposed failure criteria and the validation 

5.1. Proposed failure criteria 

A new set of homogenized failure criteria of σ22-τ12 and σ22-τ23 is proposed here 

based on the computational micromechanics RVE analysis. We have identified three 

dominant failure mechanisms or modes from the computational RVE model under 

multi-axial loading conditions, which is tension, shear, and compression dominated 

failure modes. These three dominant failure mechanisms resemble those proposed by 

the NU-Daniel failure criteria. So, we propose a new set of failure criterial based on 

the NU-Daniel failure criteria as shown in Table 2. A key element in the proposed 

failure criteria for σ22-τ12 and σ22-τ23 is the determination of the stress value of the 

transition point, as shown in Fig. 8(a) and (b). The transition point is a critical point 

for the transition from shear dominated failure to compression dominated failure. The 

value can be obtained from computational analysis or experimental testing under 

combined loading conditions. 

 

Table 2. Comparison of the NU-Daniel failure criteria and the proposed failure 

criteria for the σ22-τ12 stress space  

 NU-Daniel  Proposed failure criteria  

Tension dominated 

failure 

(𝜎22 > 0) 

𝜎22

𝑌𝑇
+ (

𝑎

2
)

2

(
𝜏12

𝑌𝑇
)

2

= 1 
𝜎22

𝑌𝑇
+ (

𝜏12

𝑆𝐿
)

2

= 1 (4) 

Shear dominated 

failure 

(𝜎22
𝑇𝑟𝑎𝑛 < 𝜎22 ≤ 0) 

(
𝜏12

𝑆𝐿
)

2

+
2

𝛼

𝜎22

𝑆𝐿
= 1 

(
𝜏12

𝑆𝐿
)

2

+ 𝛼
𝜎22

𝑌𝑇
= 1 

𝛼 =
𝑌𝑇

|𝜎22
𝑇𝑟𝑎𝑛|

[(
|𝜏12

𝑇𝑟𝑎𝑛|

𝑆𝐿
)

2

− 1] 

(5) 

Compression 

dominated failure 

(−𝑌𝑐 ≤ 𝜎22 ≤ 𝜎22
𝑇𝑟𝑎𝑛) 

(
𝜎22

𝑌𝐶
)

2

+ 𝛼2 (
𝜏12

𝑌𝐶
)

2

= 1 

𝛼 = 2
𝑌𝑇

𝑆𝐿
 

(
𝜎22

𝑌𝐶
)

2

+ 𝛽2 (
𝜏12

𝑌𝐶
)

2

= 1 

𝛽 =
𝑌𝐶 − |𝜎22

𝑇𝑟𝑎𝑛|

𝑆𝐿  

(6) 

 

In Table 2, 𝜎22  and 𝜏12 are transverse normal stress and in-plane shear 

stress; 𝜎22
𝑇𝑟𝑎𝑛  and 𝜏12

𝑇𝑟𝑎𝑛  are transverse normal and in-plane shear stress of the 
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transition point; 𝑌𝑇, 𝑌𝐶 , and 𝑆𝐿 are the transverse normal tensile and compressive 

strengths and in-plane/out-of-plane shear strength, respectively; 𝛼 and 𝛽 are the 

material parameters. By changing 𝜏12 and 𝑆𝐿 to 𝜏23 and 𝑆𝑇 in the Eqs. (4)-(6), 

we can obtain the failure criteria for a combined load of σ22-τ23, where 𝑆𝑇 is the 

out-of-plane shear strength. 

