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Materials challenges for high performance
AlGaN deep UV LDs

E —
AlGaN Deep UV LD _ — i
(p-n junction device) p-type AlGaN is very difficult KT = 0.026 eV
- Large acceptor ionization energies Mg o-®- >0.2-0.4 eV
- Compensating defects E, _a
GaN Unit Cell
N
AlGaN Multi- AlGaN Quantum Wells may
Quantum Wells have low optical efficiency
> Non-r.adiati.vfe crystalling defects Ga
' (e.g., impurities, vacancies)

TEM image of AlGaN on sapphire
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AIN Lack of AlIGaN Substrates

SiC or Sapphire - high densities of extended defects
substrate (threading dislocations) > 10° cm-

- Reduced device efficiency and
operational lifetime

Sapphire substrate Sandia



%‘ Options for Low Defect Substrates
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®» How to fabricate a low dislocation template
for mid-alloy AlGaN UV-emitters?
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Previous Work: Laser Diodes Employing
Patterned Overgrowth

Laser Heterostructure

Yoshida (Nat. Photonics, 2008)

Pulsed Laser Performance
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Al 1468, 55N guiding layer

n-Aly 1Gay 7N cladding layer

n-Al, ;Ga ;N contacting layer

Al ;Gag ;N overgrown layer

= N sio,
LT-buffer layer

(0001) Sapphire substrate

Pyramids by ELOG-GaN
(pattern: 3 x 3 um, 6um tall)

e Dislocations uniformly reduced across
wafer
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e ELOG-GaN with Al,;Ga, ;N claddings:
e 336 nm, 17.6 kA/cm?
e 342 nm, 8.7k A/lcm?
e Etched facets, 10 ns,

Yoshida (APL, 2008) Sandia
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| ' Dislocation reduction with AlGaN
overgrowth of etched trenches

Patterned template formed by plasma etching

AlGaN with reduced
dislocations Mesais 385nm at top!

AlGaN
Overgrowth
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AlGaN trench

AIN

Trench Sapphire
Alignment
CL of 340 nm AlGaN QWs (Al=0.30) CL of 280 nm AlGaN QWs(Al=0.70)
Planar Growth Patterned Overgrowth Patterned Overgrowth
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' Two-beam BFE-STEM of Al .,Ga, N
Overgrowth of patterned Al,;,Ga, N

B. Clarke
Mask: 1/1 (um)
Etch Depth: 0.66 pm

Overgrowth: 7 pum Aly 1,Ga, N, p = 2-3 %000 s

®» [ntroducing surface roughness
drives dislocation reduction

e Overgrowth of etched trenches

Etched pattern

e Strain induced 3D islanding

e Roughened, transitional layer




PL Intensity (arb. units)
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Photoluminescence and electroluminescence of GaN-
AlGaN QWs on patterned and non-patterned templates

Photoluminescence

Electroluminescence
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W
With AlGaN overgrowth of patterned templates:

®» ~7-8xincreasein PL

\_ ®» -~15x increase in EL

/(M)
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Optically pumped lasing at 346nm

OP laser structure

80 nm
Alp 20GaggoN WG

Wave guide layer

6x GaN QWs/
—_— :
Aly ,Gag goN GaN-AlGaN MQW

Wave guide layer

Barriers
80 nm N-Claddina
Alp20GaggpN WG 0 i A

(Si) Alg3Gag 7N (3pm)

‘ Thick (1.3 mm) Sapphire |

Etched Facets

Mirror/vt

facet

Intensity (arb. Units)

—>Cl,-based plasma etch and crystallographic

wet etch*
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ottt
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30000 - J
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25000 ~ ~50 kW/cm .
20000 - -
Pump: 266 nm
Pulse: 5ns
Cavity: 1 mm
5000 - Stripe width: 50 pm
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Laser Pump Intensity (kW/cm?)

- Low lasing threshold
~50 - 150 kW/cm?

* Miller et al. J Electron Mat 2009 @ ﬁg?.‘é'.?a.
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' Laser Heterostructure Designs

Two designs to examine trade-off between carrier injection
efficiency and optical loss

Electroluminescence (~13 A/lcm?)

