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Abstract
Following  recent recommendstion from the Intermations] Atomic Encrgy Agency (IAEA), sie filled ionization

chambers (calibrated in terms of absorbed dose (0 water) should be used for the dosimetry in radiation therapy
with fast jons. According to IAEA, the main source of uncertainty in the dose determination is resulting from the

stopping power ratio water (o air, which is introduced in order to convert the dose measurcd in the aie cavity o the

b . . ose 1o water, which is used as the standard relerence medinm, We show that swledge of suitable stopping

power data is very limited. but that the dependence of the stopping power fatio on the mean fonization caergies

Iuier 3 Iy s dominating this quantity over a large caergy range. We discuss the [-values used in ICRU

Reports 37, 49, and 73, and we show how the various choices affect the ratio of stopping powers and the stopping

power ratio. In doing so, we also investigate a choke of /-values diffcring from the ICRU recommendations.

The stopping power ratio is calculaied as the flucnce-weighted average ratio of stopping powcrs using the Mostc

L] L) L] L]
Carlo program SHIELD-HIT 2, for primary carbon jons at 50 and 400 MeV/nuclcon, including the effect of
a | a | O n | e | n sy gt pmd b3 st et
Using a single set of /-values for all primary and secondary particles, we find that the stopping power ratio

hardly differs from the simple ratio of stopping powers for C ions over a large encrgy range. Compared to an
carlicr result [O. Geithncr ¢f al.. Phys. Med, Biol. $1 (2006} 2279 there are some minor diffcreaces. arising
from a combination of different /. values from diffcrent stopping power tables (ICRU 49 for protons and alphas,

L]
ICRU 73 for the heavier ioms).

the simple ratio of stopping powers is no longer valid. When using a consistent set of /-values it is shown that
the deviation of the stopping power ratio (including puclcar fragmentation) from the recommenda
very small at high cocrgics. but increases up 10 3% in the stopping regior

Concering fiture investigations. we think it is worthwhile to reanalyze the various sources of /-values taking
into account not only stopping power data but also precision range measurements, since the cakulated ranges
critically depead on the selectcd [-value.
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Stopping Power

Cluster
(]
9 =
[Te]
N e
20}
@ =
=
°
e o Cluster
1
#
¥
. ;
o
-
1 1 I:I} ] I 1
-200 0 200
Target Depth (A)

Stopping Power [MeV/cm]

Energy Loss of Alphas of 5.49 MeV in Air
(Stopping Power of Air for Alphas of 5.49 MeV)

S(E)=—4FE

Penetration
Depth :

2 3 4
Path Length [cm]

~ “dx ™ Proj.

1
S(E)

Av= | dE
0

Common Materials Monte Carlo Data Tabulated:

WWW.Srim.org




Lindhard Stopping
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* Relate stopping power to
dielectric response function

* Find dielectric response in
perturbation theory

Im (1/&(p,kw))




Inertial Confinement Fusion and Warm Dense Matter
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Energy Regimes in Stopping Power

* Low energy v<0.1 a.u. ground-state or thermal electrons / adiabatic regime
e High energy v>>0.1 a.u. electron dynamics

* Intermediate regime: combined electron-nuclear dynamics, electron
capture and ionization

Generic Stopping Curve for an lon
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Approaches to Stopping in Real-Time Electron

Dynamics Simulations

1. Total energy — Constant velocity projectile, increasing total energy of

system

Forces on nuclei — Direct solution of forces of projectile

Perturbative — Relationship to dielectric response of system

J.M. Pruneda et al. Nuclear
Instruments and Methods in
Physics Research B 267 (2009)
590-593

dE/dx (eV/Bohr)

J. M. Pruneda, D. Sanchez-
Portal, A. Arnau, J. |. Juaristi,
and E. Artacho, Electronic
stopping power in LiF from
first principles, Phys. Rev.
Lett. 99, 235501 (2007).
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Fig. 1. Electronic stopping power % as a function of the particle velocity » for p
(filled symbols) and p (empty symbols). Circles are the calculations while triangles
and squares indicate, respectively, the measured values of [9] and [10]. Grey
triangles and squares are these measured values scaled by 1/2, for direct
comparison with the calculations, which only considered channelling trajectories.
Crosses indicate calculations for p including additional basis orbitals along the
projectile’s path (see text).
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Electron-Dynamics through TDDFT

Time-dependent KS Scheme Builds Upon the Highly
Successful Ground-state Theory

i%¢i(r,t)=[ Ly? +VKS[‘I’O,(IDO,n](r,t)]gbl(r,t)

b,(50) =07 (r) | &ro,(n1)o,(n1)=5,

1) = S, ()

In the spirit of KS DFT, we postulate that a non-interacting system with a judiciously chosen
potential can reproduce the time dependent density.

teiectron<<tnuciei fOr long simulations 50000 time steps typical > 5000 in DFT-MD




Time Integration and Functionals Used

* Adiabatic approximate functionals (ALDA) is used

* Time-evolving external potential is applied for projectile

* Fixed bulk nuclei

* Various impact factors chosen to allow traversal of supercell

e Time-Propagation Schemes

Naive application of Runga-Kutta theory looses charge R
Split Matrix Operators 1— iHAt/z
e N/