Based on Puck’s theory [10, 69], the values of transition points, i.e., 𝜎22
𝑇𝑟𝑎𝑛, 𝜏12

𝑇𝑟𝑎𝑛 

and 𝜏23
𝑇𝑟𝑎𝑛 , can also be predicted by the following equations if there are no 

computational or experimental results available:  

|𝜎22
𝑇𝑟𝑎𝑛| =

𝑌𝐶

2 (1 + 𝑝⊥⊥
(−)

)
 (7) 

|𝜏12
𝑇𝑟𝑎𝑛| = 𝑆𝐿√1 + 2𝑝⊥⊥

(−)
, |𝜏23

𝑇𝑟𝑎𝑛| = 𝑆𝑇√1 + 2𝑝⊥⊥
(−)

 (8) 

𝑝⊥⊥
(−)

=
1

2
[√1 + 2𝑝⊥∣∣

(−) 𝑌𝐶

𝑆𝐿′𝑇
− 1] (9) 

where the recommended range of 𝑝⊥∣∣
(−)

is 0.20 to 0.25 for glass-fiber reinforced 

composites and 0.25 to 0.30 for carbon-fiber reinforced composites [69]. Once the 

values of 𝑝⊥∣∣
(−)

is determined, 𝑝⊥⊥
(−)

 can be calculated according to Eq. (9). 

For the loading cases that involve longitudinal compression failure (𝜎11 ≤ 0), the 

main dominant failure mechanisms identified from the computational micromechanics 

model changes from fiber kink to matrix cracking/splitting with increasing in-plane 

shear load. Since Tsai-Wu’s prediction agrees with our computational results the best, 

we modify Tsai-Wu’s failure criterion of σ22-τ12 by also considering the dependence of 

compressive strength on the initial fiber waviness angle (Eq.3). The comparison 

between them are listed in Table 3. We note that 𝑋𝐶  and 𝑋𝑇  is longitudinal 

compressive and tensile strength, respectively. 

 

 

Table 3. Comparison of the proposed failure criteria and the Tsai-Wu’s failure 

criterion for the σ11-τ12 stress spac 
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 Tsai-Wu  Proposed failure criteria  

Fiber-compression 

dominated failure 

(𝜎11 ≤ 0) 

𝐹11𝜎11
2 + 𝐹1𝜎11 + (

𝜏12

𝑆𝐿
)

2

= 1 

𝐹11 =
1

𝑋𝑇𝑋𝐶
, 𝐹1 = (

1

𝑋𝑇
−

1

𝑋𝐶
) 

−
𝜎11

𝑋𝐶
+ (

𝜏12

𝑆𝐿
)

2

= 1 

𝑋𝑐 =
𝑉𝑓

(1 − 𝑉𝑓)
𝐺𝑚

+
𝜃𝑚𝑎𝑥

𝑆𝐿
𝑖𝑠

 
(10) 

 

We compare the computational results and the proposed failure criteria for several 

stress states Fig. 8. The material properties used in the failure criteria are listed in 

Table 4. We can find that the new set of failure criteria are in very good agreement 

with computational RVE results. This demonstrates that by taking the advantage of 

computational results, either current failure criteria can be improved or better ones for 

the investigated composites can be proposed.  

 

  

(a) (b) 

 

(c) 

Figure 8. Comparison of the failure envelopes for the radial loading path obtained 

from the computational RVE model and the proposed failure criteria. (a) σ22-τ12, (b) 

σ22-τ23, and (c) σ11-τ12. 
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Table 4. Material properties of UD CFRP composites  

YT  

(MPa) 

YC 

(MPa) 

SL   

(MPa) 

𝑆𝐿
𝑖𝑠 

(MPa) 

ST 

(MPa) 

(|𝜎22
𝑇𝑟𝑎𝑛|, |𝜏12

𝑇𝑟𝑎𝑛|) 

(MPa, MPa) 

(|𝜎22
𝑇𝑟𝑎𝑛|, |𝜏23

𝑇𝑟𝑎𝑛|) 

(MPa, MPa)  

62.75 185.9 81.8 113.3 60.7 (53, 103.7) (49, 71) 

 

5.2. Validation of the proposed failure criteria 

5.2.1. Failure envelopes of σ22-τ12 

To evaluate and validate the failure envelope of σ22-τ12 obtained from proposed 

failure criteria, we also conduct off-axial tests to measure the failure strengths under 

multi-axial loading conditions [70, 71].  

