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BACKGROUND



Sandia National laboratories ItFCHydrogen and Fuel Cells Program

Metal hydride compression has the potential to
improve reliability of 700 bar refueling

Advantages Challenges

• Simple design and • Achieving required pressure
operation range within reasonable

• Absence of moving parts operating temperatures

• Oil-free • Capacity degradation over

Compact the compressor lifetime

Safe and reliable Hysteresis effects

Able to utilize waste • Resistance to impurities

industrial heat • Energy efficiency

Dramatic decreases in • Minimizing effect of vessel
operational costs heat capacity

— Advantage with on-site
generation
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Pressure-Composition-Temperature (PCT) isotherms
for a "prototype" interstitial metal hydride

•
♦

#• • % ♦
*OS is

• • 
•) 

•• 
?1P. • "3•

i) )oo

L'j'aiLer)oo 8 €

re - Phase
1 00

ca
;11 1 0

0.1

Ti M n2 -> Ti M n 2 H 2.5

13 - Phase 80

M

As
R

60

100°C\ 62=
• 

cc -4- - Phase

• 

• 

0.0 0.2 0.4 0.6
cH (1-1/M]

A H

R

0.8 1.0 2.4 2.8 3.2 3.6
r1 00.3

• where a- & P-phases co-exist, a plateau occurs

• plateau pressure is temperature dependent

40
m
O

-3-
20

•

0

-20

#

••
4•
• • ••

•••••••••
•••••••••
••••• • op ••



Sandia National laboratories ItFCHydrogen and Fuel Cells Program

We will demonstrate a two-stage metal hydride
compressor for 50 to 875 bar compression

Two-stage metal hydride compressor

Feed pressure 50-100 bar

Outlet pressure 875 bar

High purity H2 gas

Optimized material for each stage

2-3 candidates per stage will be
characterized to determine optimum design

Each stage consists of multiple (2-3) hydride
beds

synchronized hydrogenation &
dehydrogenation cycles

size and number of beds will be optimized
for continuous pumping at desired pressure
with minimal heat input
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METAL HYDRIDE ALLOY SELECTION
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Candidate alloys for each stage were paired down prior

to PCT characterization at HHC and ORNL

Alloy selection based on thermodynamics reported in literature

Minimal hysteresis and flat plateaus

Promising pressure at reasonable temperature

Three high-pressure and two low-pressure AB2 alloys selected for
PCT (pressure-composition-temperature) characterization

High Pressure Candidates

1. TiCr16Mn02

2. TiCr1.8

3• T10.95Zr0.05Cr1.20Mn0.75V0.05

4. Ti0.8Zr0.2Fe1.6V0.4

5. TiCrMn0.7Fe0.2V0.1

Low Pressure Candidates

MmNi4.7A10.3

TiMn1.66Vf0.34
3. Zr0.8110.2FeNi0.8V0.2

TiCr1.6M n02

T10.955Zr0.045Mn1.52V0.43Fe0.12A10.03

(Hydralloy C5)

Hydride Suppliers: Ames Lab and Japan Metals and Chemicals



Sandia National Laboratories itFCHydrogen and Fuel Cells Program

Hydralloy C5 selected for low pressure stage based
on performance and availability
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• Isotherms measured at HHC of
Hydralloy C5 show promise for low
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• Highly sloping isotherms

• Potentially due to lack of
annealing
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First high pressure candidate measured with ORNL

custom Sieverts apparatus; second alloy in progress

• Custom apparatus capable of measurements up to 1000 bar and >150 °C

• Absorption isotherm shows that this alloy would easily be filled by our
low pressure stage

• Desorption pressure from the alloy was measured up to 180 °C
displaying desorption pressures in excess of 875 bar
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Two additional high pressure alloys to be
measured at ORNL

Ti0.8zr0.2Fe1.6v0.4 (Ames) TiCrMn0.7Fe0.2V0.1 (IMC)

