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Importance of Stopping Power

• Dosimetry
• Radiation Therapies
• Radiation Shielding
• Materials Damage
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Stopping Power
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Lindhard Stopping
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• Relate stopping power to 
dielectric response function

• Find dielectric response in 
perturbation theory
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Inertial Confinement Fusion and Warm Dense Matter
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Energy Regimes in Stopping Power

• Low energy v<0.1 a.u. ground-state or thermal electrons / adiabatic regime

• High energy v>>0.1 a.u. electron dynamics

• Intermediate regime: combined electron-nuclear dynamics, electron 
capture and ionization
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Approaches to Stopping in Real-Time Electron 
Dynamics Simulations

1. Total energy – Constant velocity projectile, increasing total energy of 
system

2. Forces on nuclei – Direct solution of forces of projectile

3. Perturbative – Relationship to dielectric response of system

J. M. Pruneda, D. Sánchez-
Portal, A. Arnau, J. I. Juaristi, 
and E. Artacho, Electronic 
stopping power in LiF from 
first principles, Phys. Rev. 
Lett. 99, 235501 (2007).

J.M. Pruneda et al.  Nuclear 
Instruments and Methods in 
Physics Research B 267 (2009) 
590–593

R. Hatcher, M. Beck, A. 
Tackett, and S.T. Pantelides, 
Phys. Rev. Lett. 100, 103201 
(2008).
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Electron-Dynamics through TDDFT

Time-dependent KS Scheme Builds Upon the Highly 
Successful Ground-state Theory
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In the spirit of KS DFT, we postulate that a non-interacting system with a judiciously chosen 
potential can reproduce the time dependent density.

telectron<<tnuclei for long simulations 50000 time steps typical > 5000 in DFT-MD
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Time Integration and Functionals Used
• Adiabatic approximate functionals (ALDA) is used

• Time-evolving external potential is applied for projectile

• Fixed bulk nuclei

• Various impact factors chosen to allow traversal of supercell

• Time-Propagation Schemes

1. Naïve application of Runga-Kutta theory looses charge

2. Split Matrix Operators

3. Crank-Nicholson Unitary and Time-reversible

4. Predictor corrector on a non-linear differential equation

5. Velocity Verlet for nuclei
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Projector-Augmented Plane-Wave (PAW) Calculations
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iŜ


t
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Capability calculations in Sequoia!
Stable over many time steps often >50000
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Stable and Scalable Implementation of TDDFT
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Coupled Electrons and Moving Nuclei

• Separate model for coupled electron ion dynamics
• No uncoupled electron dynamics Born-Oppenheimer 
• Electron-dynamics in Ehrenfest
• Certain processes not described by even Ehrenfest such as photochemistry, 

discrete electron relaxation
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Born-Oppenheimer vs. Ehrenfest

Born-Oppenheimer Ehrenfest
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Stopping Power Calculations Extended to WDM

Accurate atomistic first-principles calculations of electronic stopping
André Schleife, Yosuke Kanai, and Alfredo A. Correa
Phys. Rev. B 91, 014306 – Published 20 January 2015
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Coupling Electron-Nuclear Motion

1. Conservation of Instantaneous Total Energy – “Adiabatic Approximation”

2. Energy conservation plus Pulay forces

3. Stationary action derived forces

Choice affects both electrons and nuclei at each time step!
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Calculations of Stopping
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TDDFT on Aluminum vs. Literature
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TDDFT on WDM
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Mermin DFT propagated in time
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Stopping Power in Be
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H in H at 1000 K

• Liquid density at ambient 0.07 gcc
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Results for Warm He in D stopping
1.4 gcc at 10,000 K

Incomplete forces needed for stability
but charge is no longer fully conserved
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Stopping Vs. Temperature 1000K and 10000K
D at 1.4 gcc
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Warm He in D
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Conclusions

TDDFT allows us to calculate stopping powers in 
regimes that are hard to probe experimentally

Challenges remain regarding the best time integration 
schemes that conserve charge and provide accurate 
and stable simulations.
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Some considerations

• Translational invariance

n x, t exp int  ix  n x t, t 
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Electron-Ion Equilibration

Hot ions and  cold electrons or Hot electrons and 
cold ions

Often modeled in terms of a 2 temperature model

TEquilibration = 0.33 -10 ps

Runge-Gross Leaves the Question of Weights Open

• Different representations of TDDFT ensemble 
densities

• NVT thermal density but NVE propagation?!
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