

# Controlling qubit drift by recycling error correction syndromes

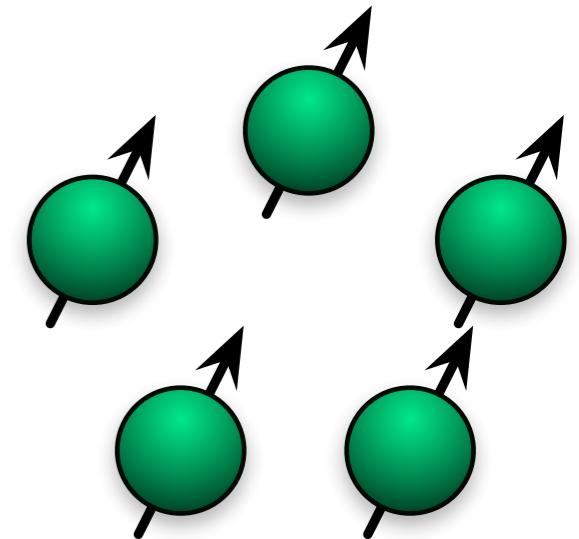
Robin Blume-Kohout  
(Sandia National Labs)



Sandia National Laboratories

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

# The Situation:



You have some qubits. You'd like to do something with them. Like run a quantum circuit. Maybe error correction.

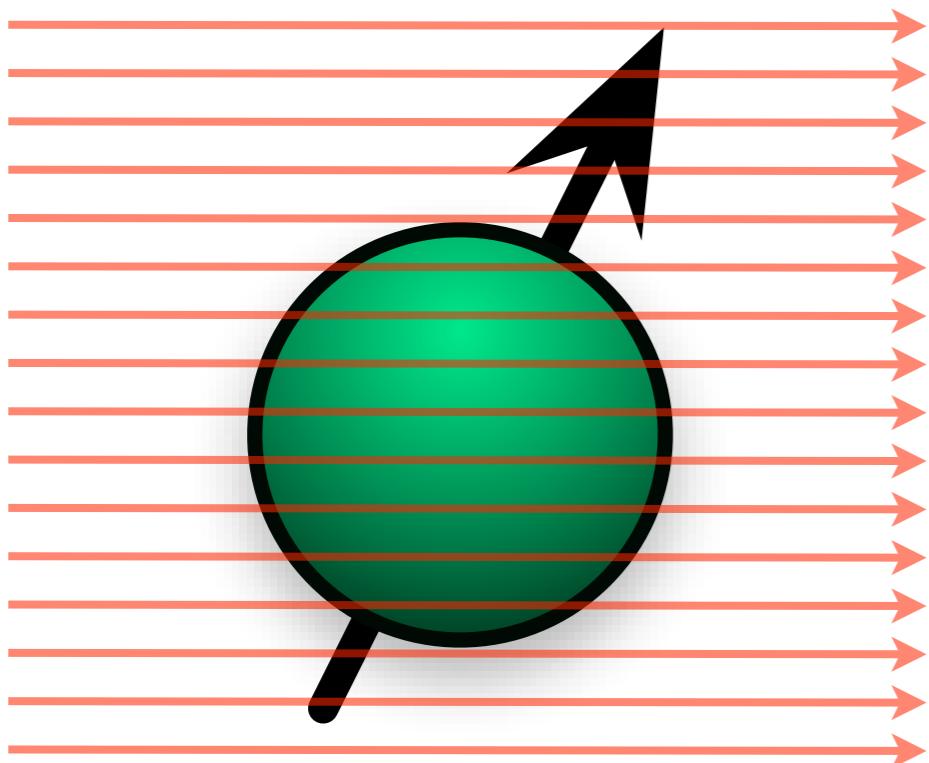
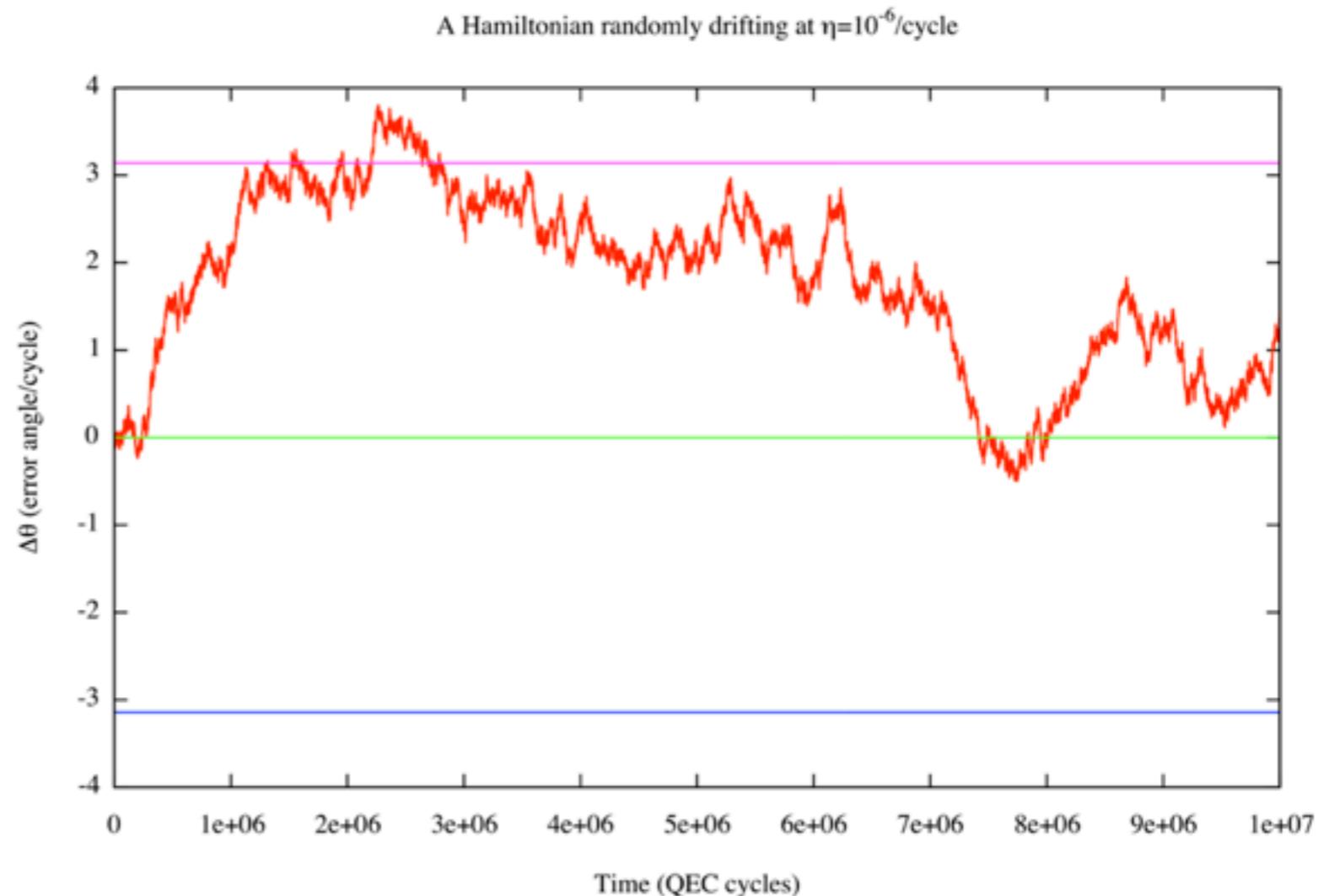
**Problem 1:** Your unitary gates aren't stable! Control parameters **drift** over time. Error rates rise. This is bad.