We choose five different off-axis angles (i.e. θ=10°, 30°, 45°, 60°, and 90°) of UD 

CFRP specimens for the experimental analysis. The geometries of these specimens are 

identical as shown in Fig. 9(a). According to the given off-axis angles, the off-axis 

specimens are cut from the laminated plates using a diamond saw and polished with 

standard techniques. To reduce the gripping effects, woven glass/epoxy tabs are used 

on the specimens. Compressive and tensile tests are conducted in accordance with 

ASTM Standards D6641 [52] and D3039 [53], respectively. AMTS Sintech test 

machine fitted with a 30000 lb. load cell is used to determine the transverse behavior 

of the UD CFRPs with a crosshead speed of 2 mm/min. 

 

 
 

(a) (b) 

Figure 9. (a) Geometries of off-axis specimen (unit: mm). (b) Comparisons between 

failure envelopes of σ22-τ12 obtained from proposed failure criteria and our 
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experimental tests. 

 

For the off-axis specimen, the stresses in a ply with fibers oriented at an angle θ to 

the direction of the applied stress can be obtained as follows: 

𝜎11 = 𝜎𝑥1
cos2 𝜃 , 𝜎22 = 𝜎𝑥1

sin 𝜃 , 𝜏12 = −𝜎𝑥1
sin 𝜃 cos 𝜃 (11) 

where σ11, σ22 and τ12 are stresses in the material axis, σx1
 is the off-axis loading 

stress. The corresponding σ11u, σ22u and τ12u can be obtained by plugging the off-axis 

ultimate strength σxu
 into Eq. (11). 

The experimental results obtained are not scattered and thus this set of experimental 

data is ideal to check the applicability of the proposed failure criteria. Fig. 9(b) shows 

the comparisons between failure envelopes of σ22-τ12 obtained from experimental 

results and analytical results. It is shown that the proposed failure criteria are in very 

good agreement with experimental results. Thus, the failure criteria proposed here are 

proved to be sufficient to describe the failure envelopes of UD CFRP composites in 

the σ22-τ12 stress space.  

To check whether the proposed failure criteria are generally applicable to other UD 

reinforced composites for the failure envelopes of σ22-τ12, a comparison is made with 

six sets of experimental data found in the literature [17, 18, 72-75]. The mechanical 

properties for these materials needed to generate the corresponding failure envelopes 

are reported in Table 5. Fig. 10 shows the comparisons between failure envelopes of 

σ22-τ12 obtained from the proposed failure criteria and these experimental testing data. 

Good agreements between the predictions and experimental data are generally 

observed. As a result, the proposed failure criteria which considers the transitions of 

failure mechanisms can be also applied to different types of fiber reinforced 

composites.  
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

Figure 10. Comparison between failure envelopes of σ22-τ12 predicted by the proposed 

failure criteria and experimental data on different materials: (a) AS4/3501-6 [72], (b) 

IM7/8552 [17], (c) E-glass/RP528 [73], (d) E-glass/LY556 [74], (e) AS4/55A [18], 

and (f) T800/3900-2 [75]. 

 

Table 5. Material properties of different composites 

Material 
AS4/ 

3501-6 

IM7/ 

8552 

E-glass/ 

RP528 

E-glass/ 

LY556 

AS4/ 

55A 

T800/ 

3900-2 

Ref. [72] [17] [73] [74] [18] [75] 

XT (MPa) 2300 2280 - 1140 - - 

XC (MPa) 1725 1725 - 570 - - 

YT (MPa) 60.2 80 47 37.5 27 48.8 

YC (MPa) 275.8 290 134 130.3 91.8 201.7 

SL (MPa) 73.4 90 47 66.5 51.3 53 

|𝜎22
𝑇𝑟𝑎𝑛| (MPa) 140 140 65 55 39 73 

|𝜏12
𝑇𝑟𝑎𝑛| (MPa) 130 143 65 91 75 127 
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5.2.2. Failure envelopes of σ11-τ12 

