
Methods for Computing Monte
Carlo Tallies on the GPU

•
PRESENTED BY

Kerry L. Bossler

I I IE AI-1
Ms c :

NA
AllMv LDRD
WwA Laboratory Directed Research and Devetopment

Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology Ei Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International inc., for the U.S. Department of

Energy's National Nuclear Security
Administration under contract DE-NA0003525.

SAND2018-3123C



21 INTRODUCTION

All variants of Monte Carlo particle transport codes need to
frequently update a variety of different tallies

s there ette ernative
or tall

_ Updating tallies on the GPU can be more complicated

BesinrAliqrehriff§
CI Two general approac es are used for tallying on the GPU

Replicate the tallies across one or more GPU threads OR

Relying on atomic operations that serialize the code



, NVIDIA GPU ARCHITECTURE

Iiir 11.11 inir

NVIDIA GPU architecture uses Single-Instruction,
Multiple-Thread (SIMT) technology

iii_

Parallel work initiated by launching
CUDA kernel

0 Break work down into many
thread blocks

1-1

Blocks distributed to streaming
multiprocessors (SMs)

Each SM executes 32 threads
concurrently (a.k.a. warp)

CI Data can exist in many
different memory spaces

•

GPU

S M 0
r
Block 0

Registers i

L
Shared Memory

r 1
Block 1

Registers

L
Shared Memory

r 1
Block 2

11111111j

Registers

L A
.

Shared Memory

-‘

Block 3

(111111111

Registers

6._

Shared Memory

Global Memory

Constant Memory

Texture Memory



41 WARP SHUFFLE FEATURE

. Introduced for GPUs with compute capability 3.x or higher

0 Allows all 32 threads in a warp to simultaneously exchange
or broadcast data without using shared memory

CI Can use warp shuffle to implement an efficient parallel
reduction across the threads in a warpt

Warp Index: 0 1 2 3

value += shfl down(value, 2)

value += shfl down(value, 1)

A

t J. Luitjens, https://devblogs.nvidia.com/parallelforall/faster-parallel-reductions-kepler



51 COMPARISON OF TALLY METHODS

Method Name Advantage

Global Atomics

Shared Atomics

Warp Shuffle

Block Reduction

No Atomics

Larger tallies

Faster atomics

Larger tallies

Limits atomics

Larger tallies

Limits atomics

Eliminates atomics

Disadvantage
Atomic
Updatest

Slower atomics

Smaller tallies

One atomic update

per warp

Needs thread

synchronization

Needs more

memory

t Number of atomic operations assuming 128 threads per block

128 Global

128 Shared

1 Global

4 Global

1 Global



61 NVIDIA GPU OPTIONS

All tally methods
tested on four
NVIDIA GPUs

Quadro K5200

1 GPU per card

CI 3.5 Compute Capability

CI 2304 CUDA cores

CI 12 SMs

t.

Tesla K40

1 GPU per card

CI 3.5 Compute Capability

CI 2880 CUDA cores

CI 15 SMs

Tesla K80

LI 2 GPUs per card

• CI 3.7 Compute Capability

CI 2496 CUDA cores

CI 13 SMs

Tesla P100

CI 1 GPU per card

CI 6.0 Compute Capability

CI 3584 CUDA cores

CI 56 SMs



7 I PERFORMANCE TESTS

"Y

He

III-►-

0 x

Fraction of y escaped

N

No
= e-6.59936E-3 x

Test scenarios considered

P All photons escape (x = 0 m)

CI Approximately half of the photons escape (x = 100 m)

U No photons escape (x = 10,000 m)



81 RESULTS: OVERVIEW

❑ Each test scenario was run with
■ 108 particle histories

■ 128 threads per block

❑ All timing data is an average of ten independent runs
■ Measured contribution of tally updates

❑ Considered multiple data types
■ 32-bit integers

64-bit unsigned integers

■ 32-bit floating-point type

■ 64-bit floating-point type (Tesla P100 only)



91 RESULTS: QUADRO K5200

Test
Scenario

Global
Atomics
(ms)

Shared
Atomics
(ms)

Warp
Shuffle
(ms)

Block
Reduction
(ms)

No
Atomics
(ms)

INTEGER TYPE (32-bit)

1 5.48 (1.3) 7.57 (0.5) 6.64 (0.5) 9.34 (0.6) 5.26 (0.2)

2 71.0 (4.7) 34.6 (1.9) 6.58 (0.4) 9.30 (0.6) 5.22 (0.2)