**Problem 2:** Dynamical decoupling (DCG) only works if your gates are *already* pretty good (need decent  $\pi$  pulses).

**Solution:** You're already doing error correction, right? Here's how to compensate drift using QEC syndrome data.

# Hamiltonians drift 😞

$$\mathbf{H} = B(t)\sigma_x$$



$\mathbf{H}$  causes errors. It is unknown *and* changes in time.

DD/DCG (dynamical decoupling) can help -- but only within limits.  
If we *knew*  $B(t)$ , we could just compensate it away!

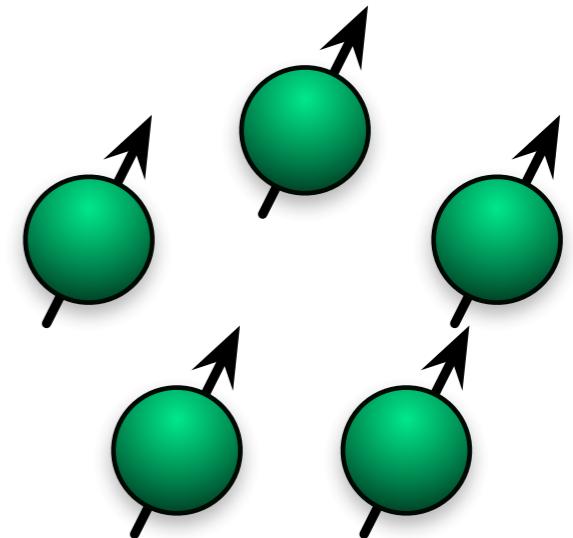
# The Basic Idea

I'll assume your qubits are engaged in error correction.