• Low hysteresis, moderate slopes • Intermediate hysteresis,

• Installed in reactor 2/22/18 literature isotherms at < 20 °C

• Calculate that Pdes = 60.3 MPa • HHC measurement showed high

90 °C slopes and low capacity

T.A. Zotov et al., Journal Alloys Compounds 509S (2011) S839- S843
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COMPRESSOR BED DESIGN
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Baseline: Shell and tube consists of tubular pressure
vessels arranged in a baffled heat exchanger

Tube ID: 1.5-2.0"
Wall thickness: 0.3-0.4" (900 bar)
Length: 18 — 24"

Component

Reservoir

Tube

Coupler

Reducer

Shell

Baffles

Total

Material Number Total Mass

7.59 kg 316L SS 8 60.7 kg

6.31 kg

0.74 kg

316L SS

316L SS

0.54 kg 316L SS

8.77 kg 316L SS 1 8.8 kg

0.36 kg 316L SS 4 1.4 kg

70.9 kg
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Alternative options: Internal heat exchanger design
with several variants

Closed Ended Design

(Carbon fiber composite)

Open Ended Design

(Carbon fiber composite)

Open Ended Design

(Nitronic 50 w/ insulator)

U-tube
external manifold

Helical tube

U-tube
internal manifold
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Trade study points to helical coil design for highest '
energy efficiency, manufacturability, and heat transfer

External HX Internal HX

Shell and
Tube

Carbon Fiber
Composite

External
Manifold

Internal
Manifold

Helical Coil

Energy Efficiency

Manufacturability

Hydride Loading

Thermal Design

HTF Pressure Drop

Low Cost
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Helical tube heat exchanger design rated for 15,000
psi (1034 bar)

3/8" thick Teflon sleeve

Two-piece lid
with gasket seal

Static o-ring seal

H2 inlet/outlet

H2 distribution tube

Nitronic 50 vessel
15,000 psi working pressure
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3/4" OD 316 SST tubing
15,000 psi working pressure
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Modeling was used extensively to develop the final

helical tube design

• 3D thermal model developed with SolidWorks and Comsol Multiphysics

• Convective heat transfer applied to inner surface of helical tube; based

on Nu correlation

• Density, specific heat, and thermal conductivity based on literature

values for MH with lOwt% expanded natural graphite (ENG)

Shell
Thickness

Shell
Material

Q shell

Q total
0.250"

0.375"

0.375"

0.500"

0.750"

Teflon

Insulation

Teflon

Teflon

Teflon

17.7%

2.4%

14.8%

13.8%

13.2%
1

448

446

444

442

440

438
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Coupled kinetic-thermal model predicts cycling
performance as function of hc and keff

• Desorption Simulation of LP Bed
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THERMAL MANAGEMENT
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Preferred method/process identified for thermal
conductivity enhancement
• Based on work by Pohlmann, et al (Dresden University, DLR)

• Overall process: Compaction of a mixture of powdered MH with ENG (75

MPa and 5-10 wt.% ENG) to a packing density of 70%

as-compacted
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MH/graphite compacts made at Sandia show good
thermal conductivity; lower than published values
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Compacted at 75 and 220 MPa

Measured k somewhat lower

than expected
20
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MH/graphite compacts made at Sandia show good
thermal conductivity; lower than published values
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MH/graphite compacts made at Sandia show good
thermal conductivity; lower than published values
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MH/ENG compacts will be created to fit vessel
geometry and loaded in inert environment

MH granules pretreated via high-energy ball
milling under argon producing a fine powder

Mix with 10 wt% high purity ENG (delivered by
SGL Carbon) in the as-delivered state in a
tubular mixer (Turbula T2F)

3) Uniaxial compaction using a Carver hydraulic
press and a custom die set into shaped pellets

4) Compressor bed loaded with pellets and sealed
with end caps

5) The whole procedure performed under inert
atmosphere to prevent any surface
contamination.
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Compressor beds will be loaded with compacted
metal hydride/graphite composites

