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Grid Energy Storage UL
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= Grid-level energy storage technologies will enable
intermittent renewables

= Battery systems (Li-ion, Pb-Acid) have been implemented but
pose safety and environmental risks

= Successful grid storage must be safe, reliable, and low-cost

Center for Sustainable Systems, University of Michigan. 2016. "U.S. Energy Storage Factsheet." Pub. No. CSS15-17.

Energy Sage. n.d. “Ground Mount Solar Panels: Top 3 Things You Need to Know.” 7




Alkaline Zn/MnO, Batteries Q=

= Cost

= Traditional primary batteries - $18 per kWh
= Established supply chain

= Low-cost materials and manufacturing
= Safety

= Aqueous chemistry

= Non-flammable

= EPA certified for landfill disposal
= Reliability

= Long shelf-life

= Limited thermal management required

Opportunity: Rechargeable Zn/MnO, batteries for grid storage




Alkaline Zn/MnO, Batteries

Zn-MnO,

y-MnO,

2Mn0, + H,0 + 2e~ — Mn,05 + 20H™ [E® = 4+0.15 V]
Zn + 20H™ - Zn0 + H,0 + 2e~ [E® = +1.28 V]

Zn+ 2Mn0, —» Zn0O + Mn,05; [E° = +1.43V]




Grid Storage Landscape )
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» New materials development to increase usable capacity
= Control lon distribution

» Full mechanistic understanding of battery chemistry

=  Support US Industry (limited DOD 1 e-)



Alkaline Zn/MnO, Batteries T

Two classes of rechargeable Zn/MnO, batteries:

= One Electron = Two Electron

= 308 mAh/g-MnO, = 616 mAh/g-MnO,

= Historically limited cycle- = Historically limited cycle-
ability ability

= > 3000 rechargeable = Recently stabilized with
cycles shown under Cu, Bi, CNT additives
limited depth of = Extended cycling versus
discharge conditions Zn anode not reported

= 5100 - $150 per kWh

Ingale, J. W. Gallaway, M. Nyce, A. Couzis and S. Banerjee, J. Power Sources, 276, 7 (2015).

N. D.
G. G. Yadav, J. W. Gallaway, D. E. Turney, M. Nyce, J. Huang, X. Weiand S. Banerjee, Nat. Commun., 8, 14424 (2017). 6




Limited DOD Cycling UL
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Improving Performance

= Chemical additives often used to improve battery
performance
= Cathode Additives: Bi,O5;, MgO, Sr-, Ba-, and Ti-based compounds
= Anode Additive: In, Bi, Pb, Ca(OH),, carboxymethyl cellulose
= No reports on additives in limited DOD Zn/MnO, systems

= Triethanolamine (TEA)
= Known to form stable complexes with Mn?* and Mn3* H

= Hypothesis: Adding triethanolamine will bind
solubilized Mn?* and Mn3*, thereby mitigating the

formation of irreversible species
o—/ |
OH
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Cathode Discharge Studies UL
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= Examine effect of TEA on Mn3*and Mn?*
= Local deep discharge zones due to electrode heterogeneity
= More capacity accessed when cycled with TEA
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Battery Fabrication ) s

» COTS materials
= 10 vol% TEA added to electrolyte
» 3D printed cells with pressure
relief valve
= Cathode-limited cells
(< 1.5% DOD on Zn)
= ~ 200 mAh capacity

N. D. Ingale, J. W. Gallaway, M. Nyce, A. Couzis and S. Banerjee, J. Power Sources, 276, 7 (2015). 10




Rate Performance ) S,
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= 5 cycles each of C/20, C/10, C/5, C/2, 1C, 2C
= Cells prepared with TEA exhibit 29, 58, and 121 mV higher DEV at
C/10, C/5, C/2
= All cells drop below 1V at 1C and 2C rates — high resistivity of MnO,,
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Extended Cycling ) B,
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= Cycled at C/5 rate, 10% DOD until 80% capacity remained
= Baseline Cells: 183 to 198 cycles, TEA Cells: 483 to 653 cycles
= TEA extends cycle lifetime by 297%




Anodic Stripping Voltammetry =
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= Provides real-time determination of zincate diffusion across
commercial membranes

= LOD:1.6X0.6 ppm

J. Duay, T. N. Lambert, R. Aidun, Electroanal., 29, n/a (2017). 13
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= Reduction peak of Zn shifted to more negative potentials by

50 mV
= May be due to complexing ability of TEA
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Conclusions

Cells prepared with TEA show:
= Higher rate DEV at C/10, C/5, and C/2 rates
= 297% increase in cycle lifetime
= More crystalline Zn formation on the cathode after 100 cycles

More accessible cathode capacity in the presence of TEA
TEA decreases Zn mobility across Celgard and cellophane
separators

TEA shifts the Zn reduction potential to more negative
potentials by 50 mV and produces lower surface area Zn
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Questions?

Thank You!
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Cycling Protocol
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DOD controlled by
time and C-rate

Constant current charge
Constant voltage charge
Rest step

Constant current discharge
Rest step

G P L B =%

M XT X C = Discharge Current

M: Mass of Active Material (g)
T: Theoretical Capacity of Material (mAh/g)
C: C-rate (h)
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XRD After 100 Cycles ) &,
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Cathode changes with cycling
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