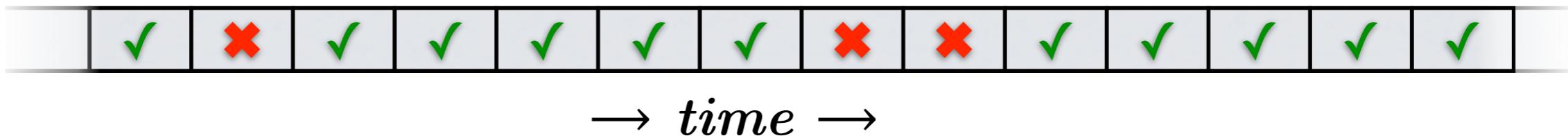
Every *cycle*, you measure stabilizers.

Result = *syndrome*.

Syndromes => what error happened.



By monitoring this stream of syndromes,  
we can infer which qubits are going bad... and fix them.



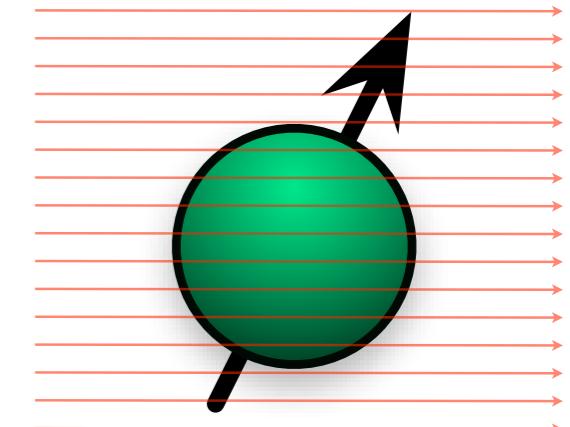
**Disclaimer: all results in this talk are THEORY.**

# A simple example

1. One physical qubit in a [1,0,1] code.
2. Hamiltonian fluctuates as  $H = B(t)\sigma_x$   
where  $B(t)$  = random walk.