Two custom die sets produce
pellets that conform to
internal geometry

=11

I

I

Loading consists of manual compaction
and insertion of pre-compressed pellets
within insulating Iiner
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SYSTEM-LEVEL DESIGN
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High pressure manifold designed for closed loop
recirculation of hydrogen from the compressor

Existing components located on/adjacent to 976 roof

Sherwood
Valves

6000 psi cylinders

Hydrogen 6-pack
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Temperature control system consists of hot and cold

oil recirculation loops
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Dynamic system-level model used for feasibility and
design trade  studies

LP Bed 1 i >

flow 2 LP1

flow from LP

10.533

H2 Supplyi

Temperature control loops
switched between beds at
half cycle intervals
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Dynamic system model used to predict performance
using measured HP and LP alloy properties

Configuration: Bed thermal response

25 kg of LP hydride (Hydralloy C5) calibrated to detailed
Comsol model

21.7 kg of HP hydride (Ti0.95Zr0.05Cr120Mn075V0.05)

15-20 minute half cycles 410

2 4.3

100 to 875 bar compression 1 Volume averaged
. Temperature'

Heating/cooling of beds with heat transfer fluid 20

40

Cold loop temperature set to

Hot loop temperature set to 190 °C 0.6

Results:

Utilization = 61% for all beds
Hydrogen delivered 

Utilization =  
Storage capacity  

0.87 kg/hr average flow rate

Energy usage for heating 10.7 kWh/kg H2

0.5

o 0.2

0.1

nrne

H Delivery at 875 bar

1000 2000 3000

Time (sec)



Sandia National laboratories ItFCHydrogen and Fuel Cells Program

Several approaches identified to achieve energy
efficiency/cost targets

Heat recuperator design could reduce the sensible heat requirement of the
system by -40% bringing required heat down to -10 kWh/kg

Waste heat utilization:

Coupling to an SMR system is possible (heat available at appropriate
temperature), but not likely in forecourt

Waste-to-energy systems identified with available, high quality heat

BESI system at HCATT has 190 kW of steam at —180 °C and cooling water

Low cost heat:

Natural gas burner can provide 10 kWh/kg of heat for about $.25/kg

Heat pump options:

VCC operating between 25 °C and 125 °C

Using R21 gives COP = 2.7 resulting in 3.7 kWh/kg

Using methanol gives a COP of 3.2 resulting in 3.1 kWh/kg

A natural gas-fired AHP system might produce a COP of —1.4 with these
temperatures requiring 7.1 kWh/kg of heat or $.18/kg
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Heat pump could significantly improve energy
efficiency

Theoretical MeOH heat pump cycle

• Given condenser and evaporator temperatures
and a candidate refrigerant, thermodynamic

analysis gives heat pump COP

• COP is calculated as (h2-h3)/h2-1)

• VCC with methanol has potentially attractive
thermodynamics

Evaporator at 60 °C and 12 psia; condenser at
190 °C and 482 psia

For methanol at these conditions, the COP is 2.63
for idealized system

• Energy consumption for the overall system is 4.06
kWh/kg

• However, actual COP may be closer to 2.0 given
realistic compressor efficiency

1000.
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High temperature heat pumps/refrigerants developed
for industrial steam generation show promise
• High temperature heat pumps (up to 160

°C) provide process heat for a number of
industries

• Many commercially available HTHPs with

supply temperatures from 110 to 130 °C

• New refrigerants for HTHPs with very
low global warming potential

— e.g. R1336mzz-Z which has a critical

temperature of over 170 °C

• Cascade heat pump system with two
loops/fluids might reach target COP

Kobelco HTHP has a temperature lift

from 35 °C to 90 °C with a COP of 5.8

— HTHP operating from 85 to 135 °C with a

COP of 4.1 gives net COP of 2.675

COP vs. temperature lift for commercial HTHPs
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PROGRAMMATIC
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Approach: Status of Milestones

Milestone

Number
Milestone Description

11. Scheduled ri
Date

Milestone 2.1

Milestone 2.2

Milestone 3.2.1

Go/No-Go
Decision

Point

Go/No-Go
#1

Milestone 6.1

Milestone 7.1

Milestone 7.2

Go/No-Go

Decision

Point

Go/No-Go

#2

At least two candidate alloys identified for both LP and HP

At least two LP and HP materials fully characterized

Desired effective thermal conductivity determined along with

additive type and amount.