Crank-Nicholson Unitary and Time-reversible ~ 1+ i[:[At/z
Predictor corrector on a non-linear differential equation
Velocity Verlet for nuclei

Simple Integration
g~ Crank Nicholson
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Projector-Augmented Plane-Wave (PAW) Calculations
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Stable and Scalable Implementation of TDDFT

Stablllty of CN Propagator for Liquid Be (5000 K) Strong Scaling on Sequoia

" 16 atoms, 40 bands, 2 as time step ——— - I I 64 atorrlls, 368 orbitals

e 64 atoms, 768 orbitals
26.040092 B e 144 atoms, 1760 orbitals
~. 256 atoms, 3040 orbitals
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Time per Step (s)
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Capability calculations in Sequoial Veasuted TODFD & |
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Coupled Electrons and Moving Nuclei

» Separate model for coupled electron ion dynamics

* No uncoupled electron dynamics Born-Oppenheimer

* Electron-dynamics in Ehrenfest

* Certain processes not described by even Ehrenfest such as photochemistry,
discrete electron relaxation
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Born-Oppenheimer vs. Ehrenfest

Born-Oppenheimer Ehrenfest




Stopping Power Calculations Extended to WDM
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Accurate atomistic first-principles calculations of electronic stopping
André Schleife, Yosuke Kanai, and Alfredo A. Correa @ Sandia

Phys. Rev. B 91, 014306 — Published 20 January 2015 National
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Coupling Electron-Nuclear Motion

1. Conservation of Instantaneous Total Energy — “Adiabatic Approximation”
2. Energy conservation plus Pulay forces
3. Stationary action derived forces

Choice affects both electrons and nuclei at each time step!




Calculations of Stopping
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TDDFT on Aluminum vs. Literature

0.3

Stopping Power of Proton in Aluminium <100>

0.25 |

0.15

01

Stopping Power (a.u.)

0.056

-
L BRIy

T

1

Channehng (SNL

Off-Channeling (SNL
Channeling (PRL, 2012
Off-Channeling (PRL, 2012) -

1

Experlment (TRIM)

) e
)
) -

17

0.5

1.5
Velocity (a.u.)

2

2.5 3

3.5

"SeVem®fatom]

Electronic Stopping Power [10

& , 10"°eVem?’/atom

Hon Al
T T 7T T T
25+ 7 ,"(fy 7 AMse2 ey  ABdss 5% T|aogss
1 \ B smogb .35% B A 1% b sabla
E ‘ Canoz 3% CWMB  se% o sisd
] Dpralb 1oy DW4E  Sex  ld Bese
4 2B Epritb 1o%  EWos3 4ex  fe Bes1
She FoOr6s 4.6% |fKis3
20+ Gorss  4.6% g ScBS
g HVYos6 lee% {h shaa
] THie3  1eex i Mes2a
] June7 4% |3 sess
KMres  8.6% |k sess
1 LBas  7ex |1 An77a .
15 MNa71  4.1% —m Is88a ..
i NGte2 sex  fn Tse7
] | OkKas3 3% Josors .
| s PWad9  4.5% |p Ni61
1 3 Qsessb 3% g A7 .
E RSessb 3% Ar 174 .
104 L R 4 Tt S Ses6a 3% s 1579 .
i 3 Tsessa 3% |t mds3
b Al { U seséa 3% u Le6s
1 V2 - -~ ICRU49=AZ77 Vo1 1ok v Eps2
1 7 Y WKkr82 8% qw skel
4 — Bich02 X Kt83b 5% x sm9a
i I Ywze  2.5% |y mss
5 F PSS91 Zmess 6% |z vses
T i —-—- CasP30
1t - = - Dent08=deVeral4
E ==+ Zeb13
0 T
1 10 100 1000 10000
Equivalent Proton Energy [keV] 8Sep 14

H, He on Al

(from Prlmetzhofer etal., Pri1b)

— ——
0.2 0.3
ion velocity, a.u.

O Valdes et al. [Vs93] et
<& Ormrod et al. [Or65] & e .
...... DFT -H
- - --DFT-He i

1.8%




TDDFT on WDM

Mermin DFT propagated in time
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Stopping Power in Be

Stopping Power (a.u.)

Stopping Power of Be at 140 kK, 1.6 TPa
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Hin Hat 1000 K

* Liquid density at ambient 0.07 gcc
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Results for Warm He in D stopping
1.4 gcc at 10,000 K
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Stopping Vs. Temperature 1000K and 10000K
D at 1.4 gcc
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Conclusions

TDDFT allows us to calculate stopping powers in
regimes that are hard to probe experimentally

1w D@'ea
///l VA

National Nuclear Security A dmlmstranon

Challenges remain regarding the best time integration
schemes that conserve charge and provide accurate
and stable simulations.
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Some considerations

* Translational invariance

¥, (x,t)=exp(—ig,t+ivx) ¥, (x+vt,1)
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Electron-lon Equilibration

Hot ions and cold electrons or Hot electrons and
cold ions

Often modeled in terms of a 2 temperature model

TEquiIibration =0.33-10 PS
Runge-Gross Leaves the Question of Weights Open

* Different representations of TDDFT ensemble
densities

* NVT thermal density but NVE propagation?!

p"Exact — ZVVLB ‘LPZ><LPZ

A Mermin __
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