$$\frac{d}{dt} \langle B^2 \rangle = \eta$$

3. We measure  $\sigma_z$  every *cycle* ( $\Delta t$ )  
and check for *errors*.



4. The probability of an error in a cycle is:

$$P_{err} = \sin^2(\Delta\theta)$$

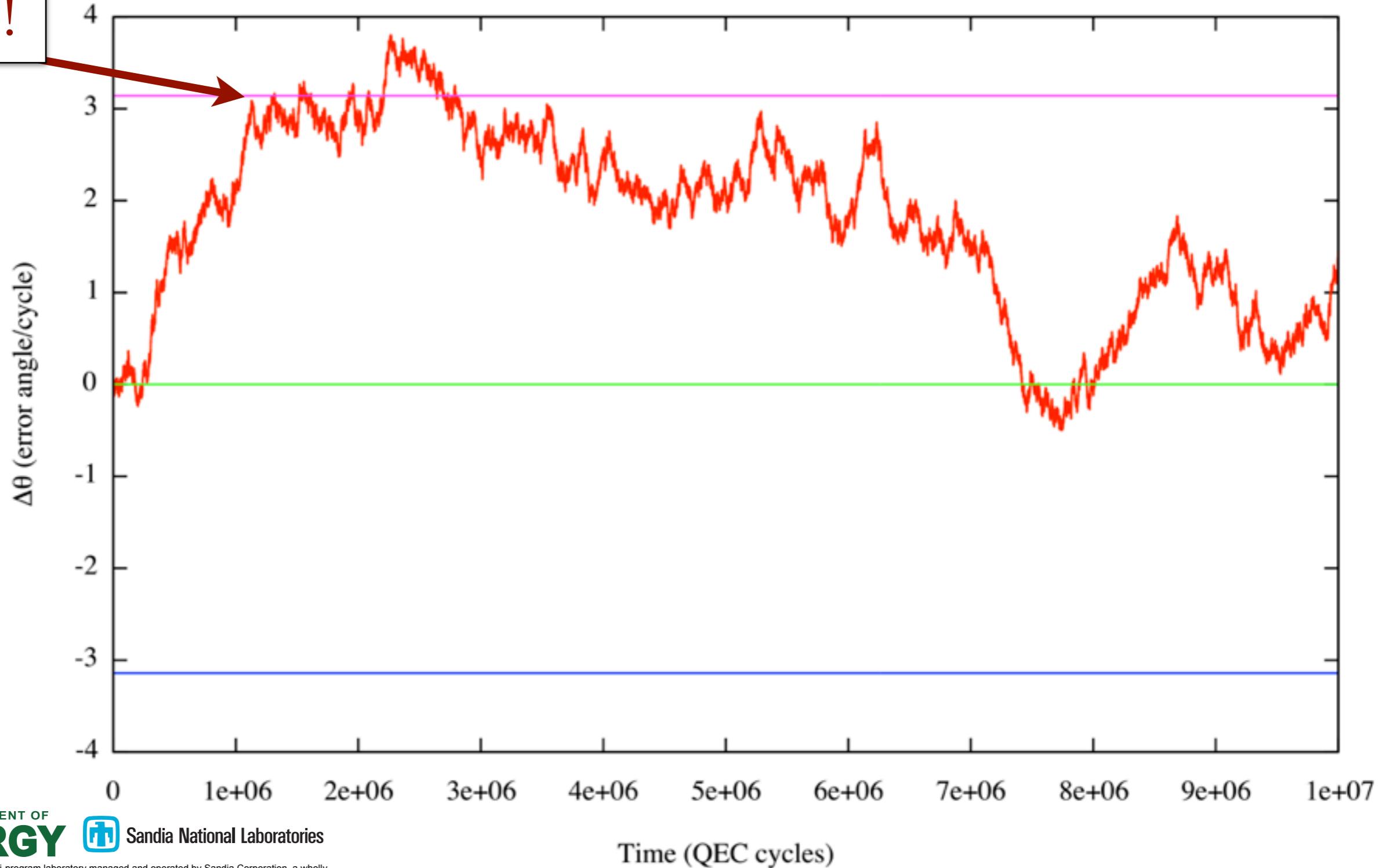
$$\Delta\theta = B(t) \cdot \Delta t$$

6. For now, assume errors are *only* caused by  $H$ .

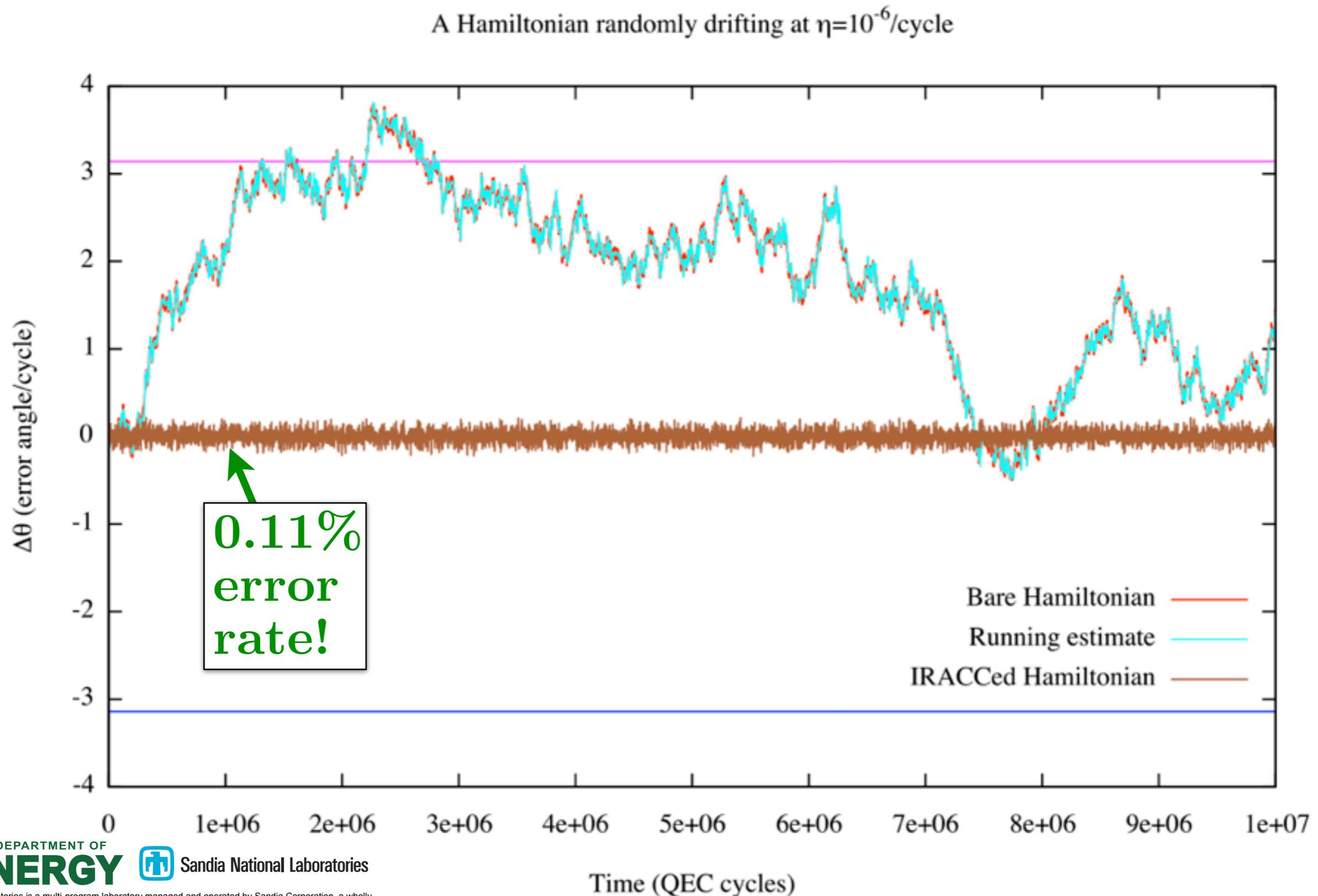
# Uncompensated $B(t)$ drift

100%  
error  
rate!

