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@] Renewable electricity is cost-effective today
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Storage: the key to enabling renewable energy to be used when and where we use it

Source: Lazard



[@ Energy storage in personal transportation

Honda Clarity, Electric Honda Accord, Gasoline

90g CO, /mile 300g CO,/ mile
$0.03 / mile $0.10 / mile

Electricity: $0.13/kWh, 300g CO, /kWh (SF Bay area), 4 miles/kWh 3
Gasoline: $3.00/gallon, 9000g CO./gallon, 30 miles/gallon

Source: Honda, Tesla




@] Electrochemical ion insertion

Using electrical signals to dynamically control material composition

Graphite

coptRYIRRVOR 00

coodRQPeRVOeo00

coodRReRYRVO RO
Electrolyte

LiCo0, < Co0, Ce < LiCe

Modulating the material composition through current and voltage.
Alter solid-state chemistry through electronic signals



[@] lon insertion in a Li-ion battery
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[@ Phase separation in LiyFePO,

/ Large miscibility gap \ ﬁ)nsequences of phase separatioN
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Goal: identify how to control phase separation 7




Visualizing battery (dis)charge using in situ X-ray microscopy

Tracking lithium insertion during cycling

Photodiode

~50 nm spatial resolution
~30 s temporal resolution

LiFePO,
SiNy

Zone plate

Electrolyte

Voltage (V)

J. Lim", Y. Li", et al. Science, 353, 566-571 (2016) )
*equal contribution authors Capacity (nA h)
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=1 Tracking lithium insertion within particles in situ

500 nm
7

100-nm thick single crystalline particles One dimensional lithium conductor

J. Lim", Y. Li", et al. Science, 353, 566-571 (2016)
*equal contribution authors

Equilibrium & slow rates



Tracking lithium insertion within particles in situ

500 nm
|

100-nm thick single crystalline particles

1 min (imerpolated) S00 nm
Charging

{010 LiFePO, pum— <P O
X=1 X=0

B ———

Discharging

Equilibrium & slow rates Nonequilibrium lithium insertion
10



How do we prevent phase separation?

Solid solution Phase separation

GO0

30 min lithiation 7 hour lithiation

Lithium must diffuse along the non-conducting directions for phase separation

Electrolyte diffusion
Surface diffusion
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How do we prevent lithium from migrating between channels?
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@] Lithium migration pathway

LFP Solid solution FP

20

Fluid molecules enhance phase separation rate.

b . MD shows solvent-assisted lithium migration
Lithium migrates at the surface
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Li, Chen, Islam, Bazant, Chueh et al. submitted Collaboration: Hungru Chen & Saiful Islam, Univ of Bath
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IHI Surface diffusion controls phase separation
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Yu et al. Nano Lett. (2015)
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Interfacial reaction controls bulk thermodynamics

Inaccessible

Charge-transfer Resistance (Q m2)

00 02 04 06 08
X in LiyFePO,

Time

1.0

Lithium composition
Current density
Voltage

This shape of the resistance suppresses the driving force for phase separation

J. Lim", Y. Li", et al. Science, 353, 566-571 (2016)
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M. Bazant, Faraday Discussions, 199, 423-63 (2017)
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@] Electrochemical ion insertion

Modify chemical stoichiometry and conduct solid-state
chemistry using current and voltage

° o)
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LiCoO, Graphite
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Electrolyte

LiCo0, < Co0, Ce¢ « LiCs

Beyond energy storage, what else can we do with electrochemical ion insertion?

Electron m
«—> \J
Electrolyte
Guest
lon K Hdstie
Current collector Curr. Coll.
Substrate

) lon insertion electronic device
Li, Chueh. Ann. Rev. Mater. Res. In press 15



anuters are really fast and efficient\

at task-specific programming

dx 3
E =X
x=1;
dt = 0.01;
fori=1:1000 {
dxdt = x."2;
xnew = dt*dxdt;
X = xnew; }

\ /

@] Artificial neural networks and deep learning

/Computers struggle when there)

no clear instructions for the task

Which one of these images is a cat?

L.

Image recognition, online
advertisement, autonomous driviny

N

Artificial neural networks: how can a machine learn to do an operation through repeated training?