= Si doped
= Mg doped “Doped WG”
Optical mode
Al,Ga,,N

0.30
= 0.20
0.00

“Undoped WG”
Optical mode

ELIntensity (arb. units)

Al,Ga, N
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QWs: l
| 346nm |
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WG:
| o Undoped

275 300 325 350

Wavelength (nm)

375 400 425

Eliminate doping in waveguide for reduced optical loss

Thin barriers, increase quantum well number for increased gain
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Doped waveguide laser design

Optical mode

Laser Heterostructure

Al,.Ga, N
e

0.30

O.5um = (Mg) A|032G3068N = 0.20

P-Cladding 000

600A, (Mg)20%AIGaN (Mg) Wave guide layer
120A, (Mg)55%AIGaN Mg) Electron Block Layer - -
o o/ (Mo) Y Fabrication
e AIGAN GaN-AlGaN MQW

700A, (Si)20%AIGaN (Si) Wave guide layer 0

0.8

(Si) Aly 3,Gag ggN
N-Cladding

0.6 4

Reflectance

0.4+

0.2+

0.0 T T T T T
200 250 300 350 400 450 500

Wavelength (nm)

« Ridge Waveguide , .
Thick (1.3mm) Sapphire N lzg um v://idg'jtﬁl HfO, /SiO, Facet Coating

_ =» Demonstrated
« Cavity lengths R > 0.90 @ 320nm

= 0.7-1.3 mm Sandia
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'Doped waveguide design:
Spectra and Ll-data (pulsed)

150 ns, 10 kHz
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[ ®» |asing from devices with 2-4um

ridges, 0.7 - 1.3 mm cavities ]
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Doped waveguide design:
Temperature dependent LI and polarization

150 ns, 10 kHz

3 gidge{ 31 pm 8000 | 150 ns, 10 kHz
avity: 1 mm o Ridge: 4 um
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—-20C m TE/TM
4 6000 - _
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% —=30C S —TE (Horiz., 90)
) 4 E a a——
g ——40C ] : 4000 TM (vert. 0)
S . —--50C 2
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i m | =0.97A
0 $999999 A“ ||||||||||||| 0 a 1
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Current Density (kA/cm?) Wavelength (nm)

®» Devices are robust to 60°C and 37 kA/cm?2
® TE / TM polarization > 100:1 @ Nt
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Undoped waveguide laser design

120A, (Mg)55%AlGaN
700A, (uid)20%AIGaN

3x GaN/
20%AlGaN

700A, (uid)20%AlGaN

Undoped WG

P-GaN Contact

0.5um - (Mg) Aly 5,Gag ggN
P-Cladding
(Mg) Electron Block Layer
(uid) Wave guide layer

GaN-AlGaN MQW
(uid) Wave guide layer

(Si) Alg 3,Gag ggN
N-Cladding

(Si) Alg3,Gag ggN

Thick (1.3mm) Sapphire

Optical mode
Al,Ga, N [

0.30

=02 N P
0.00 \

e Lower optical losses

e Reduced carrier injection efficiency
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'Undoped waveguide design:
Spectra and LI (pulsed)
Ridge waveguide process with etched, coated facets
7 -

150 ns, 10 kHz 150 ns, 10 kHz '
12000 - Ridge: 4 um ¢ | Ridge: 4 um /

Cavity: 0.7 mm Cavity: 0.7 mm ’
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(" » Threshold current densities are similar for both doped and N
undoped waveguide laser structures

» Anticipate common loss mechanism ( e.g., p-cladding thickness) Sandia
\_ Y, @ National
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‘ Summary

e Reduced dislocation density of Al, ;Ga,,N epilayers by growing
over trenches etched in Al, ;Ga, ,N.

p=2-3x108cm=
— Transparent template » bottom-emitting LEDs
— Spatially uniform reduction ® no device alignment to template

— Doped with Si ® simplifies vertical structure

e Optically pumped lasing at low thresholds (Jth ~ 50 kW/cm?)

e Diode lasing at 352-355nm from doped and undoped waveguide
structures.
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Reduction of wafer bow and cracking using
3Xx thicker sapphire substrates

Optical Image of AlGaN surface

AlGaN template for low
dislocation density
AlGaN -
Overgrowth ]
(9-12 pm) 200pm

Artifact of mask,

(Etched Trenches)

I e R e B not cracking

AlGaN

1.3mm thick

sapphire
100
. .. . 90 | -
» Tensile strain in thick AlIGaN overgrowth causes wafer to = 0 | SN
bow and epilayers to crack. 5
g
. . . . g, 4 f -‘.':‘i
> 3x thicker sapphire substrate withstands strain and reduces  |g * 0.4 rom sappnier’,
wafer bowing and cracking. g% i Ltoflat 3
5 40 S I toflat 3
. . . o H 3
» Photolithography over larger areas is enabled with less bow. |3 ¢ (1.3 mm sappire) by
o] H e o fla A
= 201 :', = = |I toflat ‘\

®» 3x thicker sapphire substrate reduced wafer bow and
epilayer cracking, greatly increasing wafer area for

devices
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