A Hamiltonian randomly drifting at  $\eta=10^{-6}/\text{cycle}$



# What's left after compensation



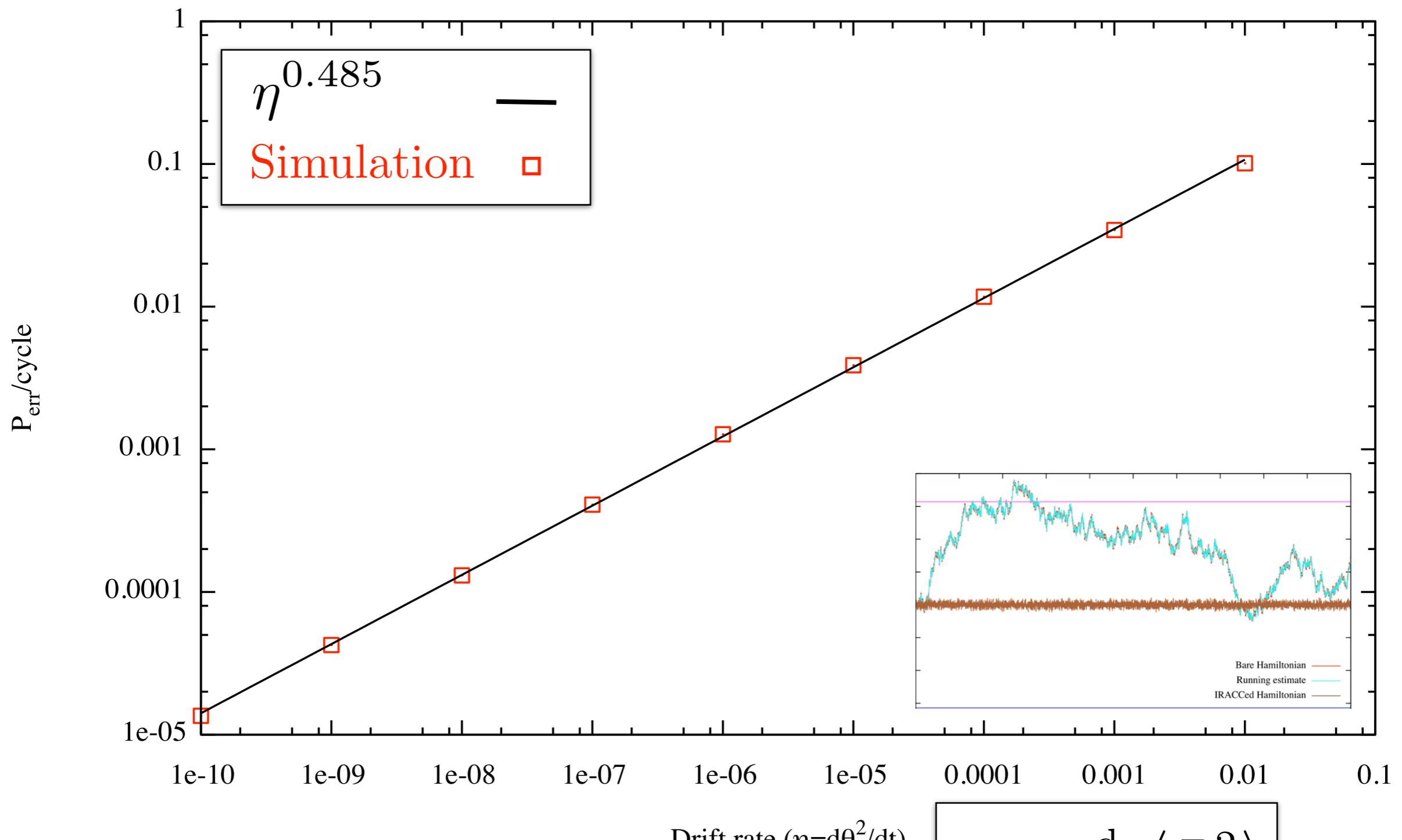
# The Algorithm

1. Count cycles ( $T$ ) until 1 error occurs.
2. Guess  $p_{\text{err}} = \theta^2 = P/T \Rightarrow \theta = \sqrt{P/T}$ .
3. Compensate by adding  $\Delta H = \pm \theta / \Delta T$ .
4. Next time, choose the opposite sign. GOTO 1.