Laboratory characterization demonstrates the ability of two metal

hydride alloys to compress hydrogen from 100 bar to 875 bar, and
engineering simulations using the system-level compressor model

reasonably predict that the compressor can achieve an energy
consumption of < 4.0 kWh/kg-H2 under 100-875 bar operation

relying on innovative heat pump cycle.

Detailed design complete

Receipt of complete lots of both the LP and HP alloys by 17th month

to allow time for processing into powders and confirmation of

hydrogen absorption/desorption parameters while the bed

assemblies are being fabricated.

Completed assembly of 2-stage compressor with at least two each

LP and HP compressor beds

One LP and one HP hydride must show degradation less than 20% of

initial capacity over —1000 cycles or regeneration potential.

12/16 100%

12/17

(revised)
75%

7/17 100%

2/18

(revised)

95%

1/18 100%

3/18
50%

7/18
0%

8/18
0%
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Proposed Future Work

Remainder of FY18

Procure HP hydride alloy,
compressor beds, and BOP
components

Process hydrides, mix with ENG and
make compacts

Load compressor beds, perform
leak and pressure tests

Configure test facility
Assemble, leak check, fill, and test
operation of temperature control
system

Assemble and leak check hydrogen
manifold

FY19

Integrate prototype
compressor into test facility

Activate hydrides and perform
initial cycling to assess
individual performance

Test performance of prototype
compressor over range of
process conditions

Perform cost analysis for a 100
kg H2/hr system

Final report detailing
performance of compressor

Any proposed future work is subject to change based on funding levels
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BACKUP
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High pressure Sieverts apparatus designed and built
at ORNL

ORNL Hlgh-Pressure Sleverts System

Pressure 0-1000 bar, Temperature 0-150°C

internal volume minimized to enable accurate isotherm

measurements of hydnde alloys at pressures >300 bar

He

r--:
H2 ><I•

Air-Driven
Gas Booster

Volume I.D. (cm3)

. 13.23

VRE, 27 53

A. 11.42

V,„ 2.42

Vs Lp 2.35

vsm 1.21

30-1380 bar
A'F"

Sample
Reactor

Ve  

Ve

TCs1 TCs2

I I

I  I

Key to system volurne designations
vs sample volume

PHR

High-Pressure
Gas

Accumulator

Temperature-
Controlled

Bath

AV

AV2 I I

Reference
Reactor

Calibrated Sieyerts Volumes tor Tio sZrsosCrtothinonVo so Ames-Lab Allo y157.12.3 g rams in Vsl

//REF

VSM

VSLP
VM
vRi_p

VREF

sample manifold volume

sample low-pressure-gauge volume

manrfold volume

reference low-pressure-gauge volume

reference volume

TCRI TCR2

Turbomolecular
Vacuum Pump

Dry Scroll
Vacuum Pump

v

External Vent
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Fracture thresholds measured in hydrogen
environments
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The spread in the XM-19 points represent orientation (also two different strength levels) and
the effect of inclusions
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Tensile data from high strength XM-19 in the H-
precharged condition

XM-19 (22-13-
5)

Sy
(MPa)

Su
(MPa)

Sy
(ksi)

Su
(ksi)

Elu Elt RA

RT X non-charged 916 1099 132.8 159.4 0.053 0.249 0.633
H-precharged 1045 1178 151.5 170.9 0.092 0.252 0.483

—15°C X non-charged 979 1174 142.0 170.4 0.082 0.257 0.625
H-precharged 1142 1295 165.7 187.9 0.090 0.246 0.465

—50°C X non-charged 1063 1276 154.2 185.2 0.104 0.279 0.617
H-precharged 1209 1400 175.4 203.0 0.147 0.257 0.474