3 3.44 (0.1) 4.05 (0.2) 6.12 (0.4) 9.04 (0.6) 5.31 (0.3)

UNSIGNED INTEGER TYPE (64-bit)

1 134 (5.0) 78.1 (4.9) 7.15 (0.4) 10.4 (0.6) 7.70 (0.3)

2 69.2 (2.5) 42.9 (2.0) 7.13 (0.4) 10.4 (0.6) 7.73 (0.3)

3 3.53 (0.1) 4.08 (0.3) 7.01 (0.4) 10.6 (0.7) 7.78 (0.3)

FLOATING-POINT TYPE (32-bit)

1 384 (4.0) 63.1 (3.8) 11.9 (< 1%) 9.07 (0.5) 5.27 (0.2)

2 197 (0.3) 34.3 (1.8) 12.6 (0.8) 9.05 (0.5) 5.26 (0.2)

3 3.61 (0.2) 4.23 (0.3) 5.96 (< 1%) 9.18 (0.6) 5.22 (0.2)



10 1 RESULTS:TESLA GPUS

6.0

5.0

4.0

3.0

2,0

I .0

0,0
.1

Tesla K40

Tesla K80

a Tesla P100

11
Global Atomics Shared Atomics Warp Shuffle Block Reduction No Atomics

Speedup over Quadro K5200 for 108 tally updates using 32-bit integer type



111 RESULTS:TESLA P100

Test

Scenario

Global

Atomics

(ms)

Shared

Atomics

(ms)

Warp

Shuffle

(ms)

Block

Reduction

(ms)

No

Atomics

(ms)

INTEGER TYPE (32-bit)

1 2.67 (<1%) 1.31 (<1%) 2.68 (<1%) 3.59 (<1%)

2 2.69 (<1%) 1.31 (<1%) 2.68 (<1%) 3.59 (<1%)

3 1.31 (<1%) 1.31 (<1%) 2.23 (<1%) 3.54 (<1%)

1.50 (<1%)

1.50 (<1%)

1.50 (<1%)

UNSIGNED INTEGER TYPE (64-bit)

1

2

77.0 (1.7) 92.6 (0.8) 2.68 (<1%) 3.92 (<1%)

40.1 (0.5) 25.3 (0.2) 2.68 (<1%) 3.92 (<1%)

3 1.31 (<1%) 1.31 (<1%) 2.40 (<1%) 3.90 (<1%)

2.27 (<1%)

2.27 (<1%)

2.27 (<1%)

FLOATING-POINT TYPE (32-bit)

1

2

222 (6.6) 88.2 (2.8) 7.28 (<1%) 3.56 (<1%)

117 (2.9) 24.0 (0.06) 7.28 (<1%) 3.56 (<1%)

3 1.31 (<1%) 1.31 (<1%) 2.23 (<1%) 3.55 (<1%)

1.50 (<1%)

1.50 (<1%)

1.50 (<1%)



121 SINGLE OR DOUBLE PRECISION?

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

II All Escape

• Half Escape

■ None Escape

Global Atomics Shared Atomics Warp Shuffle Block Reduction No Atomics

Speedup of using single precision over double precision on a Tesla P100



131 DOUBLE PRECISION ATOMIC UPDATES

No Atornics

Block Reduction

Warp Shuffle

Shared Atomics

Global Atomics

• Quadro K5200

❑ Tesla K40

• Tesla K80

• Tesla P100

1E+00 1E+01 1E+02 1E+03 1E+04 1E+05 1E+06 1E+07

Time (ms)

Timing data for 108 tally updates using 64-bit floating point type



1,1 CONCLUSIONS

I-1 Five methods for tallying photon escape on the GPU were
compared on four different architectures

—I Tesla P100 is the best GPU architecture to use for tallying

s Process tally updates 2-6 times faster than other architectures

Native support for 64-bit floating-point atomic operations

Tally replication is the most performant method for frequent
updates on the GPU if there is sufficient memory available

0 Using the warp shuffle feature for tallying on the GPU is
often more effective than relying only on atomic operations

Warp shuffle method was better for integers

N Block reduction method was better for floating-point values



„I ACKNOWLEDGEMENTS

Supported by the Laboratory Directed Research and Development program at
Sandia National Laboratories, a multi-mission laboratory managed and operated by
National Technology and Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's
National Nuclear Security Administration under contract DE-NA0003525.

Sandia National Laboratories
ArA

fr. LDRD
•Ik Laboratory Directed Research and Development

U.S. DEPARTMENT OF

ENERGY
.W ,CIR CIA4P

National Nuclear Security Administration