Want to see how well this works?

# Stabilized error rate vs $\eta$

Single-species error rate



U.S. DEPARTMENT OF  
**ENERGY**



Sandia National Laboratories

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Okay. Monitoring syndrome measurements can stabilize drift. **But does it help QEC?**

Let's apply this to a real code. Like [5,1,3].

$$\begin{aligned} & X \otimes Z \otimes Z \otimes X \otimes I, \\ & I \otimes X \otimes Z \otimes Z \otimes X, \\ & X \otimes I \otimes X \otimes Z \otimes Z, \\ & Z \otimes X \otimes I \otimes X \otimes Z. \end{aligned}$$

1. Now we measure 4 Pauli stabilizers, & get one of 16 outcomes.
2. “0” means no error.  $\{1..15\}$  indicate X/Y/Z errors on qubits 1-5.
3. So now we have to monitor 15 syndrome streams in parallel...  
... and adjust 15 terms in the Hamiltonian.

Two errors in the same cycle  $\Rightarrow$  DEATH.

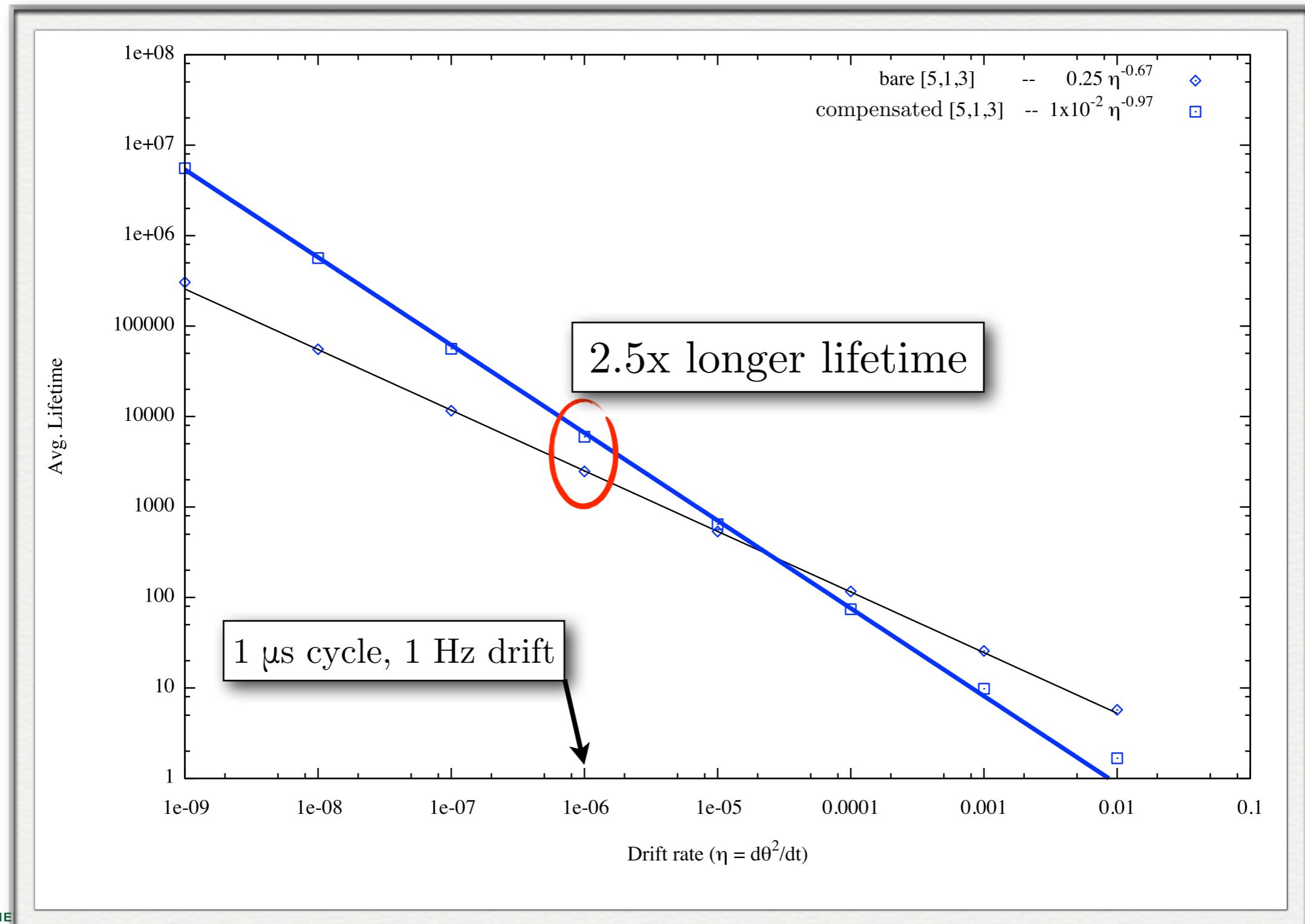
Natural metric: *expected logical qubit lifetime.*