Experimental determination of the failure envelopes for the combined in-plane 

shear/longitudinal compression (σ11-τ12) is much more complex. Here, we refer to the 

limited experimental data found in the literature. Fig. 11 shows the failure envelopes 

generated by the proposed failure criteria and the corresponding experimental data 

determined by the torsion and compression tests of tubes [76-78]. The relevant 

mechanical properties of the material are shown in Table 6. The results show that the 

predictions of the proposed failure criteria are in good agreement with the 

experimental data of Soden et al. [78], as shown in Fig. 10(a) and (b). However, some 

discrepancies between the predicted results and the experimental data of Michaeli et 

al. [77] and Chandra et al. [76] are shown in Fig. 11(c) and (d). Large scatters also 

exist in these two sets of experimental data, which is possibly due to largely variant 

fiber misalignment or waviness in the specimens. Nevertheless, the general trend of 

failure strengths in the σ11-τ12 stress space is captured by the proposed failure criteria. 

 

  
(a) (b) 

  
(c) (d) 

Figure 11. Comparison between failure envelopes of σ11-τ12 predicted by the proposed 

failure criteria and experimental data on different materials: (a) and (b) T300/914C 

[78], (c) T300/LY556/HY917/DY070 [77], and (d) E-glass/411-C50 [76]. 
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Table 6. Material properties of investigated composites 

Material 
T300/914C 

Set 1 [78] 

T300/914C 

Set 2 [78] 

T300/LY556/HY917

/DY070 [77] 

E-glass/ 

411-C50 [76] 

XC (MPa) 898.6 784 900 629.8 

SL (MPa) 125 101.25 80 55 

 

5.2.3. Failure envelopes of σ22-τ23 

The stress states of σ22-τ23 are extremely difficult to realize experimentally because 

geometries of the test specimens are extremely difficult to obtain. However, 

computational analysis has been used to generate failure envelopes of σ22-τ23. So, we 

validate the proposed failure criteria with computational results found in the literature 

[18, 37]. Table 7 lists the material properties used in these computational models. Fig. 

12(a) and (b) show the comparison between the failure envelopes of σ22-τ23 found in 

two studies and the failure criteria proposed herein. Again, the transitions of failure 

mechanisms well describe the characteristics of these failure envelopes, which further 

justifies the applicability of the proposed failure criteria.  

 

  
(a) (b) 

Figure 12. Comparison between failure envelopes of σ22-τ23 predicted by the proposed 

failure criteria and computational results from (a) Melro et al. [18], and (b) Danial et 

al. [37]. 

 

Table 7. Material properties of investigated composites  

 
YC  

(MPa) 

YT   

(MPa) 

ST   

(MPa) 

(|𝜎22
𝑇𝑟𝑎𝑛|, |𝜏23

𝑇𝑟𝑎𝑛|) 

(MPa, MPa)  

Melro et al. [18] 114.4 48.32 46.28 (26, 47) 

Danial et al. [37] 115.5 51.47 42.67 (33.6,45.3) 
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6. Conclusions 

In this paper, a comprehensive set of computational micromechanics RVE models 

have been developed to investigate the failure mechanisms and failure envelopes of 

UD CFRP composites under multi-axial stress states. We first compare the failure 

envelopes obtained from the computational models with classical failure criteria. The 

results indicate that in the σ22-τ12 and σ22-τ23 stress space, all the failure criteria fail to 

give satisfactory results for combined loading conditions in the regime of σ22≤0, 

especially with the presence of high shear stress. For the stress space that involves 

fiber longitudinal compressive deformation, i.e., σ11-τ12, different failure criteria 

provide different predictions, and none of them shows quantitative agreement with 

our computational results. To overcome the limitations of the current failure criteria, a 

new set of homogenized failure criteria for the UD CFRP composites studied herein 

have been proposed based on the transitions of failure mechanisms observed from our 

computational micromechanics model. The proposed failure criteria have been 

validated with our computational and experimental results. In addition, we have 

compared the failure criteria with other experimental and numerical data found in the 

literature, good agreements between them are generally observed. 

In conclusion, we have presented a thorough analysis of the failure criteria of UD 

CFRP composites by combining computational, theoretical, and experimental 

investigations. The analyses and methods presented in this study provide valuable 

solutions to the great challenge of failure prediction for composites used in structural 

applications. The workflow herein would also be generally applicable to formulate 

better failure criteria for other fiber reinforced composites.  
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