Solution: conduct matrix multiplications, while tuning the weights of the matrix

V1 W11

Andrew Ng, Coursera

Ym W1

Winl[X1

)

w. X
HLIS L0 n, m > 1000
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Digital vs analog computation

V1 W11

Ym W1

Digital logic

Arithmetic logic unit for
multiplication (read)

SRAM to store the
weights (write)

Winl[X1

Wm,n xn

Analog logic

Crossbar for matrix
multiplication

Modulate conductance
during training
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Simultaneous logic and memory
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AlphaGo (digital) vs. Lee Sedol (analog)
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Google DeepMind
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the brain ~10 Hz I

100 billion neurons
100 trillion synapses

Human brain: 20 watt
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lon insertion, non-volatile redox transistor
Non-volatile tuning of electronic conductance (weight)

Reservoir
Modulating conductance via doping
QD Electrolyte n-type: x Lit + xe~ + W03 < Li, W0,
: : p-type: LiCo0, < Li;_xCo0, + xLit + xe~
e 0 (@ @ 00
@ | Host | &
@ @

Li, Chueh. Ann. Rev. Mater. Res. In press

Nonzero open-circuit voltage
High voltage swing

SEM cross section c 250 } 0
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Fuller et. al., Adv. Materials, 29, 1604310 (2017) 19




[@Zero-volt lon insertion transistor

/ \ Symmetric battery = zero-voltage transistor
Standard battery:

Different lithium hosts

Ce

Electrolyte
LiFePO,
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k
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[@] lon insertion offers high linearity at low write voltages

Linear response allows more accurate and predictable updating of the weights

/ Asymmetric Nonlinearity \
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lon insertion offers high linearity at low write voltages

. TaO, Memristor, +1 V SONOS Flash, +9 V
Linear response allows more accurate
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lon insertion has much higher linearity and much lower power consumption 29



From devices to networks

Can we build a parallel network of redox insertion transistors?

N x M Network

PEDOT:PSS PET substrate
presynaptic electrode -

column 1 column 2 :
+select: -V/2 no-select: 0 Nafioh electrolyte ::
0 PEDOT:PSS/PEI
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D1 —— {—/;7 C—
row 1
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+V/2
0
i \*Q \T
row 2
no-select: ¢
0
P XN \ g : Postsynaptic electrode
Access device selects certain transistors Polymer-based insertion transistors

to write without disturbing others

selectivity e retention
35 —
O row 1, column 1
A row 1, column 2
30
2
0]
25
20t 1 1 1 Ll 1 1
+select
no-select XXX
-select (EEBRERRIRIEE 1 20000000000000000000000\ 1| B 1 1
0 25 50 75 100 O 25 50

read-write operations read-write operations 23




[@ Acknowledgements

Stanford Berkeley Labs Sandia

William Chueh Tolek Tyliszczak Alec Talin

Jongwoo Lim David Shapiro Elliot Fuller

Will Gent Farid el Gabaly

Norman Jin MIT Sapan Agarwal "‘
Martin Bazant Univ of Bath \

Alberto Salleo Dan Cogswell Martin Bazant

Scott Keene Dan Cogswell

TOYOTA

RESEARCH INSTITUTE

SAMSUNG ADVANCED
INSTITUTE OF TECHNOLOGY

|
This work is supported by the Sandia National Laboratories Truman Fellowship Program, which is funded by the Laboratory Directed Research ‘
and Development (LDRD) Program. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology
and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's
National Nuclear Security Administration under contract DE-NA-0003525. 24



[@] Matrix multiplication and artificial neural networks

How much is my home worth?

X4 Year built
Y1
Physical
property
Floorplan
Y2

School

Y1 = WX T Wy Xy + Wy 3X3

Location

Job

proximity

Unemploym

ent
Y3

Interest rate Economy

Property tax

Andrew Ng, Coursera
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[@ Matrix multiplication and artificial neural networks

How much is my home worth?

Y1 = WqqXq + WXy F...FWy gXg

W eee W
X1 Year built [yll l .1»1 . .1.8] lxll
Y3 W31 - Ws3gllXg

X2 Size _
Z =YWy T YW, +Y3Ws

27 simultaneous multiplication

X3 Floorplan
X4 e
X5 pro‘:((i)raity
X6 Uner:gtoym

X7 Interest rate

X8 Property tax

Neural networks often have 100 million weights
Google tensor processor unit does 65k simultaneous multiplications

26




Voltage pulse and linearity

Conductance (uS)

Why does higher voltage pulses result

The open-circuit potential varies by ~100

in more linear response? mV due to the entropy of lithium
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Goa

|: Find a material with higher dS/dV so the open-
circuit voltage does not change with lithium?
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Phase-separation and voltage plateau

Open-circuit voltage

Phase separation

AG,,, (Gibbs Free Energy)
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Similar open-circuit voltage
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Parallel analog processing

Aim: to mimic the brain and design a low-power device to conduct parallel
analog matrix multiplication

/ Digital logic \ / Analog logic \

Arithmetic logic unit for Static RAM for memory Computation: modulate G continuously
matﬁori>§l multigll;?cationgl(gead) § of the weights (write) Memory: G should be non-volatile
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Goal: Design devices that can linearly modulate the conductance with analog states, and
retain that conductance (non-volatile)
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