Sandia National Laboratories

 Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

# Drift control improves logical qubit lifetime *if* drift rate is low enough



U.S. DEPARTME

ENERGY



Sandia National Laboratories

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

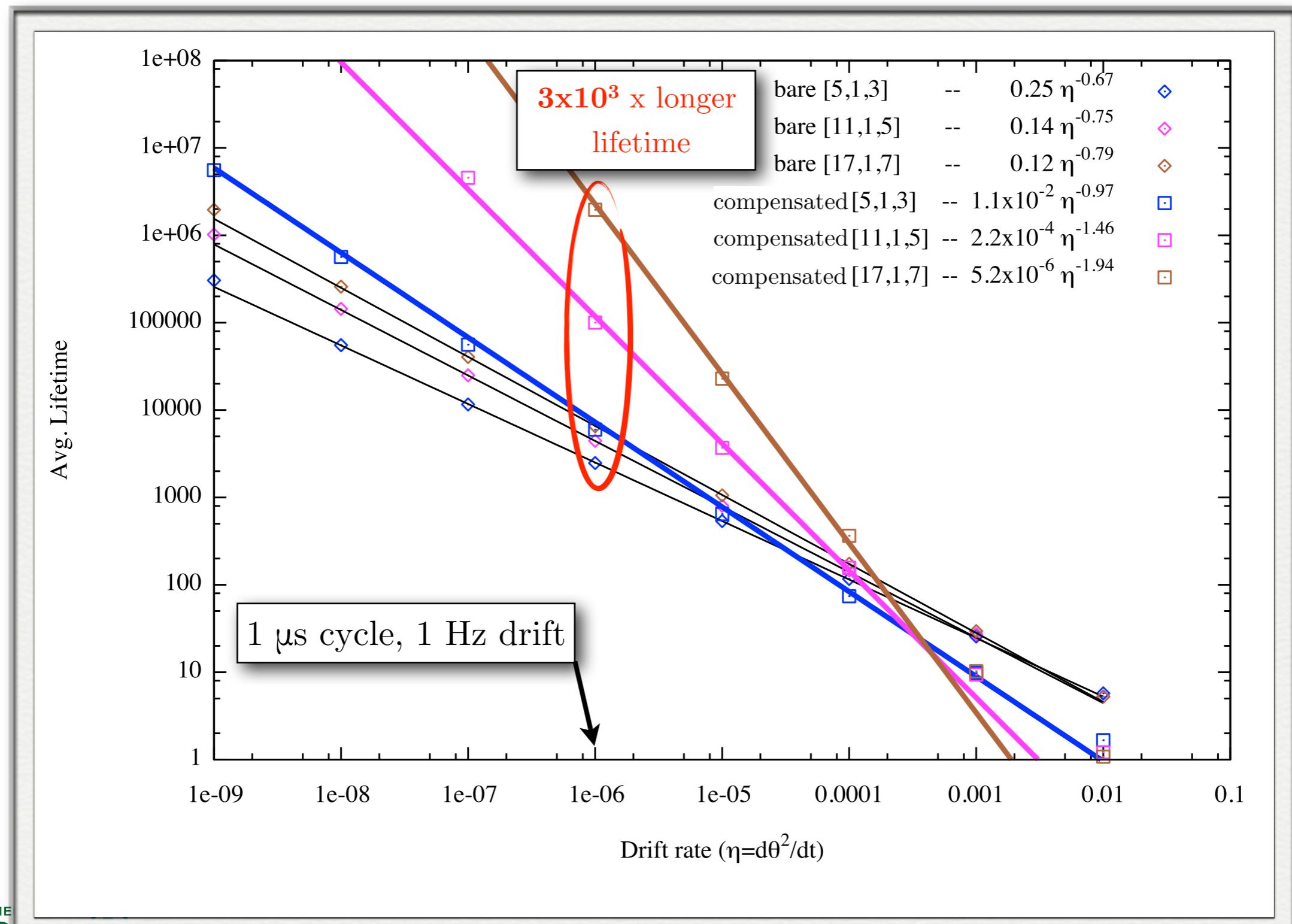
# How about a bigger code?

The  $[5,1,3]$  code can tolerate 1 error.

A  $[11,1,5]$  code can tolerate 2 errors.

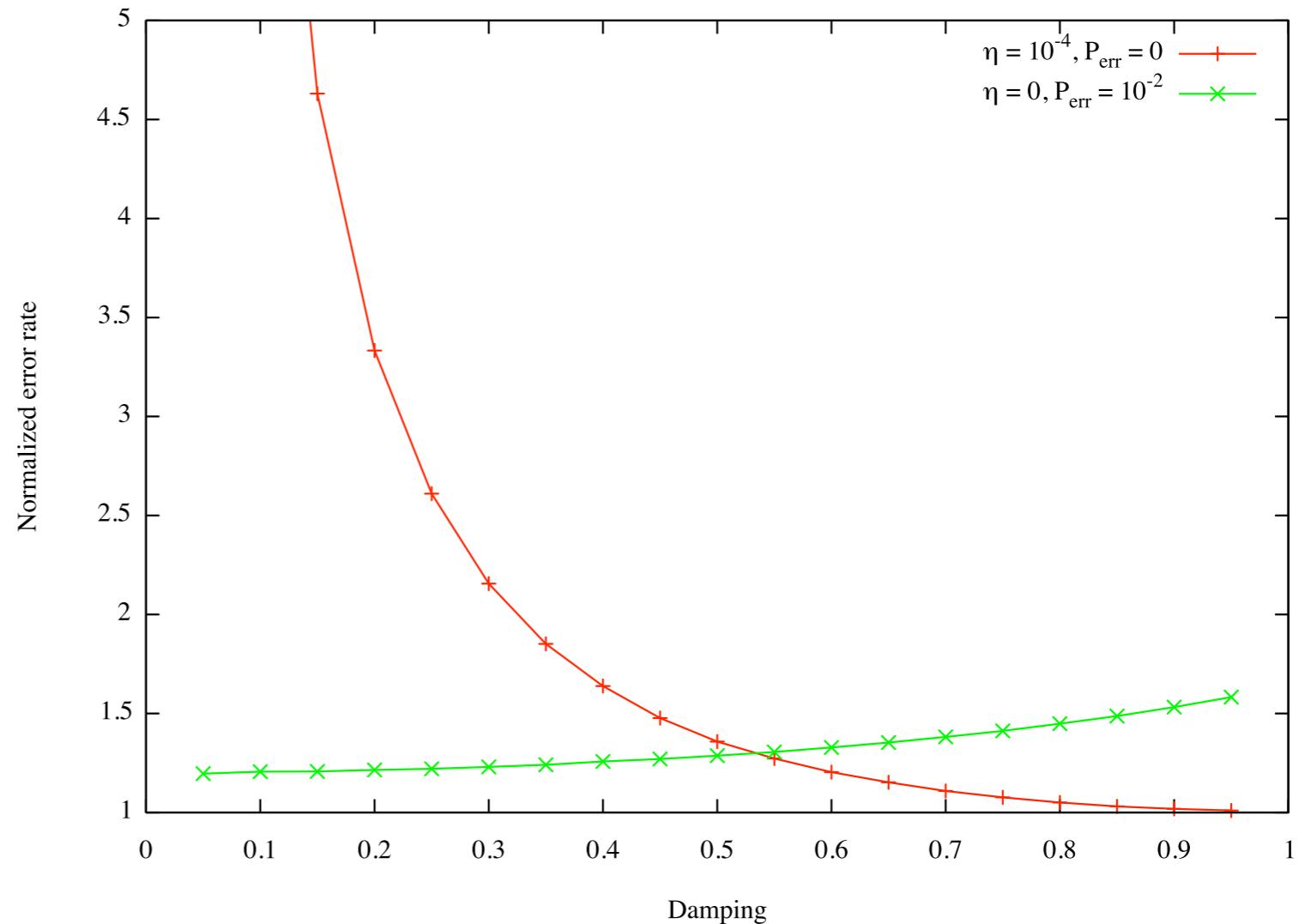
A  $[17,1,7]$  code can tolerate 3 errors.

# Lifetimes for [11,1,5] and [17,1,7] codes



# What if there's incoherent noise?

- Stochastic noise causes errors even when  $H=0$ .  
==> We can't tell these errors from ones caused by  $H$ !
- Easy fix:  
“Damp” each adjustment by a factor  $\approx 0.55$ .
- Stabilized error rate is within 30% of optimal.



# FAQ

**Q:** Wouldn't a more sophisticated algorithm do better?

**A:** Our protocol gets  $p_{\text{err}} = \eta^{0.485}$ . I can prove a lower bound of  $\eta^{0.5}$ .

**Q:** Is it fault tolerant?

**A:** Yes, if you ignore two consecutive errors (=failed measurement).

**Q:** Does it work for  $1/f$  noise?

**A:** Sure. But  $1/f$  noise is a lot whiter than Brownian drift, so there's a lot less that *anything* can do about it.

**Q:** What about degenerate codes?

**A:** Good question! We already deal with  $+/$ - degeneracy in  $H$ , but truly degenerate codes are harder. It *does* work (cycle through possible errors), but this needs more research.